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a b s t r a c t

This paper is concerned with the problem of adaptive tracking control for a class of switched stochastic
nonlinear systems in nonstrict-feedback form with unknown nonsymmetric actuator dead-zone and
arbitrary switchings. A variable separation approach is used to overcome the difficulty in dealing with the
nonstrict-feedback structure. Furthermore, by combining radial basis function neural networks’ universal
approximation ability and adaptive backstepping technique with common stochastic Lyapunov function
method, an adaptive control algorithm is proposed for the considered system. It is shown that the target
signal can be almost surely tracked by the systemoutput, and the tracking error is semi-globally uniformly
ultimately bounded in 4th moment. Finally, the simulation studies for a ship maneuvering system are
presented to show the effectiveness of the proposed approach.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

As a typical class of hybrid systems, switched systems have
drawn considerable attention in the past decades sincemany phys-
ical systems can be mathematically modeled by such multiple-
mode systems. Given their widespread applications, the studies on
switched systems never cease and a number of excellent results
have been reported, see for example, Briat (2014), Li, Wen, Soh,
and Xie (2002), Veselỳ and Rosinová (2014), Xiang and Xiao (2014),
Xie,Wen, and Li (2001), Zhang and Gao (2010), Zhang, Zhuang, and
Shi (2015), Zhao, Yin, Li, and Niu (2015) and Zhao, Zhang, Shi, and
Liu (2012) and the references therein. In Zhang and Gao (2010) and
Zhao et al. (2012), the control problems for switched linear systems
in both continuous-time and discrete-time contexts were solved
under average dwell time switching and mode-dependent aver-
age dwell time switching, respectively. In Zhang et al. (2015), the
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authors considered H∞ filtering for a class of switched linear dis-
crete systems under their proposed persistent dwell-time switch-
ing. The problem of switching stabilization for slowly switched
linear systems with mode-dependent average dwell time was in-
vestigated in Zhao et al. (2015) by using invariant subspace the-
ory. Recent advances for switched systems in linear setting can be
found in Briat (2014), Veselỳ and Rosinová (2014) and Xiang and
Xiao (2014). In addition, for switched nonlinear systems, some suf-
ficient conditions were derived in Xie et al. (2001) to ensure that
the whole switched nonlinear system is input-to-state stabilizable
(ISS) when each mode is ISS. A concept of generalized matrix mea-
sure for nonlinear systemswas proposed in Li et al. (2002) to study
the stability of switched nonlinear systems directly.

Note that during the most recent years, the adaptive back-
stepping-based control problems have been investigated for a class
of switched nonlinear systems (Han, Ge, & Lee, 2009; Long & Zhao,
2015; Ma & Zhao, 2010; Wang, 2014). To list a few, the global
stabilization problem for switched nonlinear systems in lower
triangular form was investigated in both Long and Zhao (2015)
and Ma and Zhao (2010) by using common Lyapunov function
and multiple Lyapunov functions, respectively; Han et al. (2009)
presented an adaptive neural control design for a class of switched
nonlinear systems with uncertain switching signals. However, the
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systems in these studies are of a strict-feedback formwhich greatly
limits the applicability in practice.

On the other hand, it is well known that stochastic disturbance
frequently exists in engineering applications. The systems subject
to the stochastic disturbance are usually termed as stochastic
systems that have also been widely probed, with switching
dynamics (Hou, Fu, & Duan, 2013; Wu, Cui, Shi, & Karimi, 2013;
Wu, Yang, & Shi, 2010; Wu, Zheng, & Gao, 2013; Zhang, Wu,
& Xia, 2014) or without (Wu, Xie, & Zhang, 2007; Xie & Duan,
2010; Xie, Duan, & Yu, 2011; Xie, Duan, & Zhao, 2014; Xie & Liu,
2012). To mention a few, the dissipativity-based sliding mode
control was adopted in Wu, Zheng et al. (2013) for switched
stochastic linear systems. Stabilization problems for stochastic
nonlinear systems with Markovian switching were studied in
Wu et al. (2010). By using a novel homogeneous domination
approach, the output feedback stabilization problem was studied
in Xie and Liu (2012) for stochastic high-order nonlinear systems
with time-varying delay. The global stabilization was considered
in Xie et al. (2011) for high-order stochastic nonlinear systems
with stochastic integral input-to-state stability inverse dynamics.
The concept of input-to-state practical stability is extended to
stochastic nonlinear systems in Wu et al. (2007), upon which they
considered the control problem for a class of stochastic nonlinear
systems with unmodeled dynamics by using stochastic small-gain
theorem.However,most of these control strategies require that the
nonlinear stochastic systems are known precisely or the unknown
parameters appear linearly with respect to the known nonlinear
functions. Furthermore, existing results on switched stochastic
systems also suppose that the systems are of a strict-feedback
form. Clearly, these ideal requirements cannot be satisfied inmany
practical situations.

Moreover, dead-zone characteristics are encountered in many
physical components of control systems. They are particularly
common in actuators, such as hydraulic servo-valve, electric
servomotors, and biomedical systems. It is well known that a
system will become oscillating, and the regulation quality will
decline if some undesired dead-zone nonlinearities occur in the
system. Thus, it is more realistic and reliable to design controllers
based on the system model where the dead-zone nonlinearities
are taken into consideration. However, up to now, few results
on adaptive control have been developed for switched stochastic
nonlinear systems with dead-zone characteristics.

It is seen from the above observations that it is of both
practical and theoretical significance to investigate the problem
of adaptive tracking control for nonstrict-feedback switched
stochastic systems with actuator dead-zone, which is however
challenging and has not been studied so far. This motivates us
to carry out the present study. In this paper, a new approach
of constructing common virtual control functions is proposed for
the studied system, and a backstepping-based adaptive control
methodology is systematically developed with low computation
burden since the controller only has two parameters need to be
modulated. The contributions of the paper lie in that: (i) our
considered switched systemmodel is of a nonstrict-feedback form;
(ii) the uncertainty can be completely unknown; (iii) the unknown
nonsymmetric actuator dead-zone is taken into account; (iv) the
stochastic disturbance is considered in the switched systemmodel;
and (v) fewer parameters need to be designed which is more
efficient in practice.

Notation Rn denotes the n-dimensional space, R+ is the set of
all nonnegative real numbers. C i stands for a set of functions with
continuous ith partial derivatives. For a givenmatrixA (or vector v),
AT (or vT ) denotes its transpose, and Tr{A} denotes its tracewhen A
is a square.K represents the set of functions: R+

→ R+, which are
continuous, strictly increasing and vanishing at zero; K∞ denotes
a set of functions which is of class K and unbounded. In addition,
∥·∥ refers to the Euclidean vector norm.
2. Preliminaries and problem formulation

Consider the following switched stochastic nonlinear system in
nonstrict-feedback form:

dxi = (gi,σ (t)xi+1 + fi,σ (t)(x))dt + ψT
i,σ (t)(x)dw,

1 ≤ i ≤ n − 1,

dxn = (gn,σ (t)vσ(t) + fn,σ (t)(x))dt + ψT
n,σ (t)(x)dw,

vσ(t) = Dσ(t)(uσ(t)),
y = x1, (1)

where x = (x1, x2, . . . , xn)T ∈ Rn is the system state, w is an r-
dimensional independent standard Brownian motion defined on
the complete probability space (Ω,F , {Ft}t≥0 , P)withΩ being a
sample space, F a σ -field, {Ft}t≥0 a filtration, P a probability mea-
sure, and y is the system output; σ(t) : [0,∞) → M = {1, 2, . . . ,
m} represents the switching signal; vσ(t), uσ(t) ∈ R are the actua-
tor output and input. For any i = 1, 2, . . . , n and k ∈ M, fi,k(x):
Rn

→ R, ψi,k : Rn
→ Rr are locally Lipschitz unknown nonlinear

functions and gi,k are positive known constants.
The nonsymmetric dead-zone nonlinearity is considered in the

paper, which is defined as the form in Tao and Kokotović (1994):

vk = Dk(uk) =

mrk(uk − brk), uk ≥ brk
0, −blk < uk < brk
mlk(uk + blk), uk ≤ −blk .

(2)

Here, mrk > 0 and mlk > 0 stand for the right and the left slopes
of the dead-zone characteristic, respectively. brk > 0 and blk > 0
represent the breakpoints of the input nonlinearity. It should be
noticed that, in this paper,mrk ,mlk , brk and blk are unknown.

In order to facilitate the analysis and design, it is assumed that
the nonsymmetric dead-zone nonlinearity can be reformulated as:

vk = D′

k(uk)+ ιk, (3)

where D′

k(uk) is an unknown smooth function, ιk is the error
between Dk(uk) and D′

k(uk)with |ιk| ≤ ῑk.
Moreover, we have

vk = uk + (D′

k(uk)− uk + ιk)

= uk + η′

k(uk)+ ιk, (4)

where η′

k(uk) = D′

k(uk)−uk is an unknown function. The controller
can be designed as

uk = uck − uφk . (5)

Then (4) can be rewritten as

vk = uck + η′

k(uk)− uφk + ιk. (6)

where uφk is the compensator of dead-zone nonlinearity and uck is
a main controller of system (1).

Our control objective is to design state-feedback controllers
such that a given time-varying signal yd(t) can be tracked by the
output of system (1) under arbitrary switching, while overcoming
the problem of actuator dead-zone. In this paper, we also assume
that the following assumptions hold:

Assumption 1. The tracking target yd(t) and its time derivatives
up to nth order y(n)d (t) are continuous and bounded. Also, it is
assumed that |yd(t)| ≤ d, where d > 0 is a constant knownapriori.

Assumption 2. There exist strictly increasing smooth functions
φi,k(·), ρi,k(·) : R+

→ R+ with φi,k(0) = ρi,k(0) = 0 such that
for i = 1, 2, . . . , n and k ∈ M ,

|fi,k(x)| ≤ φi,k(∥x∥). (7)ψi,k(x)
 ≤ ρi,k(∥x∥). (8)
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Remark 1. The increasing properties of φi,k(·), ρi,k(·) imply that if
ai, bi ≥ 0, for i = 1, 2, . . . , n, then φi,k(

n
i=1 ai) ≤

n
i=1 φi,k(nai),

ρi,k(
n

i=1 bi) ≤
n

i=1 ρi,k(nbi). Notice that φi,k(s), ρi,k(s) are
smooth functions, and φi,k(0) = ρi,k(0) = 0. Therefore, it follows
that there exist smooth functions hi,k(s), ηi,k(s) such that φi,k(s) =

shi,k(s), ρi,k(s) = sηi,k(s)which results in

φi,k


n

j=1

aj


≤

n
j=1

najhi,k(naj). (9)

ρi,k


n

j=1

bj


≤

n
j=1

nbjηi,k(nbj). (10)

In Sanner and Slotine (1992), it has been proved that the radial
basis function (RBF) neural networks can approximate any contin-
uous real function f (Z) over a compact set ΩZ ⊂ Rq. Specifically,
for arbitrary ε̄ > 0, there exists a neural networkW T S(Z) such that

f (Z) = W T S(Z)+ ε(Z), ε(Z) ≤ ε̄, (11)

where Z ∈ ΩZ ⊂ Rq, W = [w1, w2, . . . , wl]
T is the ideal constant

weight vector, and S(Z) = [s1(Z), s2(Z), . . . , sl(Z)]T is the basis
function vector, with l > 1 being the number of the neural net-
work nodes and si(Z) being chosen as Gaussian functions, i.e., for
i = 1, 2, . . . , l

si(Z) = exp


−(Z − µi)
T (Z − µi)

ζ 2
i


, (12)

where µi = [µi1, µi2, . . . , µiq]
T is the center vector, and ζi is the

width of the Gaussian function.

Definition 1. Consider the stochastic system dx = f (x, t)dt +

h(x, t)dw. For any given V (x, t) ∈ C2,1, define the differential op-
erator L as follows:

LV =
∂V
∂t

+
∂V
∂x

f (x, t)+
1
2
Tr

hT ∂

2V
∂x2

h

. (13)

Definition 2. The trajectory {x(t), t ≥ 0} of switched stochastic
system (1) is said to be semi-globally uniformly ultimately
bounded (SGUUB) in pth moment, if for any compact subset Σ ⊂

Rn and all x(t0) = x0 ∈ Σ , there exist a constant ε > 0 and a time
constant T = T (ε, x0) such that E(|x(t)|p) < ε, for all t > t0+T . In
particular, when p = 2, it is usually called SGUUB in mean square.

Lemma 1 (Krstić & Hua, 1998). Suppose that there exist a C2,1

function V (x, t) : Rn
× R+

→ R+, two constants c1 > 0 and c2 > 0,
class K∞ functions ᾱ1 and ᾱ2 such that
ᾱ1(|x|) ≤ V (x, t) ≤ ᾱ2(|x|)
LV ≤ −c1V (x, t)+ c2

for all x ∈ Rn and t > t0. Then, there is an unique strong solution of
system (1) for each x0 ∈ Rn, which satisfies

E[V (x, t)] ≤ V (x0, t0)e−c1t +
c2
c1
, ∀t > t0.

Lemma 2 (Polycarpou & Ioannou, 1996). For any ξ ∈ R andϖ > 0,
the following inequality holds:

0 ≤ |ξ | − ξ tanh

ξ

ϖ


≤ δϖ, (14)

with δ = 0.2785.
3. Main result

In this section a systemic control design and stability analysis
procedure will be presented by using adaptive backstepping
technique (the readers may refer to Krstić and Kokotović (1995)
and Krstić, Kokotović, and Kanellakopoulos (1995) for more details
about adaptive backstepping technique). For i = 1, 2, . . . , n − 1,
let us define a common virtual control function αi as

αi =
1

gi,min


−


λi +

3
4


zi −

1
2a2i

z3i θ̂S
T
i Si


, (15)

where λi, ai > 0 are design parameters, gi,min = min{gi,k : k ∈

M}, zi represents the new state after the coordinate transforma-
tion: zi = xi − αi−1, α0 = yd. θ̂ is an unknown constant that will
be specified later. Si = Si(Xi) is the basis function vector. Xi =

[x̄Ti ,
¯̂
θ
T

i , ȳ
(i)T
d ]

T with x̄i = [x1, x2, . . . , xi]T ,
¯̂
θ i = [θ̂1, θ̂2, . . . , θ̂i]

T ,

ȳ(i)d = [yd, ẏd, . . . , y
(i)
d ]

T . The z-system can be obtained as follows:

dzi = (gi,kxi+1 + fi,k − Lαi−1)dt

+


ψi,k −

i−1
j=0

∂αi−1

∂xj
ψj,k

T

dw, 1 ≤ i ≤ n − 1

dzn = (gn,kvk + fn,k − Lαn−1)dt

+


ψn,k −

n−1
j=0

∂αn−1

∂xj
ψj,k

T

dw, (16)

where the differential operator L is defined in Definition 1, then
Lαi−1 is given by:

Lαi−1 =
∂αi−1

∂θ̂

˙̂
θ +

i−1
s=1

∂αi−1

∂xs
(fs,k + gs,kxs+1)

+

i−1
s=0

∂αi−1

∂y(s)d

y(s+1)
d +

1
2

i−1
p,q=1

∂2αi−1

∂xp∂xq
ψT

p,kψq,k. (17)

Consider the following common stochastic Lyapunov function
candidate

V =

n
i=1

1
4
z4i +

1
2r1
θ̃2 +

1
2r2
ϑ̃2, (18)

where r1, r2 > 0 are design parameters; θ̃ = θ − θ̂ , ϑ̃ = ϑ − ϑ̂

with θ and ϑ will be specified later; θ̂ and ϑ̂ represent the estima-
tion of θ and ϑ respectively.

Lemma 3. From the coordinate transformations zi = xi − αi−1, i =

1, 2, . . . , n, α0 = yd, the following inequality holds

∥x∥ ≤

n
i=1

|zi|ϕi(zi, θ̂ )+ d, (19)

where ϕi(zi, θ̂ ) =
1

gi,min
[(λi+

3
4 )+

1
2a2i

z2i θ̂S
T
i Si]+1, for i = 1, 2, . . . ,

n − 1, and ϕn = 1.

Proof. From Assumption 1 and (15), one gets

∥x∥ ≤

n
i=1

|xi| ≤

n
i=1

(|zi| + |αi−1|) ≤

n
i=1

|zi| + yd

+

n−1
i=1


1

gi,min


λi +

3
4


+

1
2a2i

z2i θ̂S
T
i Si


|zi|

≤

n
i=1

|zi|ϕi(zi, θ̂ )+ d.

The proof of Lemma 3 is completed here. �
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By using Definition 1, (16) and (17), LV can be given by

LV =

n−1
i=1

z3i


fi,k + gi,kxi+1 −

i−1
s=0

∂αi−1

∂y(s)d

y(s+1)
d

−
∂αi−1

∂θ̂

˙̂
θ −

i−1
s=1

∂αi−1

∂xs
(fs,k + gs,kxs+1)

−
1
2

i−1
p,q=1

∂2αi−1

∂xp∂xq
ψT

p,kψq,k



+
3
2
z2i

ψi,k −

i−1
j=0

∂αi−1

∂xj
ψj,k


2


+ z3n


fn,k + gn,kvk −

n−1
s=0

∂αn−1

∂y(s)d

y(s+1)
d

−

n−1
s=1

∂αn−1

∂xs
(fs,k + gs,kxs+1)−

∂αn−1

∂θ̂

˙̂
θ

−
1
2

n−1
p,q=1

∂2αn−1

∂xp∂xq
ψT

p,kψq,k


−

1
r1
θ̃
˙̂
θ

+
3
2
z2n

ψn,k −

n−1
j=0

∂αn−1

∂xj
ψn,k


2

−
1
r2
ϑ̃

˙̂
ϑ

=

n
i=1

z3i


fi,k −

i−1
s=1

∂αi−1

∂xs
fs,k

−

i−1
s=0

∂αi−1

∂y(s)d

y(s+1)
d −

i−1
s=1

∂αi−1

∂xs
gs,kxs+1

−
∂αi−1

∂θ̂

˙̂
θ −

1
2

i−1
p,q=1

∂2αi−1

∂xp∂xq
ψT

p,kψq,k



+
3
2
z2i

ψi,k −

i−1
j=0

∂αi−1

∂xj
ψj,k


2
−

1
r1
θ̃
˙̂
θ

−
1
r2
ϑ̃

˙̂
ϑ +

n−1
i=1

z3i gi,kxi+1 + z3ngn,kvk. (20)

By using Assumption 2 and Lemma 3, one has

z3i


fi,k −

i−1
s=1

∂αi−1

∂xs
fs,k(x)


= −z3i

i
s=1

σi−1,sfs,k(x)

≤
3
4
nz4i

i
s=1

(σi−1,s)
4
3 +

i
s=1

n
l=1

z4l φ̄
4
s,k(zl, θ̂ )

+
z3i  i

s=1

σi−1,s
φs,k((n + 1)d), (21)

where φ̄4
s,k(zl, θ̂ ) =

1
4 (n+1)4ϕ4

l (zl, θ̂ )h
4
s,k((n+1)|zl|ϕl(zl, θ̂ )),

∂α0
∂xs

= 0, and σi−1,s is defined as σi−1,s =
∂αi−1
∂xs

, s = 1, 2, . . . , i − 1,
σi−1,i = −1.

Then, the following inequality can be obtained

3
2
z2i

ψi,k −

i−1
j=0

∂αi−1

∂xj
ψj,k


2

≤
9
8
i2(n + 1)2nz4i +

n
l=1

z4l ρ̄
4
i,k(zl, θ̂ )+

i−1
j=1

n
l=1

z4l ρ̄
4
j,k(zl, θ̂ )
+
9
8
i2(n + 1)2nz4i

i−1
j=1


∂αi−1

∂xj

4

+
9
8
i2(n + 1)2z4i l

−2
ii ρ

4
i,k((n + 1)d)+

i
j=1

l2ij

+
9
8
i2(n + 1)2z4i

i−1
j=1


∂αi−1

∂xj

4

l−2
ij ρ

4
j,k((n + 1)d), (22)

where lij is a positive constant, and ∂α0
∂xj

= 0 since α0 = yd, and

−
1
2
z3i

i−1
p,q=1

∂2αi−1

∂xp∂xq
ψT

p,kψq,k ≤ (i − 1)
i−1
s=1

n
l=1

z4l ρ̄
4
s,k(zl, θ̂ )

+
1
8
(n + 1)2nz6i

i−1
s=1

i−1
j=1


∂2αi−1

∂xs∂xj

2

+
1
2
(n + 1)

z3i  i−1
s=1

i−1
j=1

∂2αi−1

∂xs∂xj

 ρ2
s,k((n + 1)d), (23)

where ρ̄4
s,k(zl, θ̂ ) =

1
2 (n+1)4ϕ4

l (zl, θ̂ )η
4
s,k((n+1)|zl|ϕl(zl, θ̂ )), s =

1, 2, . . . , i − 1.
Substituting (21)–(23) into (20) gives

LV ≤

n
i=1

3
4
nz4i

i
s=1

(σi−1,s)
4
3 +

n
i=1

i
s=1

n
l=1

z4l φ̄
4
s,k(zl, θ̂ )

+

n
i=1

z3i  i
s=1

σi−1,s
φs,k((n + 1)d)

+

n
i=1

i−1
s=1

n
l=1

(i − 1)z4l ρ̄
4
s,k(zl, θ̂ )

+

n
i=1

i−1
s=1

i−1
j=1

1
8
(n + 1)2nz6i


∂2αi−1

∂xs∂xj

2

+

n
i=1

i−1
s=1

i−1
j=1

1
2
(n + 1)

z3i  ρ2
s,k((n + 1)d)

∂2αi−1

∂xs∂xj


+

n
i=1


9
8
i2(n + 1)2nz4i +

n
l=1

z4l ρ̄
4
i,k(zl, θ̂ )

+

i−1
j=1

n
l=1

z4l ρ̄
4
j,k(zl, θ̂ )

+
9
8
i2(n + 1)2nz4i

i−1
j=1


∂αi−1

∂xj

4

+
9
8
i2(n + 1)2z4i l

−2
ii ρ

4
i,k((n + 1)d)+

i
j=1

l2ij

+
9
8
i2(n + 1)2z4i

i−1
j=1


∂αi−1

∂xj

4

l−2
ij ρ

4
j,k((n + 1)d)



+

n
i=1

z3i


−

i−1
s=0

∂αi−1

∂y(s)d

y(s+1)
d −

∂αi−1

∂θ̂

˙̂
θ

−

i−1
s=1

∂αi−1

∂xs
gs,kxs+1


+

n−1
i=1

z3i gi,kxi+1 + z3ngn,kvk

−
1
r1
θ̃
˙̂
θ −

1
r2
ϑ̃

˙̂
ϑ. (24)
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Define Ui,k as

Ui,k =

i
s=1

|σi−1,s|φs,k((n + 1)d)

+
1
2
(n + 1)

i−1
s=1

i−1
j=1

∂2αi−1

∂xs∂xj

 ρ2
s,k((n + 1)d). (25)

By using Lemma 2 one hasz3i Ui,k ≤ z3i Ui,k tanh

z3i Ui,k

ϖi,k


+ δϖi,k. (26)

It can be noticed in (24) that

n−1
i=1

z3i gi,kxi+1 =

n−1
i=1

z3i gi,kzi+1 +

n−1
i=1

gi,kz3i αi, (27)

and
n

i=1

i
s=1

n
l=1

z4l φ̄
4
s,k(zl, θ̂ ) =

n
i=1

z4i
n

s=1

(n − s + 1)φ̄4
s,k(zi, θ̂ ),

n
i=1

(i − 1)
i−1
s=1

n
l=1

z4l ρ̄
4
s,k(zl, θ̂ )=

n
i=1

z4i
n−1
s=1

(n−s)(i−1)ρ̄4
s,k(zi, θ̂ ),

n
i=1

i
j=1

n
l=1

z4l ρ̄
4
j,k(zl, θ̂ ) =

n
i=1

z4i
n

j=1

(n − j + 1)ρ̄4
j,k(zi, θ̂ ).

For any i = 1, 2, . . . , n and k ∈ M , define f̄i,k as

f̄i,k =
3
4
nzi

i
s=1

(σi−1,s)
4
3 + zi

n
s=1

(n − s + 1)φ̄4
s,k(zi, θ̂ )

+ zi
n−1
s=1

(n − s)(i − 1)ρ̄4
s,k(zi, θ̂ )

+

i−1
s=1

i−1
j=1

1
8
(n + 1)2nz3i


∂2αi−1

∂xs∂xj

2

+
9
8
i2(n + 1)2zi

i−1
j=1


∂αi−1

∂xj

4

l−2
ij ρ

4
j,k((n + 1)d)

+ zi
n

j=1

(n − j + 1)ρ̄4
j,k(zi, θ̂ )+

9
8
i2(n + 1)2nzi

+
9
8
i2(n + 1)2zil−2

ii ρ
4
i,k((n + 1)d)

+
9
8
i2(n + 1)2nzi

i−1
j=1


∂αi−1

∂xj

4

−

i−1
s=0

∂αi−1

∂y(s)d

y(s+1)
d −

∂αi−1

∂θ̂

˙̂
θ −

i−1
s=1

∂αi−1

∂xs
gs,kxs+1

+Ui,k tanh

z3i Ui,k

ϖi,k


+ gi,kzi+1, (28)

with zn+1 = 0.
Substituting (6) and (26)–(28) into (24) yields

LV ≤

n−1
i=1

z3i (f̄i,k + gi,kαi)+ z3n f̄n,k + z3ngn,k(uck + η′

k − uφk + ιk)

−
1
r1
θ̃
˙̂
θ −

1
r2
ϑ̃

˙̂
ϑ +

n
i=1


δϖi,k +

i
j=1

l2ij


. (29)
By using neural networks’ approximation ability and Young’s
inequality, the following inequalities can be obtained.

z3i f̄i,k = z3i W
T
i,kSi,k + z3i εi,k

≤
1
2a2i

z6i
Wi,k

2 STi,kSi,k +
a2i
2

+
3
4
z4n +

ε̄4i,k

4
,

≤
1
2a2i

z6i θiS
T
i Si +

a2i
2

+
3
4
z4i +

ε̄4i

4
, (30)

z3n(η
′

k + ιk) = z3nW
T
η,kSη,k + z3n(εη,k + ιk)

≤
1

2a2η
z6nϑηS

T
η Sη +

a2η
2

+
3z4n + ε̄4η

4
, (31)

where θi,k =
Wi,k

2 , ϑη,k =
Wη,k

2 , θi = max{θi,k : k ∈ M},

ϑη = max{ϑη,k : k ∈ M},
εi,k ≤ ε̄i,

εη,k + ιk
 ≤ ε̄η .

Substituting (30) and (31) into (29) gives

LV ≤

n−1
i=1

z3i


z3i θi
2a2i

STi Si + gi,kαi


+ z3n


z3nθn
2a2n

STn Sn + gn,kuck



+ z3ngn,k


1

2a2η
z3nθηS

T
η Sη − uφk


+ gn,k


a2η
2

+
3
4
z4n +

ε̄4η

4



+

n
i=1


2a2i + 3z4i + ε̄4i

4


−

1
r1
θ̃
˙̂
θ

−
1
r2
ϑ̃

˙̂
ϑ +

n
i=1


δϖi +

i
j=1

l2ij


, (32)

whereϖi = max{ϖi,k, k ∈ M}.
Design the virtual control function as

αi =
1

gi,min


−


λi +

3
4


zi −

1
2a2i

z3i θ̂S
T
i Si


, (33)

where θ̂ =
n

i=1 θ̂i is the estimation of θ , and λi > 0 is a design
parameter.

The true actuator input is given as

uk = uck − uφk , (34)

where

uck =
1

gn,k


−


λn +

3
4


zn −

1
2a2n

z3n θ̂S
T
n Sn


, (35)

uφk =


λη +

3
4


zn +

gn,max

2a2ηgn,k
z3n ϑ̂S

T
η Sη, (36)

with λn, λη, an, aη > 0 being the design parameters, gn,max = max
{gn,k, k ∈ M}, gn,min = min{gn,k, k ∈ M}, and ϑ̂ the estimation of
ϑ . The adaptive laws can be designed as

˙̂
θ =

n
i=1

r1
2a2i,min

z6i S
T
i Si − β1θ̂ , (37)

˙̂
ϑ =

gn,maxr2
2a2η,min

z6nS
T
η Sη − β2ϑ̂ . (38)

Then, one can get from (32)–(38) that

LV ≤ −

n
i=1

λiz4i − ληz4n + gn,k


a2η
2

+
ε̄4η

4


+

n
i=1


a2i
2

+
ε̄4i

4



+
β1

r1
θ̃ θ̂ +

β2

r2
ϑ̃ ϑ̂ +

n
i=1


δϖi +

i
j=1

l2ij


. (39)
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It is true that

θ̃ θ̂ = θ̃ (θ − θ̃ ) ≤ −
1
2
θ̃2 +

1
2
θ2, (40)

ϑ̃ ϑ̂ = ϑ̃(ϑ − ϑ̃) ≤ −
1
2
ϑ̃2

+
1
2
ϑ2. (41)

Combining (39) with (40) and (41) gives

LV ≤ −

n
i=1

λiz4i −
β1

2r1
θ̃2 −

β2

2r2
ϑ̃2

+ gn,k


a2η
2

+
ε̄4η

4


+

n
i=1


a2i
2

+
ε̄4i

4


+

n
i=1


δϖi +

i
j=1

l2ij


+
β1θ

2

2r1
+
β2ϑ

2

2r2

≤ −p0V + q0, (42)

where λn := λn + λη, p0 = min{4λi, β1, β2 : 1 ≤ i ≤ n}, q0 =n
i=1(

a2i
2 +

ε̄4i
4 )+

n
i=1


δϖi +

i
j=1 l

2
ij


+

β1θ
2

2r1
+

β2ϑ
2

2r2
+gn,k(

a2η
2 +

ε̄4η
4 ). By using Lemma 1, we have

dE[V (t)]
dt

≤ −p0E[V (t)] + q0, (43)

Then, the following inequality holds

0 ≤ E[V (t)] ≤ V (0)e−p0t +
q0
p0
, (44)

where V (0) =
n

j=1
z2j (0)

4 +
1
2r1
θ̃ (0)2 +

1
2r2
ϑ̃(0)2. Eq. (44) means

that all the signals in the closed-loop system are bounded in
probability. It follows from (44) that

E[|zi|4] ≤
4q0
p0
, t → ∞. (45)

Now, we are ready to present our main result in the following
theorem.

Theorem 1. Consider the closed-loop system (1)with unknown non-
symmetric actuator dead-zone (2). Suppose that for 1 ≤ i ≤ n, k ∈

M, the unknown functions f̄i,k can be approximated by neural net-
works in the sense that the approximation error εi,k are bounded. Un-
der the state feedback controller (34) and the adaptive laws (37), (38),
the following statements hold:

(i) All the signals of the closed-loop z-system (16) under arbitrary
switching are SGUUB in 4th moment and

P


lim
t→∞

n
i=1

E[|zi|4] ≤
4q0
p0


= 1.

(ii) The output y of the closed-loop system (1) under arbitrary switch-
ing can be almost surely regulated to a small neighborhood of the
target signal.

Proof. It is not difficult to complete the proof by the above
derivations. �

Remark 2. From (37) and (38), one can see that there are only
two adaptive parameters that need to be modulated in our results.
Hence, the problemof over parameterization can be avoided by our
approach, and the computation burden can be greatly reduced.

4. An illustrative example

In this section, the simulation studies for a ship maneuvering
system are used to illustrate the effectiveness of our results.
The shipmaneuvering system can be described by the following
Norrbin nonlinear model (Lim & Forsythe, 1983).
Tσ(vs)ḣ + h + ασ(vs)h

3
= Kσ(vs)δ + φT

σ(vs)
(ψ, h, δ)w,

where Tσ(vs) is the time constant, h = ψ̇ denotes the yaw rate,
ψ stands for the heading angle, ασ(vs) is Norrbin coefficient, Kσ(vs)
represents the rudder gain, δ is the rudder angle and w stands
for an r-dimensional independent standard Brownian motion,
φσ(vs)(ψ, h, δ) : R3

→ R3×r is an unknown function, and σ(vs)
is the switching signal which satisfies:

σ(vs) =

1, 0 < vs ≤ vL
2, vL < vs ≤ vM
3, vM < vs ≤ vT

vL, vM , vT represent the value of low speed, medium speed and
top speed, respectively.

A simplified mathematical model of the rudder system can be
described as follows:
TE,σ (vs)δ̇ + δ = KE,σ (vs)δE,σ (vs),

where TE,σ (vs) represents the rudder time constant, δ stands for the
actual rudder angle, KE,σ (vs) denotes the rudder control gain and
δE,σ (vs) is the rudder order.

Let x1 = ψ, x2 = h, x3 = δ, vσ(vs) = δE,σ (vs), we have the
following switched nonlinear system model with actuator dead-
zone to describe the dynamic behavior of the ship with low speed,
medium speed and high speed respectively.
dx1 = x2dt,
dx2 = (fσ(vs) + bσ(vs)x3)dt + φT

σ(vs)
dω,

dx3 =


−

1
TE,σ (vs)

x3 +
KE,σ (t)

TE,σ (vs)
vσ(vs)


dt,

vσ(vs) = D(uσ(vs))

where fσ(vs) = −
1

Tσ(vs)
x2 −

τσ(vs)
Tσ(vs)

x32, bσ(vs) =
Kσ(vs)
Tσ(vs)

.
The vessel data comes from a ship which has a length overall

of 160.9 m. vL = 3.7m/s, K1 = 32 s−1, T1 = 30 s, τ1 =

40 s2, TE,1 = 4 s, KE,1 = 2; vM = 7.5 m/s, K2 = 11.4 s−1, T2 =

63.69 s, τ2 = 30 s2, TE,2 = 2.5 s, KE,2 = 1; vT = 15.3 m/s, K3 =

5.1 s−1, T3 = 80.47 s, τ3 = 25 s2, TE,3 = 1 s, KE,3 = 0.72;
The initial conditions are x1(0) = 2, x2(0) = −0.05, x3(0) =

0.03, θ̂ (0) = 10, ϑ̂(0) = 1. We construct the basis function
vectors S1, S2, S3 and Sη using 11, 15, 21 and 48 nodes, the centers
µ1, µ2, µ3, µη evenly spaced on [−1.5, 4.5]×[−3, 4]×[−10, 8],
[−5, 4] × [−30, 20] × [−0.5, 5.5], [−5.5, 8] × [−12, 25] ×

[−0.1, 2] and [−10, 2]×[−60, 2]×[−0.2, 10.5], thewidths ζ1 =

1.2, ζ2 = 2.2, ζ3 = 2, ζη = 1.8. The design parameters are a1 =

a2 = a3 = aη = 10, r1 = 2, r2 = 10, β1 = 0.5, β2 = 0.1, λ1 =

λ2 = λ3 = 5, λη = 3. The desired trajectory is yd = 10 sin 0.08t .

According to Theorem 1, the adaptive laws ˙̂
θ,

˙̂
ϑ and the control

laws uck , uφk are chosen, respectively, as

˙̂
θ =

3
i=1

0.01z6i S
T
i Si − 0.5θ̂ ,

˙̂
ϑ = 0.036z63S

T
η Sη − 0.1ϑ̂,

uck =
1

g3,k
[−5.75z3 − 0.005z33 θ̂S

T
3 S3],

uφk = 3.75z3 +
0.00057

g3,k
z33 ϑ̂S

T
η Sη,

where uk = uck − uφk , z1 = x1 − yd, z2 = x2 − α1, z3 = x3 − α2
and α1, α2 are given by

α1 = −5.75z1 − 0.005z31 θ̂S
T
1 S1,

α2 = −92z2 − 0.08z32 θ̂S
T
2 S2.
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Fig. 1. Tracking performance.

Fig. 2. The responses of adaptive laws.

In order to give the simulation results, we assume that

vk = D(uk) =

10(uk − 50), uk ≥ 50
0, −60 < uk < 50
20(uk + 60), uk ≤ −60

and φ1 = 0.5x1 sin x2x3, φ2 = 0.25x21x2 cos x2, φ3 = 0.1x1x3. The
simulation results are shown in Figs. 1–4, where Fig. 1 presents the
system output ψ and target signal yd, Fig. 2 shows the trajectories
of adaptive laws, Fig. 3 demonstrates the responses of D(uck)
(without dead-zone compensation controller) and D(uck − uφk)
(with dead-zone compensation controller), and Fig. 4 illustrates
the evolution of switching signal. From Fig. 1, it can be seen
that the output ψ can track the target signal yd within a small
bounded error. On the other hand, Fig. 3 verifies that the dead-zone
nonlinearity can be compensated by uφk .

5. Conclusions

This paper has investigated the tracking control problem for
a class of switched stochastic nonlinear systems in nonstrict-
feedback form under arbitrary switchings, where the unknown
nonsymmetric actuator dead-zone is taken into account. Adaptive
state feedback controllers are designed for the considered systems.
It is shown that the target signal can be almost surely tracked by
the system output within a small bounded error, and the tracking
error is SGUUB in 4th moment. In our future works, we will pay
attention to the control problems of more complicated systems
such as high-order switched stochastic systems by using efficient
adaptive algorithms.
Fig. 3. The responses of D(uck − uφk ) and D(uck ).

Fig. 4. The response of switching signal.
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