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Abstract—In this paper, we proposed a novel framework for
facial expression recognition, in which face images were taken as
vertices in a hypergraph and the task of expression recognition
was formulated as the problem of hypergraph based inference.
A hybrid strategy was developed to construct hyperedges: we
generated probabilities of facial action units by deep convo-
lutional networks and took each action unit as an ‘attribute’
to represent a hyperedge; we also formed hyperedges by using
embedded network features before the last full connected layer
to perform local clustering. In this way, each face image was
assigned to various hyperedges by exploiting the representational
power of deep convolutional networks. Our facial expression
recognition system generates expression labels by a hypergraph
based transductive inference approach, which tends to assign the
same label to vertices that share many incidental hyperedges, with
the constraints that predicted labels of training images should be
similar to their ground truth labels. We compared the proposed
approach to state-of-the-art methods and its effectiveness was
demonstrated by extensive experimentation.

I. INTRODUCTION

Facial expressions are vital to social communication be-
tween humans. Although humans can visually recognize facial
expressions easily, it is quite a big challenge for machines to
interpret this information. Earlier work [1] [2] in this area is
mostly based on the Facial Action Coding System (FACS) [3]
proposed by Paul Ekman, in which facial expressions were
decomposed into ‘action units’ (AUs), i.e. movements of
face regions such as human’s eyes, nose and month. These
AU-based methods are very dependent on carefully hand-
engineered features to ensure good performance. Another
category of work for expression analysis used human’s gen-
eral appearance information such as facial shape and texture
features to model a person’s expression [4] [5] [6]. Due to the
success of deep learning in various computer vision problems,
recent work in this category applied deep convolutional neural
networks (D-CNN) as appearance-based classifier to detect
action unit occurrence [7] or expression classes [8] [9] and
achieved encouraging results. The common ground of [7] [8]
and [9] is that they all trained an end-to-end D-CNN system
to predict AU/expression classes.

In this paper, we combined the best of two worlds by
utilizing both the action unit information and appearance
features in a hypergraph framework to solve the problem

of facial expression recognition. As defined in [10], a hy-
pergraph is a graph in which an edge (i.e. hyperedge) can
connect more than two vertices. That is, a hypergraph is a
generalization of a pairwise simple graph, in which a set
of vertices that have the same ‘attribute’ or belong to the
same local cluster is defined as a weighted hyperedge; the
magnitude of a hyperedge weight indicates to what extent
the vertices in a hyperedge belong to the same cluster [11].
A vetex in a hypergraph may belong to various hyperedges.
The hypergraph model has proven to be beneficial to various
clustering/classification tasks [12] [13] [14] [15], because it
can represent the information that three or more vertices
have the same semantic attribute, which usual graphs can not
describe. However, previous hypergraph frameworks usually
employed SIFT-like descriptors [16] for feature extraction and
hyperedge construction [17], which may limit the potential
of hypergraphs in real-world applications. In this paper, we
adopted the deep convolutional networks to predict the occur-
rence of action units and to generate the appearance features.
Both two kinds of information were used for hyperedge
construction respectively.

As shown in Figure 1, our expression recognition pipeline
consists of two stages. Inspired by the observation of [8] that
the hidden units of high-level layers in deep convolutional
neural networks (D-CNN) resemble facial action units or
combinations of them, in the first stage a D-CNN model
was built and its softmax layer was formulated to generate
the probabilities of different action units. Naturally, each
action unit represents a facial attribute critical to expression
classification.

To utilize the information generated by our D-CNN model,
in the second stage a hybrid strategy was developed to
construct two kinds of hyperedges. On the one hand, each
action unit was taken as an ‘attribute’ to represent a hyperedge.
Considering that each action unit output computed in the first
stage must represent multiple facial images, it is natural to
describe the relationship among samples in a facial expression
dataset as a hypergraph; a face image can be assigned to
corresponding hyperedges according to its output probabilities
on various action units. On the other hand, to further exploit
the correlation information among expression images, we
also formed hyperedges by using embedded network features
before the last full connected layer to perform local clustering.
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Fig. 1. The framework of hybrid hypergraph construction for facial expression Recognition, in which all face images in a dataset can be processed by
our trained deep convolutional neural networks (D-CNN) to build a hypergraph. The last softmax layer of the D-CNN model was formulated to generate
the probabilities of different action units. Each action unit was used as a critical facial attribute to create a hyperedge. To further exploit the correlation
information among expression images, we also formed hyperedges by using embedded network features to perform local clustering: we took each facial image
as a ‘centroid’ vertex and formed a hyperedge by a centroid and its k-nearest neighbors. Take the input image (illustrated as a yellow vertex) in this figure
as an example, three action unit attributes (illustrated as red, green and blue nodes) are activated and the yellow vertex is assigned to three corresponding
hyperedges. It is also taken as a ‘centroid’ vertex to form a hyperedge by utilizing its embedded network feature.

Based on the similarities computed from embedded D-CNN
features, we took each facial image as a ‘centroid’ vertex and
formed a hyperedge by a centroid and its k-nearest neighbors.
We followed the fuzzy hypergraph model introduced in [17],
which presents not only whether a vertex vi belongs to a
hyperedge ej , but also the probability that vi ∈ ej . Based on
the built hypergraph, our facial expression recognition system
generates class labels by a transductive inference approach,
which tends to assign the same label to vertices (images) that
share many incidental hyperedges (attributes or local clusters),
with the constraints that predicted labels of training images
should be similar to their ground truth labels. We compared
the proposed approach to state-of-the-art methods and its
effectiveness was demonstrated by extensive experimentation.

The rest paper is organized as follows: The definition to
hypergraph is introduced in Section 2; we address the deep
learning based hyperedge constructionin in Section 3, and we
present the hypergraph learning for expression recognition in
Section 4; Experiments are reported in Section 5, and followed
by the conclusion finally.

II. REVIST TO HYPERGRAPH

Let V represent a finite set of vertices and E a family of
subsets of V such that

⋃
e∈E = V . G = (V,E,w) is called

a hypergraph with the vertex set V and the hyperedge set
E, and each hyperedge e is assigned a positive weight w(e).
A traditional hypergraph can be represented by a |V | × |E|
incidence matrix Ht:

h(vi, ej) =

{
1, if vi ∈ ej
0, otherwise. (1)

Such a representation with higher order relationships has
illustrated the benefits to various clustering/classification
tasks [14] [17], because it takes account of the relationship
not only between two vertices, but also among three or more
vertices containing local grouping information, which simple
pairwise graphs can not describe. However, as illustated in
Equation 1, this structure assigns a vertex vi to a hyperedge ej
with a binary decision, which causes some information loss. In
this paper, we adopted a fuzzy version of hypergraph proposed
in [17] to overcome this limitation by assign each vertex vi to
a hyperedge ej according to the probability of vi belonging
to ej :

h(vi, ej) =

{
O(j, i), if O(j, i) > t
0, otherwise, (2)

where O(j, i) denotes the probability of a face image i having
an attribute or belonging a local cluster j, which will be
explained in the next section; t is a threshold. Here each at-
tribute/local cluster is corresponding to a hyeredge. According
to this formulation, vi is ‘softly’ assigned to ej based on the
computed probability O(j, i). For a vertex v ∈ V , its degree
is defined to be d(v) =

∑
e∈E w(e)h(v, e). For a hyperedge

e ∈ E, its degree is defined as δ(e) =
∑
v∈e h(v, e). Dv , De

and W are used to denote the diagonal matrices of the vertex
degrees, the hyperedge degrees and the hyperedge weights
respectively.

#ofAUs

III. HYBRID HYPEREDGE CONSTRUCTION

A. Our Deep Convolutional Neural Networks

Network architecture. In this paper we constructed the
deep convolutional networks as in Table I. The architecture
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1 2 3 4 5 6 7 8 9 10
Layer Conv. Pool. Conv. Conv. Pool. Conv. Pool. Full Conn. L2 Loss
Kernel size on each channel 3× 3 3× 3 3× 3 3× 3 3× 3 3× 3 3× 3 – – –
# of feat. maps or feat. dims 96 – 128 128 – 192 – 512 512 –

TABLE I
STRUCTURE OF OUR DEEP CONVOLUTIONAL NEURAL NETWORKS. THE LAST LINE SHOWS THE NUMBER OF FEATURE MAPS FOR CONVOLUTIONAL

LAYERS AND FEATURE DIMENSIONS FOR FULL CONNECTED LAYERS.

consists of four convolutional layers containing 96, 128, 128
and 192 filters, respectively. Except those hidden units in the
first layer (inputs of which are 49 × 49 gray-level images),
all other convolutional layers use 3D convolutional filters.
We adopted the rectified linear unit (ReLU) as the activation
function. We used two consecutive convolutional layers (Layer
3 and Layer 4) to increase the representational power. The
size of all filters on each feature map is 3 × 3 to capture
more detailed texture variation. We used 3 × 3 pooling with
stride 2 for all pooling layers. The last convolutional layer
is followed by a full-connected layer containing 512 hidden
units. We implemented this D-CNN model on the famous deep
learning library CAFFE created by Jia [18].

Training Protocols. We trained our models using stochastic
gradient descent with a batch size of 128 examples; we set
momentum = 0.9 and weight decay = 0.001; we initialized all
the weights from zero-mean Gaussian distribution with a stan-
dard deviation 0.005. We also used dropout [19] and various
forms of data augmentation to regularize our networks and
reduce overfitting. We applied dropout to all the convolutional
layers and fully-connected layers with a probability of 0.5. For
data augmentation, we applied the following transformations
to each image: translations, horizontal flips, rotations, scaling
and pixel intensity augmentation.

Pre-training and fine-tuning. We discriminatively pre-
trained our D-CNN on the Labeled Faces in the Wild dataset
(LFW) [20] which contains 5,749 subjects and 13,233 cropped
face images. During this phase we used 4,000 output corre-
sponding to the number of selected training subjects till the
networks converge. Then we replaced the 4000-way classifi-
cation with randomly initialized N-way classification, where
N is the number of facial action units presented in a specific
expression dataset. Stochastic gradient descent training of the
D-CNN parameters was continued by using the corresponding
expression dataset. We found the pre-training and followed
domain-specific fine-tuning is very effective to boost perfor-
mance of our task. So far we have built a D-CNN model which
is able to predict the occurrence of an action unit directly.

B. Hyperedge Construction using Action Units

Each action unit contains specific semantic information
which is beneficial to the expression recognition task. We took
action units as facial expression ‘attributes’ and used them
to construct hyperedges. During this stage, the output layer
of our trained D-CNN is designed to predict the occurrence
of N action units. The output of last full connected layer is
exponientially normalized in the softmax layer as follows:

O(j, i) =
eC(i,j)

N∑
k=1

eC(i,k)

, (3)

where C(i, j) denotes the value of jth input unit of the softmax
layer for image i, N represents the number of action units. In
this way each output unit here represents a hyperedge and
the term of O(j, i) is defined as the probability of image i
contains action unit j. During the training phase, the training
face images and corresponding action units labels are used to
fine-tune our D-CNN model. During the testing phase, both
the training and testing samples of a dataset are input into the
D-CNN model and N hyperedges can be constructed according
to O(j, i). Note that t in Equation 2 is empirically set to the
average of all positive output node values of the softmax layer.

The hyperedge weight w(ei) is computed as follows:

w(ej) =
∑
vi∈ej

O(j, i). (4)

Based on this definition, a hyperedge (action unit) is more
important if the total probabilities (of the images it contains)
is higher.

C. Hyperedge Construction via Local Clustering

Deep convolutional neural networks are often employed as
a feature extraction/embedding tool and achieve state-of-the-
art performance in various applications [21]. In this paper,
we adopted the feed-forward network features G(I) of the
8th layer in Table I to compute the affinities among facial
expression images, which we believe can provide effective
complementary information for the expression recognition
task. To reduce the sensitivity to illumination changes, we
followed the method of [22] to normalize this 512-dimentional
feature G(I):

Ḡ(I)i =
G(I)i

max(Gi, ε)
, (5)

f(I) :=
Ḡ(I)

‖Ḡ(I)‖2
, (6)

where ε = 0.05 in order to avoid division by a small number.
In Equation 5 each component of the feature vector is divided
by its largest value across the training set; in Equation 6 an
L2-normalization is performed. Based on normalized features,
we can form a |V | × |V | affinity matrix A over the image
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set V computed based on some measurement and A(i, j) ∈
[0, 1]. We simply chose the inner product between the two
normalized feature vectors as the similarity measurement.

As in [17], we exploited the correlation among expression
images by local clustering. We took each vertex as a exemplar
‘centroid’ vertex and formed a hyperedge by a centroid and
its k-nearest neighbors. That is, the size of such a hyperedge
is k + 1. The probability of a face image i belonging a local
cluster j is defined as follows:

O(j, i) =

{
A(i, j), if vi ∈ ej
0, otherwise. (7)

According to this formulation, a vertex vi is ‘softly’ assigned
to ej based on the similarity A(i, j) between vi and vj , where
vj is the centroid of ej . This hyperedge structure presents
the local grouping information which may beneficial to our
expression recognition task. Considering that an face image
represents an ‘exemplar’ expression and in the feature space
its k nearest neighbors are very similar to it, the probability
that these k+ 1 images contains the same expression is high.
By applying this hyperedge constructed from local clustering,
the relationship among different facial expression images is
more completely described.

Intuitively, a small size hyperedges only contain ‘micro-
local’ grouping information which will not help the global
clustering over all the images, and very large-size hyperedges
may contain images from different classes and suppress diver-
sity information. In this work we performed a sweep over all
the possible k values of the hyperedge size to optimize the
classification results.

The hyperedge weight w(ei) is also computed as Equa-
tion 4. This is natural: a ‘compact’ hyperedge (local cluster)
with higher inner group similarities is assigned a higher
weight, which means compact hyperedges are more important.

IV. HYPERGRAPH LEARNING

In the classical work of hypergraph learning, the normalized
cost function [10] Ω(f) of a bi-partition problem is defined as
follows:

Ω(f) =
1

2

∑
e∈E

∑
u,v∈e

w(e)h(u, e)h(v, e)

δ(e)

(
f(u)√
d(u)

− f(v)√
d(v)

)2

= fT (I −Θ)f, (8)

where the vector f is the image labels to be learned; Θ =

D
− 1

2
v HWD−1e HTD

− 1
2

v and I −Θ is a positive semi-definite
matrix called the hypergraph Laplacian. By minimizing this
cost function, images sharing many incidental hyperedges are
guaranteed to obtain similar labels. In [17], it is verified that
derivation in Equation 8 also holds for the fuzzy hypergraph.
In an unsupervised framework, Equation 8 can be optimized
by the eigenvector related to the smallest nonzero eigenvalue
of I −Θ.

In a two-class transductive learning setting [10], a vector y
can be defined to represent initial labeling information: y(v) =

1
|Pos| , if a vertex v is in the positive training set Pos, y(v) =

− 1
|Neg| , if it is in the negative training set Neg. If v is in

the testing set or unlabeled, y(v) = 0. To force the learned
labels to approach the initial labeling y, a regularization term
is defined as follows:

‖f − y‖2 =
∑
u∈V

(f(u)− y(u))2. (9)

After this regularization term is introduced, the learning task
is to minimize the sum of above two cost terms with respect
to f , which is

Φ(f) = fT∆f + µ‖f − y‖2, (10)

where µ > 0 is the regularization parameter. Differentiating
Φ(f) with respect to f , we have

f = (1− γ)(I − γΘ)−1y, (11)

where γ = 1
1+µ . This is equivalent to solving the linear system

((1 + µ)I −Θ) f = µy.
In our application, we constructed a hypergraph for all facial

expression images with M different initial labeling vectors y,
where M is the number of expressions present in a specific
dataset. In each of these labeling vectors a positive/negative
label denotes the presence/non-presence of one expression
on a training sample; an initial label 0 denotes that the
corresponding image is in the testing set. With M different ys
above linear system will be solved for M times and the final
learned expression of a test image is decided by the maximum
value of M predicted scores.

V. EXPERIMENTS

We chose two representative facial expression datasets
in our experiments: the extended Cohn-Kanade database
(CK+) [23] and the dataset for Facial Expression Recognition
Challenge 2013 (FER2013) [24]. We compared our proposed
method to two baseline approaches: 1) D-CNN + SVM in
which normalized features f(I) of the first full-connected
layer (as in Equation 6) are fed to a linear SVM classifier
and 2) D-CNN + M-way Softmax in which M expression
labels are predicted directly (by using the configuration of
M-way expression classification in the last two layers). We
also compared to the state-of-the-art methods on each dataset
to show the advantage of our approach.

For the hyperedges formed by action units, the hyperedge
size is decided by Equation 2. For the hyperedges formed by
local clustering, as introduced in Section III-C, we performed
a sweep over all the possible k values and used the respec-
tive optimal hyperedge size 30 in all experiments. For the
parameter γ in Equation 11, we followed the original work of
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Zhou [25] and fix it as 0.1 for the best performance. Other
parameters were directly computed from experimental data.

A. Performance on CK+

The extended Cohn-Kanade database (CK+) [23] contains
593 sequences across 123 subjects which are all FACS coded
at the last frame. All sequences are from the neutral face
to the peak expression. For each sequence the corresponding
action units and their intensities of the last frame are labeled
by certified FACS coders. ONLY 327 of the 593 sequences
have emotion labels and each of which is assigned one of 7
expressions: Anger, Contempt, Disgust, Fear, Happy, Sad and
Surprise.

To build the expression dataset for comparison of results, we
followed the protocol of [26] [8] to extract last three frames
of 327 sequences with expression labels. We also followed
[26] [8] to use the first frame of each sequence as a neutral
expression. In this way we formed a set of 1308 images with
8 different expression labels.

To train our deep neural networks, at first we pre-trained
our model as described in Section III-A. Since detected faces
in CK+ images are all frontal, we used frontalized LFW data
provided by [27] for the pre-training. To fulfil the fine-tuning,
we only utilized those 266 sequences in which action units are
labeled but expressions are not. We extracted last five frames
of these 266 sequences to form a set of 1330 images, applied
face detection and rescaled them into 49× 49 images. In our
experiments, we adopted a subset of N = 24 labeled action
units (as shown in Table II) because only the frequencies
of those action units are adequate for model fine-tuning. In
this paper, only the presence/absence (1/0) information of the
action units were used as ground truth and the intensities
were neglected. Data augmentation techniques were utilized
to optimize the tuning results. So far we have built a D-CNN
model which is able to predict the occurrence of an action unit
directly; the average prediction accuracy of 24 action units on
the expression set of 1308 images (defined above) is 96.9%.

Based on the action unit occurrence output of trained D-
CNN model, we constructed 24 hyperedges by action units
and 1308 hyperedges by local culstering. We then split 1308
images into 10 subject independent subsets in the manner
presented by [26] and performed 10 fold cross-validation. As
described in Section IV, in each experiment 8 different ys
w.r.t. 8 expressions were used and the final learned expression
was decided by the maximum value of 8 predicted scores.

By using the same D-CNN model, our hypergraph learning
approach outperforms D-CNN + SVM and D-CNN + M-way
Softmax by 2.1% and 2.9%, respectively. Results of all these
three approaches are also significantly better than those of
reported by start-of-the-art methods [28] [8].

B. Performance on FER2013

FER2013 consists of 28,709 48×48 training, 3,589 valida-
tion and 3,589 testing images of faces under 7 different types
of expression: Angry, Disgust, Fear, Happy, Sad, Surprise,
Neutral. This dataset was used for ICML 2013 Challenge

Fig. 2. Training data of FER2013. Each row consists of faces of the same
expression: starting from the first row: Angry, Disgust, Fear, Happy, Sad,
Surprise, Neutral.

for Representation Learning. As shown in Figure 2, the face
images of this dataset are not frontalized. So without frontal-
ization we only rescaled the detected LFW faces to 49×49 and
used them for pre-training of our D-CNN model mentioned
in Section III-A. Then all above CK+ images (1308 + 1330
images) with action unit labels were used in the fine-tuning.
To achieve better results on FER2013, we augmented the CK+
data by introducing large in-plane rotation up to ±45◦. Then
all the images in FER2013 were padded to 49 × 49 and
were input to our D-CNN model to form a hypergraph as
introduced in Section IV. The training and validation images
were used as the ‘training’ set to get 7 different initial labeling
vectors. As illustrated in Table IV, our approach overperforms
DLSVM [9] (the winning method of ICML 2013 Challenge
for Representation Learning) by 6.2%.

VI. CONCLUSION

We introduced a transductive learning framework for facial
expression recognition, in which fuzzy hypergraph was utilized
to represent the relevance relationship among the images.
Using output probabilities of action units and embedded
features produced by our D-CNN model, we took each image
as a vertex and formed hyperedges according to those deep
learning driven semantic attributes. In this way, the task of
facial expression classification was converted to a transductive
learning problem which can be solved by the hypergraph parti-
tion algorithm. The effectiveness of our proposed method was
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AU Name AU Name AU Name AU Name
1 Inner Brow Raiser 9 Nose Wrinkler 16 Lower Lip Depressor 25 Lips Part
2 Outer Brow Raiser 10 Upper Lip Raiser 17 Chin Raiser 26 Jaw Drop
4 Brow Lowerer 11 Nasolabial Deepener 18 Lip Pucker 27 Mouth Stretch
5 Upper Lid Raiser 12 Lip Corner Puller 20 Lip Stretcher 38 Nostril Dilator
6 Cheek Raiser 14 Dimpler 23 Lip Tightener 39 Nostril Compressor
7 Lid Tightenener 15 Lip Corner Depressor 24 Lip Pressor 43 Eyes Closed

TABLE II
ADOPTED ACTION UNITS IN OUR EXPERIMENTS TO BUILD HYPEREDGES.

Method Accuracy
AUDN [28] 93.7%
Zero-bias CNN + AD [8] 96.4% ± 3.1%
D-CNN + SVM 96.5% ± 2.5%
D-CNN + M-way Softmax 95.7% ± 1.9%
D-CNN + Hypergraph 98.6% ± 2.3%

TABLE III
PERFORMANCE COMPARISON ON CK+.

Method Accuracy
DLSVM [9] 71.2%
D-CNN + SVM 73.5%
D-CNN + Softmax 73.7%
D-CNN + Hypergraph 77.4%

TABLE IV
PERFORMANCE COMPARISON ON FER2013. DLSVM [9] IS THE WINNING
METHOD OF ICML 2013 CHALLENGE FOR REPRESENTATION LEARNING.

demonstrated by extensive experimentation on two popular
databases.
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