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ABSTRACT
Convolutional neural networks (CNNs) have achieved re-
markable performance in a wide range of computer vision
tasks, typically at the cost of massive computational com-
plexity. The low speed of these networks may hinder real-
time applications especially when computational resources
are limited. In this paper, an efficient and effective ap-
proach is proposed to accelerate the test-phase computation
of CNNs based on low-rank and group sparse tensor decom-
position. Specifically, for each convolutional layer, the kernel
tensor is decomposed into the sum of a small number of low
multilinear rank tensors. Then we replace the original ker-
nel tensors in all layers with the approximate tensors and
fine-tune the whole net with respect to the final classifica-
tion task using standard backpropagation.
Comprehensive experiments on ILSVRC-12 demonstrate sig-
nificant reduction in computational complexity, at the cost
of negligible loss in accuracy. For the widely used VGG-16
model, our approach obtains a 6.6× speed-up on PC and
5.91× speed-up on mobile device of the whole network with
less than 1% increase on top-5 error.
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1. INTRODUCTION
In recent years, convolutional neural networks (CNNs)

is continuously setting new state-of-the-art performance in
computer vision tasks such as image classification and ob-
ject detection. However, to a certain extent these break-
throughs have become possible through adding layers and
increasing the size of feature maps. One drawback of the
resulting networks is that the computation time increases
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significantly at both training and testing phase. Thanks to
specialized hardwares like NVIDIA GPUs and CPU clus-
ters, these CNN models can be trained offline within a rela-
tively affordable time. But the real-world systems may still
suffer from long testing time, especially for real-time but
computation-limited systems, such as smart phones and au-
tomated vehicles. Therefore, it is of central importance to
speed up test-phase computation of CNN models.

There have been a banch of studies for CNN model ac-
celeration. One of the most widely used techniques is low-
rank approximation. Many low-rank based approaches [3,
6] have been investigated since Denil et al.’s work [2] on re-
ducing redundancy of CNN models. Among these studies,
Zhang et al.’s work [18] achieved 3.8× speed-up on VGG-
16 model. Low-rank tensor decomposition based methods
have also been developed. Lebedev et al. [11] utilized CP-
decomposition to approximate the 4D convolutional kernel
tensor. But they only handled a single layer for AlexNet.
Kim et al. [8] proposed to use Tucker decomposition to
reduce the computational complexity of CNN models. Net-
work pruning [4, 12] is another widely used technique for
CNN compression and acceleration. The main idea of these
methods is to remove low-saliency parameters or small-weight
connections [4]. These methods achieve significant theoret-
ical speed-up ratio, but the resulting unstructured sparse
connections do not fit well in parallel computation. Beyond
the methods mentioned above, many other approaches are
proposed. Wu et al. [17] proposed to use product quanti-
zation for CNN compression and acceleration at the same
time. FFT-based method was also investigated in [13].

In this paper, we propose an acceleration method for CNN
models based on tensor low-rank and group sparse decompo-
sition. The resulting architecture gains efficiency from both
low-rank and sparsity. We evaluate our proposed method on
one of the largest image classification benchmark of ILSVRC-
12 [14]. Our approach achieves 6.6× speed-up with less than
1% drop in top-5 classification accuracy. Our contributions
can be summarized as follows:

• We propose a tensor Block Term Decomposition (BTD)
based acceleration method for convolutional neural net-
works, which benefits from both low-rank and group
sparsity.

• A new alternative least square method, i.e., Principle
Component Iteration (PCI), is proposed for efficient
tensor block term decomposition.

541



• Our method achieves significant speed-up for CNN mod-
els. For the widely used VGG-16 [15] model, we obtain
6.6× actual speed-up on PC and 5.91× speed-up on
smart phone with less than 1% drop on top-5 classifi-
cation accuracy.

2. PROPOSED METHOD
Throughout this paper vectors are denoted boldface low-

ercase letters, e.g., x. Boldface capital letters, e.g., X, are
utilized to represent matrices. Euler script letters are used
to denote higher-order tensors, e.g., X . The symbol ×n rep-
resent n-mode product of a tensor with a matrix [9].

2.1 Low-rank and Group Sparse Tensor Ap-
proximation

In CNN models, the convolutional kernel is a 4-way ten-
sor of size W×H×S×T, where W/H is the width/height of
the kernel and S/T is the number of input/output chan-
nels. For simplicity, we combine width/height together and
denote the spatial dimension as P(=WH). Thus the kernel
tensor becomes a 3D tensor. The proposed method exploits
low-rank and group sparse decomposition on the 3D convo-
lutional kernel tensor.

Our assumption is twofold. First, we assume that the
learned kernel tensors are low rank along the input and out-
put channels. The resulting architecture is called bottleneck
[5]. Bottleneck architecture consists of three layers where
the first 1×1 convolution is used to reduce input channel
dimension, the last 1×1 convolution layer is responsible for
restoring output channel dimension, and the middle layer is
a regular W×H convolution but with smaller input/output
dimensions.

We also assume that connections of the second layer of
the bottleneck architecture is sparse in group. The resulting
architecture is a layer with multiple convolutions which is
(channel-wise) locally connected. We refer to this architec-
ture as group like in the implementation of Caffe [7].

The approach presented here benefits from both low-rank
and group sparsity. The method proposed has the form of
tensor block term decomposition [1]. Thus we denote our
acceleration method as BTD.

2.2 Block Term Decomposition on Convolu-
tional Kernels

Throughout this paper we represent convolutional kernels
as a 3D tensor T ∈ RS×T×P , where S and T are the numbers
of input and output channels and P is the spatial dimension,
e.g., for a 3×3 kernel, P equals to 9.

The basic idea of tensor block term decomposition is to
approximate a tensor as a sum of several low-rank tensors.
Each low-rank tensor is in the form of a core tensor mul-
tiplied by a factor matrix along each dimension. For the
convolutional kernel tensor T , the block term decomposi-
tion is

T ≈
R∑

r=1

Gr ×1 Ar ×2 Br ×3 Cr (1)

where Gr ∈ Rs×t×p is the core tensor of r -th subtensor and
Ar ∈ RS×s, Br ∈ RT×t and Cr ∈ RP×p are factor matrices
along each dimension. Here the lower-case letter s, t and p
represent the rank in each dimension respectively.

In our method, we don’t exploit the low rank of spatial
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Figure 1: Visualization of tensor block term decom-
position.
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Figure 2: Visualization of tensor block term decom-
position with a group sparse core tensor.

dimension, thus we utilize the decomposition of the following
form:

T ≈
R∑

r=1

Gr ×1 Ar ×2 Br (2)

where Gr ∈ Rs×t×P is the core tensor of r -th subtensor and
Ar ∈ RS×s and Br ∈ RT×t are factor matrices along input
and output channel dimensions respectively. We can think
that the factor matrix along spatial dimension in (2) is an
identity matrix. The decomposition is visualized in Figure 1.

The next section will discuss how to solve this decomposi-
tion problem efficiently. If the decomposition is known, each
component of the subtensors can be concatenated, i.e., con-
catenating A1, · · · ,Ar into a big matrix A, and B1, · · · ,Br

into a big matrix B, and G1, · · · ,Gr into a big core tensor
G. Here the resulting big core tensor G is group sparse, i.e.,
non-zero values are along the diagonal blocks, as shown in
Figure 2. The matrices A and B correspond to the first and
last 1×1 convolutional layers of the bottleneck architecture,
and the core tensor G is the second convolution kernel of
size W ×H which can be constructed using multiple groups.
Figure 3 shows how convolution layers can be replaced by
new layers for speed-up.

2.3 Principle Component Iteration
Tensor decomposition can be seen as a generalization of

matrix decomposition to multidimensional case and has been
actively studied in recent years. Many approaches are pro-
posed for tensor decomposition, however, few of them con-
sider the block term decomposition. An intuitive method for
solving the decomposition problem of (1) is in the greedy
way, e.g., greedily finding a best Tucker approximation of
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Figure 3: Block term decomposition used for
speeding-up convolution.
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the residual tensor. But this greedy method may suffer from
high approximation error. In our experiment we find that
a minor increase of the approximation error may result in a
huge drop on the final accuracy.

The authors of [1] gives an alternating least squares (ALS)
algorithms. But in our experiments, we find that this method
has a large memory consumption and runs quite slow, which
is prohibitive for practical use. Nonlinear least squares (NLS)
algorithms are also quite slow.

In this section, a much more efficient algorithm called
Principle Component Iteration (PCI) is proposed, which is a
generalization of higher order orthogonal iteration (HOOI)
[9] used in the Tucker decomposition. The basic idea of PCI
is to find the principle component (a subtensor) of resid-
ual tensor approximated using other components at every
iteration. PCI is much more efficient than existing meth-
ods. For example, the decomposition time of a single layer
for VGG-16 model is more than ten hours using NLS al-
gorithm, while PCI can achieve comparable approximation
error within half an hour. The details of our proposed PCI
method is presented in Algorithm 1.

Algorithm 1 Principle Component Iteration

1: procedure PCI(T )
2: initialize Tr ← 0 for r = 1, · · · , R
3: repeat
4: for r = 1 to R do
5: Tres ← T − sum(T1, · · · , Tr−1, Tr+1, · · · , TR)
6: Tr ← HOOI(Tres)
7: end for
8: Tres ← T − sum(T1, · · · , TR)
9: until Tres ceases to decrease or maximum iterations

reached
10: return T1, · · · , TR
11: end procedure

2.4 Complexity Analysis
For every spatial position and every convolutional layer

of the original networks, the normal convolution requires
S × T ×W × H multiplication-addition operations. While
in our method, the required operations of the corresponding
three layers (note that we replace the original convolutional
layer with three convolutional layers) are S × S′, S′ × T ′ ×
W ×H/R, and T × T ′ respectively, where R represents the
number of groups. Thus the theoretical speed-up ratio is
given by:

ratio =
STWH

SS′ + S′T ′WH/R + TT ′
(3)

3. EXPERIMENTS
In this section, we evaluate our approach on ILSVRC-12

[14] image classification benchmark. Experiments are con-
ducted on two of the mostly used CNN models, i.e., AlexNet
[10] and VGG-16 [15]. Single-layer performance for AlexNet
is firstly evaluated using our approach. Based on the exper-
imental results, we further show the power of our method
on whole-model acceleration of very deep VGG model [15].
Through out this section, we use Berkeley’s Caffe [7] rou-
tines for our experiments. We utilize Intel MKL and Eigen3
library for PC and smart phone respectively.

3.1 Speed-Up Results for AlexNet
In this subsection, we evaluate the acceleration perfor-

mance on AlexNet. We process the second convolutional
layer of AlexNet, as in [3, 6, 11, 17], because the second con-
volution is the most time-consuming layer during test-phase.
Table 1 shows the comparison with existing methods. All re-
sults in Table 1 are the best results reported by the authors
in their papers except for [6], which is reproduced by [11].
For our method, we set the selected rank S′ = 40, T ′ = 120
and the group number R is set to be 20.

Table 1: Comparison with other methods for the
second convolutional layer of AlexNet.

Method Speed-up Top-5 Err. ↑
Biclustering + SVD [3] 2.7× 0.95%
CP Decomposition [11] 4.5× 1.22%
Q-CNN [17] 6.1× 0.31%
Low rank [6] 6.6× ≈1%
BTD 8.1× 0.98%

From Table 1 we can conclude that with about 1% drop
in accuracy, our method achieves more than 8× speed-up,
which is much higher than other methods.

3.2 Whole-Model Acceleration for VGG-16
In this subsection, we evaluate our approach on VGG-16

model for ImageNet classification. We mainly focus on the
convolutional layers in our experiments. But our approach
can be directly combined with other approaches e.g., the
product quantization method [17] or SVD used in [3, 18]. We
report actual running time and speed-up ratio for each layer
as well as for the whole VGG-16 model in Table 2. All results
in this subsection are conducted on personal computer with
i7 CPU (3.4GHz). We don’t process the first convolutional
layer because of the small complexity.

As can been seen from Table 2, our method can achieves
about 6 ∼ 13× CPU speed-up. Our method obtains 6.6×
whole-model speed-up (column denoted by “Whole”) even
without accelerating the fully connected layers at the cost of
1% drop in accuracy. Note that the first fully connected layer
can be treated as convolution with large filters. Thus we can
further improve speed-up ratio to 7.4× (last column denoted
by “Whole*”), which is almost twice as much of the best ex-
isting method as shown in Table 3. Note that the theoretical
speed-up ratios shown in Table 3 are calculated using the
multiplication-addition operations of all convolutional lay-
ers before and after accelerating. Non-convolutional layers,
such as pooling layers, are also time-consuming. Thus the
actual speed-up ratios are much lower than the theoretical
ones, especially at higher speed-up ratios.

Comparison with current state-of-the-art methods are il-
lustrated in Table 3. All results are the best results reported
by the authors except for the method used in [6], which is
the result reproduced by the authors of [18]. The different
theoretical speed-up ratio are got by setting different hyper-
parameters, for example the rank used by these methods.

From Table 3, we find that our method outperforms all
the rest methods significantly. Even without accelerating
fully connected layers, our method can still achieves 6.6×
actual speed-up, which is much higher compared to the 3.8×
acceleration of [18].
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Table 2: Performance of accelerating VGG-16 model. Runing time is in milliseconds for a single view on
CPU using Intel MKL (single thread, with SSE).

Layers C11 C12 C21 C22 C31 C32 C33 C41 C42 C43 C51 C53 C53 Whole Whole*

VGG-16 10.9 200.4 86.4 171.2 79.0 159.7 159.9 76.9 154.1 153.6 42.8 42.8 42.7 1442.0 1442.0
BTD 10.95 33.25 9.46 18.87 7.58 12.41 14.01 6.20 10.40 13.00 6.64 6.63 6.62 218.33 194.88
Speed-up 1× 6.0× 9.1× 9.0× 10.4× 12.9× 11.4× 12.4× 14.8× 11.8× 6.4× 6.5× 6.5× 6.6× 7.4×

Table 3: Comparison with other methods for whole-
model acceleration of VGG-16. BTD*/BTD is ob-
tained with/without processing the fully connected
layer. Different theoretical speed-up ratios result
from different hyper-parameters

Method Theoretical Actual Top-5 Err. ↑

Zhang [18]
4× 3.8× 0.3%
5× - 1.0%

Jaderberg [6]
3× - 2.3%
4× 3.8× 9.7%
5× - 29.7%

Tai [16] 3× 2.1× 0.3%
Q-CNN [17] 4× - 0.5%
BTD 12.1× 6.6× 1.0%
BTD* 12.2× 7.4× 1.3%

3.3 Results on Mobile Device
In this subsection, we evaluate the performance of our

method on smart phone. Results are conducted on Huawei
Mate 7 which is equipped with a 1.8GHz Kirin 925 CPU. We
adapt the code of Caffe onto Android and use Eigen3 library
for matrix operations. We use the same accelerated model
as in previous subsection. Thus the accuracy drop for mobile
devices is the same as reported in previous subsection. The
results are shown in Table 4. Speed-up ratio are based on
runing time of VGG-16 on smart phone using single thread.

Table 4: Comparison on time consumption of the
original and the accelerated VGG-16 model on
smart phone.

Model #threads Time (s) speed-up

VGG-16
1 10.52 1×
4 4.29 2.45×

BTD
1 1.78 5.91×
4 0.96 10.95×

From Table 4 we can see that our model runs much faster
than the original VGG-16 model. The actual speed-up is
5.91× using single thread.

4. CONCLUSIONS
In this paper, we propose an acceleration method for CNN

models based on tensor low-rank and group sparse decom-
position. The resulting architecture gains efficiency from
both low-rank and sparsity that cannot be matched by ei-
ther method. We also propose a new alternative least square
method, i.e., priciple componant iteration, for tensor block
term decomposition, which is much more efficient. Compre-
hensive experiments conducted on ILSVRC-12 benchmark
[14] demonstrate significant reduction in computational com-
plexity, at the cost of negligible loss in accuracy.
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