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a b s t r a c t 

Handcrafted ordinal measures (OM) have been widely used in many computer vision problems. This pa- 

per presents a structured OM (SOM) method in a data driven way. SOM simultaneously learns ordinal 

filters and structured ordinal features. It leads to a structural distance metric for video-based face recog- 

nition. The SOM problem is posed as a non-convex integer program problem that includes two parts. 

The first part learns stable ordinal filters to project video data into a large-margin ordinal space. The 

second seeks self-correcting and discrete codes by balancing the projected data and a rank-one ordinal 

matrix in a structured low-rank way. Weakly-supervised and supervised structures are considered for the 

ordinal matrix. In addition, as a complement to hierarchical structures, deep feature representations are 

integrated into our method to enhance coding stability. An alternating minimization method is employed 

to handle the discrete and low-rank constraints, yielding high-quality codes that capture prior structures 

well. Experimental results on three commonly used face video databases show that our SOM method 

with a simple voting classifier can achieve state-of-the-art recognition rates using fewer features and 

samples. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Video-sharing websites are a fast-growing platform that allows

internet users to distribute their video clips. There are often a large

number of face videos in these websites. How to index, retrieve,

and classify these face videos has become an active research topic

in the area of video-based face recognition (VFR) [1] . Current VFR

methods often perform recognition based on hundreds or thou-

sands of floating point features [2] , and store almost every face

sample from a video clip. Since there can be (many) thousands of

face samples in a video clip, high-dimensional dense features and

large-scale registered samples result in tremendously large time

and space complexity, which becomes a computational bottleneck

when applying VFR methods to video-sharing websites. 

Recently, binary code representations have drawn much atten-

tion in biometric recognition [3–5] and large scale image retrieval

[6–8] . Among these binary coding methods, codes constructed

from ordinal measures (OM) are one representative method. Or-

dinal measures [9] are common in human perceptual judgments.

It is easy and natural for humans to rank or order the heights of

two persons, although it is hard to estimate their precise differ-
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nces [10] . Ordinal measures were originally used in social science

9] and then introduced to computer vision. 

In biometrics, an OM is defined as the relative ordering of some

roperty - for example, the average brightness of two adjacent re-

ions (with 1 coding A �B and 0 coding A ≺B ) or the relative or-

ering of two color channels within the same region. Ordinal fil-

ers with a number of tunable parameters, are methods to ana-

yze the ordinal measures of image features. The Haar wavelet and

uadratic spline wavelet can be regarded as typical ordinal filters.

rdinal features are the binary codes of image features obtained

y thresholding ordinal filters. Fig. 1 plots a simple illustration of

M. 

In prior work, the set of handcrafted ordinal filters is chosen to

orrespond to some family of coherent patterns - like Gabor filters.

he space of ordinal filters can therefore be quite large as the tun-

ble parameters - scale, frequency, orientation - are varied, each

iving rise to a potential ordinal feature. Different feature selection

ethods [10–12] have been used for OM to select a stable subset

rom the over-complete ordinal features. The term ’stable’ indicates

hat the floating point features generated by an ordinal filter from

he same class are expected to have large margins so that the cor-

esponding ordinal features (binary codes) are robust to intra-class

ariations during binarization. 

http://dx.doi.org/10.1016/j.patcog.2017.02.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.02.005&domain=pdf
mailto:rhe@nlpr.ia.ac.cn
http://dx.doi.org/10.1016/j.patcog.2017.02.005
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Fig. 1. An illustration of structured ordinal measures. Ordinal measure of visual relationship between two regions [10,11] . Previous OM methods apply feature selection 

methods to select over-complete ordinal features (binary codes) that are generated by handcrafted ordinal filters. SOM simultaneously seeks ordinal filters and optimal 

ordinal features in a data-driven way, makes the learned features low-rank and enforces an optimal ordinal matrix for classification. In SOM, one binary code of a sample 

can be corrected according to the codes of similar samples. 
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Motivated by the success of OM in iris [11] , palmprint [10] and

ace recognition [3] , we present what we refer to as a structured

rdinal measure (SOM) method for video-to-video face recognition.

ifferent from previous handcrafted OM methods, SOM simultane-

usly learns ordinal filters (SVM’s) and structured ordinal features

binary codes) from video data as shown in Fig. 1 . Considering that

ace appearances in video clips contain several facial variations and

re similar in adjacent frames, we design the ordinal features of

OM to be stable and self-correcting binary codes. Stability indi-

ates that the learned ordinal features are required to have large

argins and to be clustered. The self-correcting character indicates

hat binary code of one frame depends not only on its correspond-

ng ordinal filter (or coding function) but also on the binary val-

es of similar (typically nearby in time) face samples. Because face

mages in a video clip often lie in a union of multiple linear sub-

paces [13,14] , the features (binary code) assigned to the subset

f faces from a single linear subspace should be similar. These bi-

ary codes can be potentially corrected by each other through a

ow-rank constraint on the matrix of constructed codes. One of the

ain advantages of our method is that it simultaneously reduces

he number of dense features and eliminates redundant samples. 1 

We will formulate the SOM problem as a non-convex integer

rogram problem that mainly includes two parts. The first part

earns stable ordinal filters to project video data into a space in

hich the filtered data are separable with a maximum margin.

his can be viewed as an instance of maximum margin clustering

MMC) [15] . The second finds self-correcting binary codes by bal-

ncing the projected real-value data and a rank-one ordinal matrix

n a structured low-rank way. Weakly-supervised and supervised

tructures are considered for the ordinal matrix. We also integrate

NN feature representations into our method to enhance stabil-

ty. An alternating optimization method provides an efficient dis-

rete solution to deal with the discrete and low-rank constraints

mposed on binary ordinal features. In addition, a simple voting

lassifier with a self-correcting process is proposed to efficiently

ompress and classify video clips. Experimental results on three

ommonly used face video databases show that our SOM method

an achieve state-of-the-art recognition results using fewer fea-

ures and samples. Compared to previous binary coding methods

or still images (face or iris), SOM more efficiently utilizes the low-
1 Getting rid of redundant samples is important during both training and testing. 

n a video clip, the face can remain unchanging for long periods of time and that 

ould bias the models towards that appearance. 
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d  

c  
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b  
ank property of video data and hence is potentially useful for VFR

roblems. 

There are three major contributions of this work: 

(1) By employing the optimal ordinal matrices as output struc-

tures, SOM encourages ordinal features from the same class

to have similar binary codes. To the best of our knowledge,

SOM is the first algorithm that learns binary codes (or hash-

ing) using output structures. 

(2) Assuming that face images of a video clip are similar and re-

lated, we propose a self-correcting method to discretely bi-

narize both gallery and probe videos. Our method utilizes

the continuous information in videos and hence is effective

for VFR tasks. 

(3) As a by-product of SOM, we show that using a simple vot-

ing classifier improves over competing and complex classi-

fication models on fine grained datasets like the YouTube

Celebrities dataset and offers an impressive compression ra-

tio of CNN floating point features (20% face samples and 64-

bit binary codes). 

The rest of this paper is organized as follows. We briefly review

ome recent advances on binary coding methods in Section 2 . In

ection 3 and Section 4 , we present the details of SOM and the op-

imal ordinal matrices respectively. Section 5 provides experimen-

al results, prior to summary in Section 6 . 

. Related work 

Since OM methods are an instance of binary appearance fea-

ures, we briefly review some recent advances on binary coding

ethods. 

.1. Biometric recognition 

In biometrics, binary feature representation methods often fo-

us on directly computing local image patches by the filters to gen-

rate binary codes. Local binary patterns (LBP) and ordinal mea-

ures are two representative binary features. There are many vari-

tions of these two features [3,4] . The definition and properties of

M in the context of biometrics can be found in [11] . 

Although OM’s has been successfully applied to biometrics

16,17] , there are still two open issues for OM. The first issue is the

esign of ordinal filters. The existing ordinal filters are often hand-

rafted. But handcrafted ordinal filters are too simple to represent

omplex human vision structures [18] . In addition, to improve sta-

ility and accuracy, these filters often contain a large number of
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Fig. 2. Three types of the optimal ordinal matrices. (a) The optimal ordinal matrix 

for a two-class problem. (b) Weakly-supervised ordinal matrix constructed via ap- 

pearance information. Binary codes of all samples from the same class are arbitrary 

but unique and identical. (c) Supervised ordinal matrix via the spectral matrix of 

linear discriminant analysis [36] . 
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2 In face recognition, dividing a face image into small patches can capture non- 

linear facial variations well and so improves recognition rates. The learned filters in 

(1) can also be applied to local patches as in previous binary coding methods. 
parameters based on distance, scale and location, resulting in a

potential feature set of OM. This naturally leads to the second is-

sue, i.e., how to select the optimal set of ordinal features. Although

various feature selection methods [10–12] have been employed to

improve selection results, it is still difficult for a feature selection

algorithm to select the optimal set from the over-complete set of

OM. 

Recently, data-driven binary feature methods, which learn lo-

cal image filters from data, have drawn much attention. Cao et al.

[19] utilized unsupervised methods (random-projection trees and

PCA trees) to learn binary representations. Lei et al. [4] proposed

a LBP-like discriminant face descriptor (DFD) by combining image

filtering, pattern sampling and encoding. Chan et al. [20] combined

cascade PCA, binary code learning and block-wise histograms to

learn a deep network. Lu et al. [5] proposed a compact binary face

descriptor (CBFD) to remove the redundancy information of face

images. Although these methods indeed boost recognition perfor-

mance on some challenging databases, their learned features are

often high dimensional. For example, the dimensionality of his-

togram feature vectors of DFD and CBFD are 50,176 and 32,0 0 0 re-

spectively. High dimensional and dense representations make these

data-driven methods not applicable to VFR problems. 

2.2. Image retrieval 

Learning binary codes (’hashing’) has been a key step to fa-

cilitate large-scale image retrieval. In image retrieval, the termi-

nology ’hashing’ refers to learning compact binary codes with

Hamming distance computation. Similarity-sensitive hashing or

locality-sensitive hashing algorithms [21,22] , graph-based hash-

ing [23] , semi-supervised learning [24] , support vector machine

[25,26] , Riemannian manifold [27] , decision trees [7] and deep

learning [28,29] have been studied to map high-dimensional data

into a low-dimensional Hamming space. The authors in [23,26] ar-

gued that the degraded performance of hashing methods is due to

the optimization procedures used to achieve discrete binary codes.

Hence [23,26] tried to enforce binary constraints to directly obtain

discrete codes [23,26] . A brief review of hashing methods for im-

age search can be found in [28,30] . 

These hashing methods are often used for image search and

retrieval but they may not achieve the highest accuracy for VFR

problems. For example, the constraints in [23] maximize the in-

formation from each binary code over all the samples in a train-

ing set. However, adjacent face samples in a video clip often have

nearly the same appearance so that these samples can have similar

binary codes. In addition, to the best of our knowledge, there is no

existing hashing methods that address image-set problems [31] . 

3. Structured ordinal measures (SOM) 

3.1. Motivation 

Consider a training set X from C classes, which consists of n

biometric samples x j (1 ≤ j ≤ n ) in a high dimensional Euclidean

space R d . The goal of previous OM methods is to identify ordinal

filters over X to nonlinearly map each x j to m ordinal features (an

m-bit binary code). Since ordinal filters typically have a number of

tunable parameters and so determine a huge set of possible ordi-

nal features, various feature selection methods have been used to

select the m ordinal features. The selected ordinal features of all

samples form a binary matrix B = [ b 1 , . . . , b n ] ∈ R m ×n , referred to

as an ordinal matrix . Previous OM methods select ordinal filters

one by one (using a greedy approach) and hence neglect the out-

put structure of ordinal features. For example, video data are often

low-rank. 
In biometrics, since intra-class variations of biometric samples

re often very large [32] , good ordinal measures should generate

imilar binary codes for the samples from one subject. In addition,

 large difference between two quantities will result in more sta-

le binary features. For example, the greater the color difference

etween two image regions, the more easily humans order their

elative brightness (1 or 0); and the greater the height difference

etween two persons, the more easily humans rank their relative

eights. 

To obtain stable ordinal features, we introduce the following

inimization problem for OM, 

min 

W,ξ ,B 
μξ + λ1 ‖ 

W ‖ 2 + 

∑ 

c 
‖ 

B 

c ‖ ∗ (1)

s.t. B i j (w 

T 
i 

X j ) ≥ 1 − ξi j , 

ξi j ≥ 0 , B i j ∈ { −1 , 1 } 
here μ and λ1 are constants, and ‖ . ‖ ∗ denotes the matrix trace

orm (i.e., the sum of its singular values). B c represents all ordi-

al features from the c th class [33] . The parameter matrix W =
 w 1 , . . . , w m 

] ∈ R d×m represents a set of ordinal filters. As defined

n Section 2 , a parameter matrix W contains a set of ordinal fil-

ers only if W can result in consistent orders for the samples from

he same class, e.g., W 

T X generates an ordinal matrix as in Fig 2 . In

ontrast to the binary coding methods [4,5,11] that are based on lo-

al image patches, (1) directly uses the whole image as an input to

nd compact codes 2 . More important, (1) aims to simultaneously

eek ordinal filters ( W ) and optimal ordinal features ( B ). 

The low-rank constraint in (1) encourages the ordinal features

rom the same class to be correlated. This constraint reduces the

edundancy of video data and corrects some binary codes whose

orresponding values ( W 

T X ) are close to SVM’s separating hyper-

lanes. We also want to enforce that the learned B is close to the

ptimal ordinal (binary) matrix for classification, resulting in the

ollowing minimization problem, 

min 

W,ξ ,B 
μξ + λ1 ‖ 

W ‖ 2 + 

∑ 

c 
‖ 

B 

c ‖ ∗ + λ2 ‖ 

B − S ‖ 

2 
F (2)

s.t. B i j (w 

T 
i 

X j ) ≥ 1 − ξi j , ξi j ≥ 0 , B i j ∈ { −1 , 1 } 
here S ∈ R m × n is a prior ordinal matrix that defines a desired

utput structure for ordinal features. We postpone discussion of

he design of S until Section 4 . Since the OM problem in (2) im-

oses an output structure on ordinal filter learning, we refer to the

roblem in (2) as learning a structured ordinal measure . 

Even without the structured low-rank constraint, (2) is diffi-

ult to solve [15] . Unlike supervised SVM that can be formulated
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s a convex optimization problem, (2) , even without the struc-

ured low-rank constraint, is still a non-convex integer optimiza-

ion problem. It is an instance of maximum margin clustering [15] .

o simplify the minimization of (2) , we relax (2) by introducing an

quality constraint on B as follows, 

min μξ + λ1 ‖ 

W ‖ 2 + 

∑ 

c 
‖ 

B 

c ‖ ∗ + λ2 ‖ 

B − S ‖ 

2 
F + ‖ 

E ‖ 

2 
F 

s.t. B = W 

T X + E, B i j ∈ { −1 , 1 } , (3) 

B i j (w 

T 
i 

X j ) ≥ 1 − ξi j , ξi j ≥ 0 

here E ∈ R m × n is an error term to reduce the loss during bina-

ization. Since ‖ B − S ‖ 2 F = 

∑ 

c ‖ B c − S c ‖ 2 F , (3) actually seeks discrete

inary codes by balancing floating point data W 

T X and a rank-one

rdinal matrix S c in a structured low-rank way. 

Our SOM formulation in (3) has two major advantages: 1) the

ntroduction of the low-rank constraint and error term makes SOM

ore flexible during binarization. The learned binary codes depend

n their corresponding floating point values as well as prior struc-

ures. Different from the binary codes that are directly generated

y ordinal filters or hashing functions, the binary codes of SOM

an be self-corrected by the structure constraints, resulting in self-

orrecting codes. 2) Since S c is a rank-one matrix, λ2 plays the role

f controlling the number of learning samples. The rank-one ma-

rix indicates that there is only one unique sample in this matrix.

he larger the value of λ2 , the more B c resembles S c . In practice,

he rank of B c will be larger than one because a face video clip

ften contains several face variations. 

.2. Optimization 

The optimization problem in (3) is a hard computational prob-

em (non-convex integer optimization), which belongs to the class

f maximum margin clustering problems [15] . Fortunately, we do

ot need to find the global minimum because local minima pro-

uce good ordinal features. Hence we can decompose the non-

onvex problem in (3) into subproblems as in MMC. A local min-

mum can be obtained by solving a series of SVM training and

inary code learning problems. An overview of our iterative algo-

ithm is as follows. 

First, fixing variables B and E , we minimize (3) w.r.t. variables

 and ξ , resulting in a multiple linear SVM problem in (4) (one

or each ordinal feature) [34] . To learn the i th SVM, 3 the columns

f X and the elements of the i th row of B are used as training data

nd labels respectively. 

min 

W,ξ
μξ + λ1 ‖ 

W ‖ 2 (4) 

s.t. B i j (w 

T 
i 

X j ) ≥ 1 − ξi j , ξi j ≥ 0 

econd, fixing variables W and ξ , (3) takes the following form w.r.t.

 and E , 

min 

B,E 

∑ 

c 
‖ 

B 

c ‖ ∗ + λ2 ‖ 

B − S ‖ 

2 
F + ‖ 

E ‖ 

2 
F (5) 

s.t. B = A + E, B i j ∈ { −1 , 1 } 
here A = W 

{ t+1 } T X . By substituting the equality constraint into

he objective function of (5) , we can reformulate (5) as follows, 

min 

B 
‖ 

A − B ‖ 

2 
F + 

∑ 

c 
‖ 

B 

c ‖ ∗ + λ2 ‖ 

B − S ‖ 

2 
F (6) 

s.t. B i j ∈ { −1 , 1 } 
ince || . || 2 

F 
is separable, the solution of (6) can be independently

btained by minimizing the following subproblem for each class

 , 

min 

B c 
‖ 

A 

c − B 

c ‖ 

2 
F + ‖ 

B 

c ‖ ∗ + λ2 ‖ 

B 

c − S c ‖ 

2 
F (7) 
3 The � 1 regularized linear SVM is implemented by LIBLINEAR: http://www.csie. 

tu.edu.tw/ ∼cjlin/libsvm . 

C  

n  

T  
s.t. B 

c 
i j 

∈ { −1 , 1 } 
o minimize the low-rank problem in (7) , we first need to intro-

uce a variational formulation for the trace norm [35] , 

emma 1. Let B ∈ R m × n . The trace norm of B is equal to: 

 

B ‖ ∗ = 

1 
2 

inf 
L ≥0 

t r 
(
B 

T L −1 B 

)
+ t r(L ) (8)

nd the infimum is attained for L = (BB T ) 1 / 2 . 

Using this lemma, we can reformulate (7) as, 

min 

B c 
min 

L ≥0 
‖ 

A 

c − B 

c ‖ 

2 
F + tr(B 

cT L −1 B 

c ) (9) 

+ λ2 ‖ 

B 

c − S c ‖ 

2 
F + t r(L ) s.t . B 

c 
i j ∈ { −1 , 1 } 

he problem in (9) can be alternately minimized. When L is fixed,

e can use the discrete cyclic coordinate descent method to obtain

 

c bit by bit. For simplicity, we develop a simple and direct method

o find B c . That is, disregarding the integer constraint, the solution

f B c takes the following form by setting the derivative of (9) w.r.t.

 

c equal to zero, 

 

c = ((1 + λ2 ) I + L −1 ) \ (A 

c + λ2 S 
c ) . (10)

iven a floating point B c in one iteration, we can use the sign

unction sgn (.) to obtain binary-value sgn ( B c ). Experimental results

how that the learned binary codes are good enough for VFR.

lgorithm 1 summarizes the procedure to learn structured ordi-

Algorithm 1: Learning structured ordinal filters. 

Input : Data matrix X ∈ R d×n and ordinal matrix S ∈ R m ×n 

Output : Ordinal Filters W ∈ R d×m 

1: repeat 

2: Train m linear-SVMs to update W using B t−1 as training 

labels. 

3: Compute A = 

{
W 

t 
}T 

X . 

4: repeat 

5: Compute L = (B c B cT ) 1 / 2 . 

6: Compute B c via (10). 

7: Let B c = sgn (B c ) . 

8: until The variation of B is smaller than a threshold. 

9: t=t+1. 

10: until The variation of B is smaller than a threshold. 

al filters. λ2 is set to 0.1 throughout this paper. 

.3. Classification 

When applying SOM (or binary code learning methods) to bio-

etric recognition, SOM must generate ordinal features for any

ata sample beyond the sample points in the training set X . Given

 new probe dataset X 

p , a hashing algorithm H with parameter W

ypically applies the sign function sgn (.) to the hashing function

f H W 

(X p ) to obtain the binary codes [23,26] , i.e., B H = sgn ( f H W 

(X p )) .

VFR can be viewed as an image-set classification/retrival prob-

em [31] . The samples in a probe (or gallery) dataset are from a

ideo clip and so have a low-rank structure. Hence, instead of us-

ng the sign function, we propose a low-rank method to construct

he binary codes for a probe video as follows, 

min 

B 

{‖ 

E ‖ 

2 
F + ‖ 

B ‖ ∗
}

(11) 

s.t. B = f H W 

(X 

p ) + E , B i j ∈ { −1 , 1 } 
ompared to directly using the sign function sgn (.) to obtain bi-

ary codes, (11) utilizes a low-rank prior to find binary codes.

his makes the binary codes B not only depend on the function

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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f H 
W 

(. ) . The values in B can be potentially changed (or corrected) by

each other due to the low-rank constraint. (11) is a sub-problem of

(7) when λ2 is set to zero. Hence (11) can be alternatively mini-

mized as (7) . 

Given the binary codes constructed from (11) , a simple nearest

neighbor classifier for each unique code in B (since many samples

can be mapped to the same code by the optimization) with voting

is used as classifier to report recognition rates. The class label of

the majority class in a video sequence is taken as the final class

label of this sequence. In addition, since the low-rank constraint

in (11) tends to make the column samples in B correlated, it also

tends to reduce the number of different samples in B . We intro-

duce the term compression ratio of samples for VFR, i.e., com-

pression ratio = the number of unique samples/the total number

of samples. A lower compression ratio of an algorithm indicates

that the algorithm needs less storage space (and as a consequence

less computational time). 

In addition, since there is no a rank-one constraint in (11) (com-

pared to (2) ), compression ratio will tend to be high as the number

of desired bits increases. If some priors of the rank of a video clip

are given or a lower compression ratio is required, we can further

impose a rank constraint on (11) , resulting in the following mini-

mization problem, 

min 

B 

∥∥ f H W 

(X 

p ) − B 

∥∥2 

F 
(12)

s.t. rank (B ) ≤ r, B i j ∈ { −1 , 1 } 
where rank (.) is the matrix rank operator and r is constant. The

rank constraint in (12) makes the rank of B is smaller than r . That

is, all binary samples can be linearly represented by r binary vec-

tors. As a result, the number of unique samples is potentially re-

lated to r . 

4. Ordinal matrices for classification 

In this section, we discuss the design of the optimal ordinal ma-

trices in (2) . Then we discuss combining deep feature representa-

tion to improve the stability of SOM. 

4.1. The optimal ordinal matrix 

We begin the study of the optimal ordinal matrix S for (2) with

a two-class problem. We expect that all intra-class and inter-class

sample pairs of binary codes are well separated with a large mar-

gin, i.e., 

J(B ) = 

1 
μ1 

∑ 

c i 
 = c j 

∥∥b i − b j 
∥∥

0 
− 1 

μ2 

∑ 

c i = c j 

∥∥b i − b j 
∥∥

0 
(13)

where B = [ b 1 , . . . , b n ] ∈ R m ×n is a binary matrix, μ1 and μ2 are the

numbers of extra-class and intra-class pairs respectively, and ‖ . ‖ 0 
is the counting norm (i.e., the number of nonzero entries in a vec-

tor or matrix). Each row of B T corresponds to the binary code of

one data item. The first term of (13) rewards items from difference

classes having large Hamming distance, while the second term pe-

nalizes items from the same class having small Hamming distance.

The maximization of J ( B ) is NP-hard. By analyzing J ( B ), we make

the following two observations on its optimal solution, 

Proposition 1. The maximum value of J ( B ) is equal to the number of

bits (m), i.e., max B J(B ) ≤ m . 

Proof. According to the definition of the � 0 norm, we can easily

derive that max B (J(B )) < m . In addition, when 

ˆ B satisfies, 

(a) For ∀ i, j, k and c i 
 = c j , if b ik 
 = b jk , then 

1 
λ1 

∑ 

c i 
 = c j 
∥∥b i − b j 

∥∥
0 

=
m ; 
(b) For ∀ i, j, k and c i = c j , if b ik = b jk , then
1 
λ2 

∑ 

c i = c j 
∥∥b i − b j 

∥∥
0 

= 0 , 

e obtain J( ̂  B ) = m ( Fig. 2 (a) gives an example of ˆ B ). Hence

ax B J(B ) ≤ m . �

roposition 2. If there exists a ˆ B such that J( ̂  B ) = m, the ˆ B satisfies

he following two conditions. (a) All the samples in each class have a

nique binary code. (b) The sample code of one class is orthogonal to

hat of the other class. 

roof. If c i = c j and b ik 
 = b jk , then 

∑ 

c i = c j 
∥∥b i − b j 

∥∥
0 

> 0 so that

(B) < m. Since b ik ∈ {0, 1} and 

∥∥b i − b j 
∥∥

0 
= m for c i 
 = c j , b 

T 
i 

b j = 0 .

ence b i is orthogonal to b j when c i 
 = c j and J(B ) = m . 

From Propositions 1 and 2 , we can easily obtain the optimal

rdinal matrix for a two-class problem as shown in Fig. 2 (a). Pre-

ious ordinal feature selection methods [10,11] actually select or-

inal filters one by one so that the selected filters generate codes

ike in Fig. 2 (a). When there are multiple classes, the problem of

etermining the optimal binary codes becomes complex. Inspired

y Propositions 1 and 2 , we consider two types of ordinal matrices

o approximate the optimal ordinal matrix (shown in Fig. 2 (b) and

c)). 

For the weakly-supervised ordinal matrix, we just require that

he binary codes of each class be unique. There are many ways to

enerate informative binary codes for this case, e.g., random bi-

ary codes and Hadamard codes [37] . Since ordinal filters perform

earning based on human face appearances, we also expect that the

eakly-supervised ordinal matrix would capture useful appearance

nformation of video data. To accomplish this, we apply the un-

upervised version of Iterative Quantization (PCA-ITQ) [38] to the

ean faces of each class to generate the corresponding unique bi-

ary code for each class. Then, the weakly-supervised ordinal ma-

rix contains appearance information while the binary codes of dif-

erent classes are largely uncorrelated. 

For the supervised ordinal matrix, we simply employ the spec-

ral matrix of linear discriminant analysis [36] (the regression tar-

et of multi-class linear regression). In this spectral matrix, the bi-

ary codes of the samples from any one class have just one bit

et, which define the orders of a class. Since this spectral matrix

ontains discriminative information, the ordinal matrix will con-

ain supervised information if this spectral matrix is used as the

rdinal matrix. However, the code length of this spectral matrix

an be only C . If code lengths larger than C are needed, we can

btain longer binary codes by combining the spectral matrix with

he weakly-supervised ordinal matrix. 

.2. Deep feature representations 

Since there are large variations of intra-class samples in uncon-

rolled VFR environments, it is often difficult to use one type of

ocal appearance features to obtain satisfactory recognition results.

ence, biometric researchers often combine several local feature

o improve generalization ability and recognition performance. In

39] , Gabor and LBP were combined to enhance the representa-

ion power of the spatial histogram. In [3] , Gabor ordinal measures

ere proposed to improve distinctiveness of Gabor features and

obustness of OM’s. In [4,20,40,41] , different techniques are com-

ined together to achieve state-of-the-art results. 

Inspired by the success of the combination of several appear-

nce features, we couple SOM with deeply learned features from

onvolutional neural networks (CNN) [42] to improve coding sta-

ility. Benefiting from CNN’s deep architecture and supervised

earning approach [43–45] , CNN’s can efficiently deal with large

mounts of data and generate a hierarchical and discriminative fea-

ure representation. The use of deeply learned features makes the
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earned ordinal features contain not only the prior structure from

ata but also the hierarchical structure of local image patches. 

The CNN network implemented by Alex (’cuda-convnet’) 4 is

sed as our deep architecture. This CNN first feeds gray scale im-

ges to two convolutional layers, each followed by a normalization

ayer and a max-pooling layer. Then, two locally connected layers

re connected to the output of the second max-pooling layer, and

nally to a C-way soft-max regression layer (C is the number of

lasses) that produces a distribution over class labels. The input to

his network is each cropped gray scale face image in a video with-

ut any preprocessing. The last C-way soft-max regression layer

rovides supervised information for learning face representations.

he outputs of the last locally connected layers (fc6) before the

oftmax loss are employed as deep feature representations. 

The testing time of the proposed methods consists of two parts.

he first part is the computational time of CNN feature extraction.

e can resort to a light CNN model [44] to reduce computation

ime. The second part involves the computation to acquire binary

odes. If we only apply the linear projection matrix W in Eq. (2) to

btain binary codes, the computation complexity is O ( d × m × n ).

oreover, if Eq. (12) is used to obtain binary codes, we can resort

o the fast algorithm [46] to find a low-rank approximation. 

. Experiments 

In video-sharing websites, there are a large number of face

ideos, each of which contains hundreds of face images. Using bi-

ary features to represent these face images will significantly save

omputational power and storage space. Hence, VFR is a good test

latform to evaluate SOM. All experiments are run 10 times by

epeating the random selection of training/testing set. For all bi-

ary code methods, the simple nearest neighbor classifier for each

nique code in the probe set with voting is used as a classifier to

eport recognition rates. 

.1. Methods 

We systematically compare SOM with popular techniques from

hree categories. SOM1 and SOM2 indicate Algorithm 1 using the

ast two structures from Fig. 2 (b) and (c) respectively. For SOM2,

he bits from the optimal matrix for SOM1 is appended to that for

OM2 as discussed in Section 4 if code length is larger than the

umber of classes. 

For the first category, we compare SOM with state-of-the-art

ata-driven binary feature methods in biometrics, including dis-

riminant face descriptor (DFD) [4] , Gabor ordinal measures (GOM)

3] , and compact binary face descriptor (CBFD) [5] . As in [5] , cosine

istance is used for the three methods to achieve their best recog-

ition accuracy. Since the feature dimensions of DFD and CBFD are

oo high, whitened PCA (WPCA) is applied to reduce their feature

imensions to 10 0 0 [5] . 

For the second category, we compare SOM with popular hash-

ng methods, including locality sensitive hashing (LSH) [47] , itera-

ive quantization (ITQ) [38] , kernel-based supervised hashing (KSH)

6] , fast supervised hashing (FastH) [7] , and supervised discrete

ashing (SDH) [26] . For ITQ, its supervised version (CCA-ITQ) and

nsupervised version (PCA-ITQ) are included. PCA is used as a pre-

rocessing step for CCA-ITQ. For SDH, we use the notation SDH-n

o indicate that SDH uses image pixels rather than nonlinear RBF

ernel mapping as its input. Hamming distance is computed on

ach pair of face samples in training/testing sets. 

For the last category, we compare SOM with popular VFR

ethods, including discriminative canonical correlations (DCC)
4 https://code.google.com/p/cuda-convnet/ . 

i  

n  

S  
48] , manifold discriminant analysis (MDA) [49] , sparse approxi-

ated nearest point (SANP) [50] , sparse representation for video

SRV) and its kernelized version KSRV [13] , covariance discrim-

native learning (Cov+PLS) [51] , jointly learning dictionary and

ubspace structure (JLDSS) [14] , image sets alignment (ImgSets)

31] , regularized nearest points (RNP) [52] , and mean sequence

parse representation-based classification (MSSRC) [53] . As in

13,14,52,53] , we directly cited the best recognition rates of these 

ethods from the literature. 

.2. Databases 

Three commonly used face video datasets are used to evaluate

ifferent methods, including, 

The Honda/UCSD dataset [54] is composed of 59 video se-

uences of 20 subjects. The sequences of each subject contain pose

nd expression variations. The lengths of the sequences vary from

2 to 645. Fig. 3 (a) shows cropped images from this dataset. We

ollow the standard training/testing configuration in [14,49–51] : 20

equences are used for training and the remaining 39 sequences

or testing. All video frames are used to report classification re-

ults. Since there are only 39 testing sequences, the improvement

f recognition rates is 2.6% ({1/39} ∗100%) when one additional se-

uence is correctly classified. 

The Mobo (Motion of Body) dataset [55] was originally pub-

ished for human pose identification. It contains 96 sequences of

4 different subjects walking on a treadmill. Each subject has

our video sequences corresponding to four walking patterns re-

pectively. These patterns (slow, fast, inclined, and carrying a

all) were captured using multiple cameras. Fig. 3 (b) shows some

ropped images from three subjects. We follow the standard train-

ng/testing configuration in [14,49–51] . One video was randomly

hosen as training and the remaining three for testing. The im-

rovement of recognition rates is (1.4% = 1/72 ∗100%) if one ad-

itional video sequence is correctly classified. 

The YouTube Celebrities dataset [56] contains 1910 video clips

f 47 human subjects (actors, actresses, and politicians) from the

ouTube website. Roughly 41 clips were segmented from 3 unique

ideos for each person. These clips are mostly low resolution and

ighly compressed. Each facial image is cropped to size 30 × 30 as

hown in Fig. 3 (c). This dataset is challenging because it contains

arge facial variations (e.g., pose, illumination and expressions) and

racking errors in the cropped faces. Following the standard setup,

he testing dataset is composed of 6 test clips, 2 from each unique

ideo, per person. The remaining clips were used as the input to

he CNN to learn a 1152-D feature representation. One frame of

ideo (one single image) is fed into the CNN at a time. We ran-

omly selected 3 training clips, 1 from each unique video. 

.3. Algorithmic analysis 

Since our SOM method consists of several parts to improve

erformance, we investigate the effectiveness of each part on the

ouTube Celebrities dataset. To simplify parameter setting, we di-

ectly use the default parameter setting of μ and λ1 in the LIB-

INEAR SVM source code. Hence there is only one parameter λ2 to

ontrol the effectiveness of output structures. 

Fig. 4 (a) and (b) show recognition rates and compression ratios

f samples as a function of λ2 respectively. Experimental results

re from one single run. The lower compression ratio of an algo-

ithm is, the better the algorithm is. We observe that parameter

2 affects both recognition rates and compression ratios. When λ2 

s a large, the output structure term ‖ B − S ‖ 2 F dominates (5) . If λ2 

s sufficiently large, the optimal solution of B will equal the ordi-

al matrix S , which indicates directly using S as the class labels of

VM to perform binary code learning. When λ tends to be zero,
2 

https://code.google.com/p/cuda-convnet/
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Fig. 3. Cropped facial images of three different subjects in the three video databases respectively. 

Fig. 4. Recognition rates and compression ratios of SOM under different parameter setting. (a) Recognition rates as a function of λ2 . (b) Compression ratios of samples as a 

function of λ2 . (c) Average recognition rates with or without (11) . SOM-n indicates that the SOM method without using (11) . (d) Average compression ratios of samples with 

or without (11) . 
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(5) becomes maximum margin clustering [15] . That is, we seek a

global ordinal filter matrix W to group the samples from the same

class into several clusters. 

Since S c is a rank-one matrix, B will be a rank-one matrix if B is

equal to S . In VFR problems, a video clip often contains many face

variations so that it is difficult to use one binary vector to repre-

sent all face variations. From Fig. 4 (b), we also observe that the

rank of the learned B is larger than 1. Hence, to keep the diversity

of learned B , it is not a good strategy to directly use S as the class

labels of SVM or to set λ2 to a large value, although a larger λ2 

will result in better compression. Meanwhile, setting λ2 too small

will also damage performance. If λ2 tends to zero, there will be

no structure constraints to ensure that the learned ordinal features

are similar to the optimal ordinal matrix for classification. Hence,

the performance of SOM will decrease in terms of both recognition

rates and compression ratios. 

Fig. 4 (b) and (c) show recognition rates and compression ratios

of samples without using (11) respectively. SOM-n indicates that

the SOM method uses sgn (.) function to obtain binary codes rather

than using (11) . We observe that using (11) further improves recog-

nition rates and reduces compression ratios. This indicates that our

SOM methods can correct some binary codes such that the learned

codes become correlated. Since video data often contain a large

number of face samples, it is impossible to make face samples un-

correlated as assumed by hashing methods. Reducing the redun-

dancy of video data should be helpful for performance. We also

observe that the improvement using (11) is not significant. We re-

gard these results as reasonable because CNN features have power-

ful ability to learn discriminative representations. Since the binary

codes learned by SOMs are discriminative enough on CNN features,

there is a limited potential to further improve performance. 

5.4. Comparisons to binary code methods 

Table 1 and Figs. 5–7 show recognition rates and compression

ratios of different binary code learning methods on the three video

face databases. From these results, we make several observations: 

High-dimensional and dense features are powerful for VFR.

Three binary feature representation methods (GOM, CBFD and

DFD) obtain the highest recognition rate (close to 100%) on the
onda dataset, and comparable recognition rates on the other two

atasets. However, the best recognition rates of these three meth-

ds are obtained by cosine distance rather than Hamming distance.

ense feature representations will result in very high computa-

ional costs for VFR. For the Honda dataset, we can see that longer

odes will lead to better recognition rates. The recognition rates

f CCA-ITQ, LSH, FastH, SOM1 and SOM2 increase quickly as the

umber of bits increases. 

Compared to the hashing methods designed for image retrieval,

OM methods are more effective for VFR. On all three databases,

OM methods achieve the highest recognition rates, and consis-

ently outperform their hashing competitors. This may be be-

ause SOM methods can utilize and preserve the structure infor-

ation from face videos. Since SOM2 considers discriminative bi-

ary codes in its prior structure, SOM2 performs better than SOM1

n the last two databases. On the YouTube database, since CNN

eatures capture face variations well, SOM methods obtain state-

f-the-art recognition rates compared to the complex classification

odels (e.g., image set models). It should be noted that the results

or these other models are not based on CNN features, and their

erformance should improve if they were applied to those features.

ore important, SOM methods use 64-bit binary features to ob-

ain a better result than directly using CNN features in a nearest

eighbor recognition framework, which offers an impressive com-

ression ratio of 1152-dim CNN features. 

Binary code learning methods provide a potential way to re-

uce the number of registered samples. Since there are many face

amples in a video clip, a lower compression ratio of an algorithm

ndicates that the algorithm needs smaller storage space and com-

utational time. Since PCA-ITQ and CCA-ITQ aim to quantize the

ace samples so that they are uncorrelated, they should learn dif-

erent binary codes for different samples. However, their compres-

ion ratios on the training and testing sets are smaller than 100%.

his indicates that there are some samples to have the same binary

ode, which makes the uncorrelated constraints work not well. In

ddition, compression ratios of different methods on the training

et seem to be lower than those on the testing set. This indicates

hat there are large difference between the videos in the training

nd testing set so that the learned coding functions more accu-
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Table 1 

Experimental results of three state-of-the-art binary feature representation methods. ‘RR’, ‘CS1’ and ‘CS2’ 

indicate recognition rate, compression ratio on the testing set, and compression ratio on the training set 

respectively. 

Methods(dim) Honda Mobo Youtube 

RR CS1 CS2 RR CS1 CS2 RR CS1 CS2 

GOM(2560) 99 .0% 100 .0% 100 .0% 92 .6% 99 .7% 100 .0% 68 .1% 99 .3% 99 .3% 

CBFD(320 0 0) 99 .5% 99 .4% 100 .0% 95 .1% 100 .0% 100 .0% 66 .3% 99 .3% 99 .3% 

DFD(50176) 99 .2% 100 .0% 100 .0% 93 .6% 100 .0% 100 .0% 64 .7% 99 .3% 99 .3% 

Fig. 5. Recognition rates of different binary code learning methods. 

Fig. 6. Compression ratios of different binary code learning methods on the three testing sets. Compression ratio = the number of unique samples/ the total number of 

samples. The lower compression ratio an algorithm has, the better the algorithm is. 

Fig. 7. Compression ratios of different binary code learning methods on the three training sets. 
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ately capture the facial variations in the training set than those in

he testing set. 

FastH, SDH, SOM1 and SOM2 obtain lower compression ratios

han other methods, which indicates that these methods can re-

uce intra-class variations. On the Honda and Youtube databases,

DH’s performance seems to mainly benefit from its nonlinear RBF

ernel mapping and anchor points, which forces the data to be

imilar to anchor points, resulting in low compression ratios. With-

ut the nonlinear mapping, SDHn performs no better than other

ethods. Since the nonlinear RBF kernel mapping is an indepen-

ent step for SDH, this data mapping can also be integrated into

ther methods as a preprocessing step if applicable. In contrast to
DH, SOM methods employ low-rank constraints to naturally group

ata to different clusters (or anchor points). 

The optimal ordinal matrix for classification plays an important

ole for SOM. Although SOM1 and SOM2 are both minimized by

lgorithm 1 , they perform differently in terms of recognition rate

nd compression ratio. This is because SOM makes use of ordi-

al matrices as output structures that are helpful for classifica-

ion. Different output structures result in different characteristic

OM’s. Finding or defining the optimal ordinal matrix is still an

pen problem for ordinal measure and hashing. The coding the-

ry from information theory [37] may provide useful insights for

inary code learning methods. 
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Fig. 8. Recognition rates of different VFR methods on the three video databases. The interval between two dashed lines indicates the improvement of recognition rates if 

one additional video sequence is correctly classified. 
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5.5. Comparisons to VFR methods 

In this subsection, we compare the proposed SOM methods

with prevalent VFR methods that are based on hundreds of float-

ing point features. Fig. 8 (a) plots the average recognition rates of

different VFR methods on the Honda dataset. The interval between

two dashed lines indicates the improvement in recognition rates

(2.6%) if one additional video sequence is correctly classified. The

highest recognition rate achieved by SOM is 98.7% at 256 bits. We

observe that the recognition rates of most of the compared meth-

ods are between 97.4% and 100%. This indicates that there is at

most one misclassified sequence in the randomly selected subsets.

These results also show that we can use only binary features and

achieve state-of-the-art results on the Honda dataset. 

Fig. 8 (b) plots the average recognition rates of different VFR

methods on the CUM Mobo dataset. The interval between two

dash lines indicates the improvement of recognition rates (1.4%

= 1/72 ∗100%) if one additional video sequence is correctly clas-

sified. RNP achieves the highest recognition rate 97.4% ± 1.5%. In

contrast, the recognition rate of SOM is 97.1%. This indicates that

RNP outperforms SOM in some random selection cases but not in

other cases. The reason is probably that SOM simply uses a nearest

neighbor classifier with voting. Since SOM is a binary feature rep-

resentation method and RNP is an image set method, we consider

the result of SOM to be comparable to that of state-of-the-art VFR

methods. In addition, an image set algorithm can also be applied

to ordinal features to further improve accuracy. 

Fig. 8 (c) plots the average recognition rates of different VFR

methods on the Youtube dataset. We observe that MSSRC and SOM

are the two best methods on this data set. Their average recogni-

tion rates are 80.8% and 87.0% respectively. The accuracy improve-

ment of SOM against MSSRC is more than 6%. The high accuracy of

MSSRC is due to its robust tracker that successfully tracked 92% of

the videos as compared to the 80% tracked by other methods. Since

the low quality of video frames incurred by the high compression

rate generates large tracking errors and noise in the cropped faces

[50] , a good tracker should significantly improve recognition ac-

curacy. However, SOM did not use any preprocessing techniques

(such as histogram equalization or an enhanced tracker). These re-

sults show that using a simple voting classifier can improve over

the complex VFR models on the fine grained YouTube dataset. In

addition, SOM can use a 64-bit representation to achieve a bet-

ter recognition result than 1152-D floating point CNN represen-

tation, which offers an impressive compression ratio over CNN

features. 

 

 

. Conclusion 

We introduced the problem of designing data-driven ordinal

tructures for ordinal measures learning, and developed a struc-

ured ordinal measure method for video-based face recognition.

y reformulating the problem in terms of an implied equivalence

elation, we posed the learning problem as a non-convex inte-

er program problem that mainly includes two parts. The first

art learns stable ordinal filters to project video data into a large-

argin ordinal space. The second seeks self-correcting and dis-

rete codes by balancing the projected data and a rank-one ordi-

al matrix in a structured low-rank way. Weakly-supervised and

upervised structures are considered for the ordinal matrix. We

eveloped an alternating minimization method to efficiently min-

mize the proposed non-convex formulation. Experimental results

emonstrate that our SOM methods provide state-of-the-art results

ith fewer features and samples on three commonly used video

ace databases. 

The future work lies in two directions. First, our results show

hat the proposed output structures (the optimal ordinal matri-

es) are useful for video-based face recognition. Hence one direc-

ion is to design or learn optimal ordinal matrix based on vari-

us facial attributes, which have been shown to further improve

ecognition rates. Second, our results also show that SOM can ef-

ciently compress redundant samples, resulting in a small set of

nique samples. During classification, these unique samples can be

reated as representative samples or anchor points to represent all

ideo samples. Hence another potential direction is to apply the

roposed method to the area of representative sample learning. 
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