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Abstract. Video synopsis or condensation provides an efficient way to
video storage and browsing. Lots of improvements have been made for
boosting the speed or improving the condensed quality, which have shown
promising results. However, most of the existing approaches cannot effec-
tively deal with complex scenes, such as sudden changes or background
object movement. In this paper, we propose a robust video condensation
approach for complex scenes. A video segmentation method is designed
to analyze the background complexity and divide the input video into
several segments. The advantage is two-fold: one is to judge the com-
plexity of backgrounds; the other is to generate a piecewise background
image for each segment. Then, we adopt a divide-and-conquer strategy
for video condensation. We keep the original video segments for complex
backgrounds while maximally condense the other segments. Next, we in-
troduce a feedback scheme and a selective diffusion strategy to keep the
integrity of foreground objects, followed by a sticky trajectory method
to remove noisy fragments and reduce blinking effect. Furthermore, an
adaptive truncation strategy is introduced to raise the condensation ra-
tio and improve the visual quality. Experimental results demonstrate the
effectiveness of our approach.

1 Introduction

Nowadays millions of surveillance cameras are installed for abnormal incidents,
criminal evidences detection and traffic management etc. The world witnesses a
large amount of video data recorded for security purposes every day. Browsing
and indexing activities in these abundant videos are a time consuming and boring
work for viewers. To alleviate the burden for video browsing and searching ef-
fectively, many approaches of video condensation were proposed, such as fast
forwarding[1–3], video summarization[4], video montage[5], video synopsis[6–
8]and ribbon carving[9].

The goal of video condensation is to shorten the original videos with minimum
information loss. Video synopsis, first proposed by Peleg and his colleagues[6–8],
showed better performance on controlling the loss of information than other pre-
vious video abstraction approaches. It mainly involves three steps: (1) Extract
moving objects from the original video to constitute the basic processing unit
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“tube” (a tube is a spatio-temporal sequence of a moving object); (2) Generate
background images by shifting temporal median window over original frames;
(3) Rearrange extracted tubes and densely stitch them into background im-
ages. Online video condensation (OVC) proposed an online framework [10–12],
by transforming the tube rearrangement into a stepwise optimization problem.
However, these approaches ignored the complexity of surveillance scenes. As il-
lustrated in Fig. 1, in these complex scenes such as background sudden changes
or continuous background object movement, moving objects are difficult to be
extracted completely. Moreover, it is also hard to generate proper background
images for tube stitching. For example, when the elevator door is open or the
horizontal sliding door is open in Fig. 1(a), they are all judged as foreground.
The condensation results are shown in Fig. 1(b), where we can see that the visual
effects are not acceptable when the moving doors are directly stitched into the
backgrounds. Therefore, this kind of background complexity analysis is critical
to improve the quality of video condensation. To deal with this problem, we
adopt a video segmentation method to estimate the background complexity and
divide the input video into segments. For these complex segments such as door
open in Fig. 1(a), we keep the original video segments into the synopsis. For the
other segments, we maximally condense the content and concatenate condensed
results with the complex segments.

(a) (b)

Fig. 1. Examples of complex backgrounds. (a) Original videos: elevator, sliding door.
(b) The condensation results with online video synopsis.

For complex scenes, the integrity of moving objects and the continuity of ob-
ject trajectories are also important factors for the condensation quality. There-
fore, to adapt various changes in complex scenes, we introduce a self-adaptive
background modeling approach based on sample consensus with a flexible feed-
back scheme to automatically adjust the model parameters. Besides, a selective
diffusion method is employed to overcome the problems like incomplete fore-
grounds or false detections brought by intermittent moving objects. For the
continuity of object trajectories and reducing blinking effect in a condensed
video for better visual effects, sticky tracking was proposed in [11] to merge
nearest object cubes before tracking. This method reduces the blinking effect
caused by occlusions between objects, however, it also sticks patches caused by
background noise and fragments of other objects. Therefore, we argue that it is
more reasonable that we generate trajectories by concatenating moving objects
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in consecutive frames then stick trajectories with overlapping objects. In this
way, not only the blinking effect is reduced but also fragments with noise and
other objects are removed.

Above all, in this paper we propose a piecewise condensation approach based
on the analysis of scene complexity. Based on the background complexity anal-
ysis, we divide the input video into several segments. Then we utilize a self-
adaptive background modeling approach with a feedback scheme and a selective
diffusion strategy to keep the integrity of foreground objects, followed by a sticky
trajectory strategy to remove noisy fragments and reduce blinking effect. Finally,
we employ an adaptive truncation approach to make the condensed video more
compact. The contributions of this paper are summarized as follows:

– We propose a piecewise video condensation approach for complex scenes
by dividing the input video into different segments based on the analysis
of background complexity and adopting a divide-and-conquer condensation
strategy.

– To keep the integrity of moving objects and the continuity of object trajec-
tories, we introduce a self-adaptive background modeling approach with a
flexible feedback and selective diffusion scheme.

– We put forward a sticky trajectory strategy to remove noisy fragments and
reduce blinking effect.

– We employ an adaptive truncation approach in the process of piecewise op-
timization to make the condensed video more compact.

2 Related Work

There has been an increasing interest in video presentation and summarization
for along time, which is critical for video storage, browsing and indexing.

For video summarization, key frames were usually selected to form a new rep-
resentative image. Based on maximum frame discrepancy strategies, key frames
were usually selected in these approaches. Fast forwarding [1] or video skimming
[2] was one efficient video browsing solution, its idea was selecting some repre-
sentative frames as key frames to replace the whole video, the remaining frames
were skipped. For this technique, Choosing the frames with high interest or high
activity adaptively adaptively was not an easy task. Some adaptive methods for
choosing key frames were proposed [3], but the biggest problem was the big loss
of information, especially the fast activities during the dropped frames.

Some researchers generated new images using regions of interest(ROI) beyond
the whole frames. For example, video mosaic [13] was a synthetic representation
by stitching successive video frames, covering more comprehensive information
than a single key-frame. Another typical work was video collage [14]. A video
sequence was compacted to get a single image by seamlessly arranging ROIs on
a given canvas. Storyboards [15] and narratives [16] represented the course of
events by a static image with an explicit temporal cue.

Video montage [5], analyzed both the spatial and temporal information, ex-
tracted the informative portions in input videos and condensated them together,
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its condensate rate was high but caused visual unpleasant and the total loss of
context. The ribbon carving method condensed video through removing the rib-
bons without activities in every frame [9]. It achieved low condensation ratio
and also lost a lot of context information. In dynamic video narrative [17], all
duplication specific objects were seamlessly stitched into the background video
according to its time axis. In terms of a high condense rate, video synopsis [8, 7]
had made a big success and attracted the attention of many researchers. Feng et
al. [10] proposed an online method, in which tubes were filled in a spatio-temporal
volume one by one like playing a Tetris game. However, motion structure was not
considered, as well as the time consistency of tubes in their method. Huang et
al. [18] regarded the synopsis video generation problem as a maximum a posteri-
ori (MAP) estimation problem, where the appearing frames of object instances
chronologically rearranged in real time according to an online updated synopsis
table. In [11], the optimization problem of tube rearrangement was transformed
into a stepwise optimization problem and used Graphic Processing Unit (GPU)
and multicore technique to further improve the speed.

3 Overview
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Fig. 2. Overview of piecewise video condensation.

As illustrated in Fig 2, the proposed approach includes video segmentation,
background image generation, piecewise condensation, adaptive truncation and
object stitching. Firstly, based on the background complexity analysis, we di-
vide the input video into several segments. Then we introduce sample consensus
model like ViBe [19] to extract moving objects with a feedback scheme and a se-
lective diffusion strategy to keep the integrity of foreground objects, followed by
a sticky trajectory method instead of sticky tracking [10] to remove noisy frag-
ments and reduce blinking effect. Furthermore, an adaptive truncation strategy
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is introduced to raise the condensation ratio and improve the visual quality.
And object tubes are stitched into the generated backgrounds with a modified
Poisson editing [7]. In the followings, we will introduce these stages in details.

4 Video Segmentation based on Background Complexity

The complexity of the background in videos can be reflected by temporal changes
of background median. Videos are segmented depending on the difference among
temporal medians of video clips. The segment process is shown in Fig. 3.

t N

Video

sequences

lable

shift
Video

sequences

Background

change

unstablestable stable

Fig. 3. Video segmentation based on background change.

Firstly, video sequences are divided into several groups in time order, each
group contains N frames. Temporal medians are computed in each group, one
temporal median frameMk corresponds to one group k. The last frame id of each
group is selected as a label to each group. Let Mk−1 and Mk be two neighboring
temporal median frames, Lk−1 and Lk are their labels respectively. We compute
the frame difference between (in Fig 3, ⊖ stands for this process) each pair of
temporal median frames in time order. We use Dk to represent the distance
between Mk−1 and Mk. If Dk exceeds the threshold Dthre, we consider the
background changes a lot, Lk will be recorded, otherwise, Mk will be updated
for next computation ⊖:

{

Mk = (1 − α)Mk−1 + αMk

α = λDk/Hthre
(1)

where α is the updating rate (α ∈ [0, 1]), the updating process can help detect
some slow changes of background (i.e. illumination variation). According to the
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distribution of recorded labels in the video, the whole video is segmented into
stable periods and unstable periods. Since the temporal median method has
hysteretic effects, we set the labels to shift 1.5N before. The temporal window
size N decides the sensitivity of background change detection. We have tried
different values of N on lots of videos and found that N = 300 is a proper value
choice. Fig. 4 shows background changes reflected by temporal median difference
method on different videos and foreground areas measure the distance Dk.
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Fig. 4. Background changes reflected by temporal median difference in different com-
plex scenes.

5 Objects Extraction and Sticky Trajectory

5.1 Objects Extraction

To the frames with stable background, we adopt an improved background mod-
eling approach with self-adaptive ability illustrated in Figure 5. Based on the
frames of input video sequences, firstly, we build a sample based background
model. Like Vibe [20], each pixel model is represented by a sequence of histor-
ical samples based on sample consensus. The background model, named B, is
formed by a series of pixel models, each of which contains a set of N recent
background samples:

B(x) = {B1(x), B2(x), ..., BN (x)} (2)

In our method, we fixed N = 35 to strike a balance between accuracy and speed.

St(x) =

{

1 if#{dist(It(x), Bn(x)) < R, ∀n} < #min

0 otherwise
(3)
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Fig. 5. Moving object detection.

where St is the segmentation result, dist(It(x), Bn(x)) measures the distance
between a given background sample and corresponding current observation. R is
the distance threshold and #min is the minimum number of matches required
for a background classification. We set #min to 2 as it was demonstrated in
[20].

To adapt various changes in complex scenes, a flexible feedback scheme is
presented to automatically adjust the model parameters. Decision threshold R

and update rate T are two most important parameters in this modeling process.
we consider R and T as two pixel-level state variables. Two frame-size maps are
defined to store the current value of R and T . In feedback loops, they are decided
by recursive moving average map d̄min and blinking pixels accumulators v. The
recursive moving average map d̄min is a measure of background dynamics, it is
calculated by the distance between samples and current observations.

Then, a selective diffusion method is employed to overcome the problems
like incomplete foregrounds or false detections brought by intermittent moving
objects. For those intermittent motionless foreground objects, the pixels in their
area are different from surrounding background pixels, so we prevent the diffu-
sion from surrounding background to the foreground. For those sudden moving
of background objects, the background area that they leave behind is similar
with surrounding background, so we accelerate the diffusion from surrounding
background to the foreground. So far, we extract moving foreground objects
from video sequences frame by frame.

Because the context information in generated background images is corre-
sponding to the original frames which is used to extract tubes, bounding boxes
of extracted objects can be used for computing energy cost and object stitching
directly, without any additional segmentation method like graph cut [11], which
can accelerate the condensation process.

5.2 Sticky Trajectory

After moving objects extraction, we concatenate moving objects in consecutive
frames together to obtain object trajectories. Although many tracking methods
have been proposed, those methods may be difficult to suit for video condensa-
tion. The reason is that the break of object trajectory will cause blinking effect
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Fig. 6. Comparison between sticky tracking [11] and sticky trajectory. (a) sticky track-
ing, (b) sticky trajectory.

in condensed video. For example, if there are two objects in a video: object A
and B. When a part of object A is occluded by object B at frame t, object A will
loses this part in condensed video at some point. If worse, object A is occluded
by object B at frame t totally, then object A will disappear abruptly and then
appear again in the view. To reduce blinking effect in a condensed video for
better visual effects, sticky tracking was proposed in [11] shown in Fig. 6(a). In
[11], if occlusions happen to two or more object tubes, they will be merged into
a single tube, as if they are sticking together. The key point is to launch merging
before matching. This method reduces the blinking effect caused by occlusion-
s between objects, but it also sticks noise caused by dynamic background and
fragments of other objects. These noise also increases the number of foreground
objects, which will take more time for optimization and reduce the compression
ratio.

Therefore, instead of sticky tracking [11], we adopt a sticky trajectory ap-
proach to not only reduce the blinking effect but also remove fragments with
noise and other objects. As shown in Fig. 6(b), different with [11], we gener-
ate trajectories by concatenating moving objects in consecutive frames at first.
Then, we remove the noise trajectories that are very short because noise of-
ten abruptly appears and disappears. Finally, we stick trajectories that have
overlapping objects at the some point. In this way, trajectories are generated
before sticky process, which benefits removing noisy fragments caused by dy-
namic background and other objects easily. In addition, the compression ratio
is increased with better visual effects.
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6 Piecewise Condensation
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Fig. 7. Background image generation and piecewise condensation.

For the segmented videos with stable backgrounds and unstable backgrounds,
we adopt a divide-and-conquer strategy for video condensation. In the following
steps, we detail the background image generation and energy minimization:

Background generation. As shown in Fig .7, based on the video segmen-
tation, object extraction and sticky trajectory, background images can be gen-
erated respectively using temporal median method in each segment with stable
background. Tubes from different segments will be stitched into corresponding
background images, so as to keep the context information completely.

Energy Minimization. A divide-and-conquer strategy is adopted for video
condensation. We keep the original video segments with unstable backgrounds
while maximally condensing the other segments. In order to achieve visually
pleasing condensed results, the problem of rearrangement of tubes is formulated
as an energy function, visual overlap and lost of information are defined as energy
cost [7]. Therefore, the task of video synopsis is to solve a problem of energy cost
minimization. We use online strategy to transform the global cost minimization
to a stepwise optimization, to make condensation faster and ensure low memory
cost. Let B denote the set of tubes, the stepwise optimization is solved by a
greedy algorithm [10, 21]:

li
∗ = argmin

li

E(li)

s.t.E(li) = Ea(li) +
∑

j∈B

Ec(li|lj)
(4)

where l = {li}
|B|
i=1

is the set of play start time of tubes, every tube Ti have one
corresponding li. The Ea(li) named activity cost measures the cost of extracting
tube Ti from original video and stitching it into a generated background at time
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li. We mainly consider the collision cost between each of the two tubes Ec(li, lj).
In online framework, tubes are filled in a condensed space one by one, so simply
regard Ec(li, lj) = Ec(li|lj). The greedy algorithm may lead to decreasing of
condensation ratio because it condenses the video on finding locally optimal
solution in each synopsis clip. The adaptive truncation could decrease this kind
of impact.

6.1 Adaptive Truncation

Tubes extracted from original video will be rearranged to give new time labels.
Fig. 8 is the top view of tube filling in condensation space. Fig. 8(a) shows the
traditional way of tube filling [7]. Tube division is adopted to improve the con-
densation ratio but causes blinking effect in condensed video (object appears and
disappears suddenly in the middle of frames). For a high visual quality, instead
of segmenting tube, we truncate condensation space to improve the condensation
ratio. As shown in Fig. 8(b), because tubes are always with different temporal
length, the compactness in the latter part is very low. In the process of adaptive
truncation, the former space with higher compactness will be condensed first.
Tubes already filled in the final volume are truncated into two parts, i.e., the
body parts and tails. When new tubes come, the former tails are filled into the
condensation space firstly, then they will be optimized together with new coming
tubes. The temporal truncated location in condensation space can be estimated
by mean length approximately:

Ttra =
1

n

∑n

i=1

(li + Li) (5)
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where li is the start time label of tube Ti, and Li is its length. The adaptive
truncation breaks one-off process of tube filling into several steps and makes
the condensed video more compact in each step. That would help to alleviate
the problem brought by greedy optimization through considering a part of fu-
ture tubes. Moreover, the discontinuity of tubes between condensation space is
avoided [21]. Fig. 9 shows the comparison results between condensation with
adaptive truncation (AT) and without adaptive truncation. Condensation result
with AT shows more compact.
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Fig. 9. Comparison results with adaptive truncation and without truncation.

7 Experiments

To evaluate the performance of the proposed approach, we carried experiments
on two video datasets. One is a public dataset from [11], composed by 9 videos
captured from indoor and outdoor scenes. Another one was collected by our-
selves, including 9 complex scenes (“intermittent” is captured by moving cam-
era). Table 1 presents the results of our approach. The condensation ratio (CR)
denotes the frame number ratio between condensed videos and original videos,
and AoMU, PoMU are abbreviations of average of memory usage and peak of
memory usage, respectively.
Condensation ratio. As shown in Table 1, the lowest condensation ratio is 1.16
while the highest one is 32.4. The lower condensation ratio generally results from
complex background changes, which are truncated as unstable video segments.
Speed. As shown in Table 1, the speed decreases with the increase of the the
pixel resolution. For the video sequence with solution (320 × 240), the process-
ing speed is about 100 fps. For high resolution (740 × 576) video sequences, the
process speed still has about 41 fps.
Memory usage. For those high resolution (740 × 576) video sequences, the
memory usage peak of our system is lower than 2.0 GB.
Subjective evaluation. The robustness of video condensation can be reflected
by the subjective evaluation of condensation quality for different scenes. Two
criteria are proposed for evaluating the visual quality of condensed video, in-
cluding visual pleasing and comprehensible:
1. Visual pleasing: Do you think this synopsis is comfortable for viewers ? You
can score based on the following aspects: Overlap, blinking effect and object
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Table 1. Our condensation results on 18 videos.

Video Resolution #Frame Speed CR AoMU PoMU
(Num) (fps) (MB) (MB)

Overpass [11] 320 × 120 23950 103.1 20.91 150 167

Exit [11] 320 × 240 81538 100.6 18.36 293 313

Garden [11] 320 × 240 33826 100.9 13.68 280 284

Outdoor [11] 320 × 240 138583 98.4 2.99 316 348

Park1 [11] 352 × 288 10221 109.9 7.70 372 374

Passage [11] 352 × 288 51041 98.9 10.01 377 395

Street [11] 704 × 576 100114 42.5 8.48 1465 1530

Staircase [11] 704 × 576 46109 41.5 3.76 1466 1545

T-junction [11] 704 × 576 637470 43.6 32.40 1493 1899

Elevator1 352 × 288 89992 93.2 15.00 371 374

Elevator2 352 × 288 90001 94.0 3.47 401 439

Crossing 740 × 576 12266 42.2 1.13 1508 1959

Slidingdoor 352 × 288 8244 107.1 2.10 378 390

outdoor1 480 × 360 11999 82.8 11.46 660 716

outdoor2 724 × 416 3495 74.2 1.21 1082 1085

outdoor3 352 × 288 5323 102.3 2.70 385 410

Irondoor 352 × 288 90001 97.3 2.93 385 410

intermittent 568 × 376 3500 40.22 1.16 762 771

completeness.
2. Comprehensible: Can you infer the original object behavior information from
this synopsis ?
3. Overall Satisfied: Do you think the synopsis overall is comfortable for viewers
?
We set the score scale as 1-5 for these two criteria, where the score below 3
means the visual quality of this condensed result is bad and the score of con-
densed results with accepted quality is above 4. We invited 36 participants to
score the synopsis results. All the participants have strong background knowl-
edge in video surveillance, they were requested to watch the original videos first,
then compare the condensed results with original videos and give their scores on
two aspects: visual pleasing and comprehensible. We compared average scores by
two criteria between our method and online video condensation (OVC) method
[11]. The statistical results of subjective feedbacks on two datasets are illustrated
in Fig 10. The score of our approach is close to OVC in dataset1 [11] because
most videos have relatively simple backgrounds. But in the dataset of complex
scenes, our method achieves better performance on visual quality.1 The scenes
“intermittent” captured by intermittent moving camera also can be condensed
with a high visual quality by our approach.

Table 2 gives a summary of comparison between our approach and other
state-of-art video condensation methods. It shows that compared with video

1 http://pan.baidu.com/s/1i329jzn
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Fig. 10. Comparison results of Subjective evaluation between our method and OVC
[11].

Table 2. Comparison results with the state-of-art methods.VS:Video Synopsis, R-
C:Ribbon Carving, CR:Condensation Ratio, OVC:Online Video Condensation.

Method Speed Memory CR Blinking Effect Robustness

VS [7] 10fps High User High Low

RC [22] Slow Huge Low - -

OVC [10] 100fps+(GPU) Low High Low Low

Ours 40fps+(CPU) Low High Low High

synopsis [7] and Ribbon carving [10], our method has faster speed with lower
memory, better visual quality. We cannot directly compare our processing speed
with [11], since they run in GPU. But compared to online video condensation
[11, 22], our approach is more robust to different scenes. Example frames of the
condensation videos are shown in Fig. 11.

8 Conclusion

A robust condensation approach based on piecewise condensation framework
has been proposed in this paper. The piecewise condensation framework can
condense results with high visual quality in different scenes, even the sequence
captured by intermittent moving camera. We divide the input video into sev-
eral clips. Then we present a self-adaptive background modeling approach with
a feedback scheme and a selective diffusion strategy to keep the integrity of
foreground objects, followed by a sticky trajectory strategy to remove noisy
fragments and reduce blinking effect. The process of condensation is with high
speed and low memory cost. Besides, an adaptive truncation is designed to refine
the low condensation ratio brought by online tube filling. Experimental results
show the superiority of the proposed approach.
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a

b

Fig. 11. Example frames of condensation video in four different scenes, which are
outdoor3, Slindingdoor, outdoor1, Irondoor, from left to right respectively. (a) one
frame in input video, (b) one frame in our condensation video.
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