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Abstract

Most modern face super-resolution methods resort

to convolutional neural networks (CNN) to infer high-

resolution (HR) face images. When dealing with very low

resolution (LR) images, the performance of these CNN

based methods greatly degrades. Meanwhile, these methods

tend to produce over-smoothed outputs and miss some textu-

ral details. To address these challenges, this paper presents

a wavelet-based CNN approach that can ultra-resolve a

very low resolution face image of 16× 16 or smaller pixel-

size to its larger version of multiple scaling factors (2×, 4×,

8× and even 16×) in a unified framework. Different from

conventional CNN methods directly inferring HR images,

our approach firstly learns to predict the LR’s correspond-

ing series of HR’s wavelet coefficients before reconstruct-

ing HR images from them. To capture both global topology

information and local texture details of human faces, we

present a flexible and extensible convolutional neural net-

work with three types of loss: wavelet prediction loss, tex-

ture loss and full-image loss. Extensive experiments demon-

strate that the proposed approach achieves more appealing

results both quantitatively and qualitatively than state-of-

the-art super-resolution methods.

1. Introduction

Face super-resolution (SR), also known as face halluci-

nation, refers to reconstructing high resolution (HR) face

images from their corresponding low resolution (LR) input-

s. It is significant for most face-related applications, e.g.

face recognition, where captured faces are of low resolution

and lack in essential facial details. It is a special case of

single image super resolution and many methods have been

proposed to address it. It is a widely known undetermined

inverse problem, i.e., there are various corresponding high-

resolution answers to explain a given low-resolution input.

Most current single image super-resolution methods [2,

6, 14, 15, 23] depend on a pixel-wise mean squared er-
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Figure 1. Illustration of wavelet decomposition and our wavelet-

based SR. Top row: (a) The original 128 × 128 high-resolution

face image and its (b) 1 level, (c) 2 level, (d) 3 level, full wavelet

packet decomposition image. Middle row: (h) The 16 × 16 low-

resolution face image and its (g) 2×, (f) 4×, (e) 8×, upscaling

versions inferred by our network. Bottom row: similar with the

middle row except the low-resolution input (l) is 8× 8 pixel-size.

ror (MSE) loss in image space to push the outputs pixel-

wise closer to the ground-truth HR images in training phase.

However, such approaches tend to produce blurry and over-

smoothed outputs, lacking some textural details. Besides,

they seem to only work well on limited up-scaling factors

(2× or 4×) and degrades greatly when ultra-resolving a

very small input (like 16×16 or smaller). Several recent ef-

forts [5, 33, 35] have been developed to deal with this issue

based on convolutional neural networks. Dahl et al. [5] use

PixelCNN [27] to synthesize realistic details. Yu et al. [33]

investigate GAN [8] to create perceptually realistic results.

Zhu et al. [35] combine dense correspondence field estima-

tion with face super-resolution. However, the application

of these methods in super-resolution in image space faces
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many problems, such as computational complexity [5], in-

stability in training [33] and poor robustness for pose and

occlusion variations [35]. Therefore, due to various prob-

lems yet to be solved, image SR remains an open and chal-

lenging task.

Wavelet transform (WT) has been shown to be an effi-

cient and highly intuitive tool to represent and store multi-

resolution images [18]. It can depict the contextual and tex-

tural information of an image at different levels, which mo-

tivates us to introduce WT to a CNN-based super-resolution

system. As illustrated in Figure 1, the approximation coef-

ficients(i.e. the top-left patches in (b-d)) of different-level

wavelet packet decomposition [4] compress the face’s glob-

al topology information at different levels; the detail coeffi-

cients(i.e. the rest patches in (b-d)) reveal the face’s struc-

ture and texture information. We assume that a high-quality

HR image with abundant textural details and global topolo-

gy information can be reconstructed via a LR image as long

as the corresponding wavelet coefficients are accurately pre-

dicted. Hence, the task of inferring a high-resolution face is

transformed to predicting a series of wavelet coefficients.

Emphasis on the prediction of high-frequency wavelet co-

efficients helps recovering texture details, while constraints

on the reconstruction of low-frequency wavelet coefficients

enforces consistence on global topology information. The

combination of the two aspects makes the final HR results

more photo-realistic.

To take full advantage of wavelet transform, we present a

wavelet-based convolutional neural network for face super-

resolution, which consists of three subnetworks: embed-

ding, wavelet prediction and reconstruction networks. The

embedding net takes the low-resolution face as an input and

represents it as a set of feature maps. The wavelet predic-

tion net is a series of parallel individual subnetworks, each

of which aims to learn a certain wavelet coefficient using

the embedded features. The number of these subnetwork-

s is flexible and easy to adjust on demand, which makes

the magnification factor flexible as well. The reconstruc-

tion network is used to recover the inferred wavelet coef-

ficients to the expected HR image, acting as a learned ma-

trix. These three subnetworks are coordinated with three

types of loss: wavelet prediction loss, texture loss and full-

image loss. The wavelet prediction loss and texture loss

correspond with the wavelet prediction subnetwork, impos-

ing constraint in wavelet domain. The full-image loss is

used after the reconstruction subnetwork to add a tradition-

al MSE constraint in image space. Besides, as each wavelet

coefficient shares the same size with the low-resolution in-

put, we use a network configuration to make every feature

map keep the same size with the input, which reduces the

difficulty of training. As our network is fully convolutional

and trained with simply-aligned faces, it can apply to dif-

ferent input resolutions with various magnifications, regard-

less of pose and occlusion variations. Experimental results

collaborate with our assumption and demonstrate that our

method can well capture both global topology information

and local textural details of human faces.

Main contributions of our work can be summarized as

follows:

1) A novel wavelet-based approach is proposed for

CNN-based face SR problem. To the best of our knowl-

edge, this is the first attempt to transform single image S-

R to wavelet coefficients prediction task in deep learning

framework - albeit many wavelet-based researches exist for

SR.

2) A flexible and extensible fully convolutional neural

network is presented to make the best use of wavelet trans-

form. It can apply to different input-resolution faces with

multiple upscaling factors.

3) We qualitatively and quantitatively explore multi-

scale face super-resolution, especially on very low input

resolutions. Experimental results show that our proposed

approach outperforms state-of-the-art face SR methods.

2. Related work

In general, image super-resolution methods can be

divided into three types: interpolation-based, statistics-

based [26, 31, 32] and learning-based methods [3, 9, 24].

In the early years, the former two types have attracted most

of attention for their computationally efficiency. However,

they are always limited to small upscaling factors. Learn-

ing based methods employ large quantities of LR/HR image

pair data to infer missing high-frequency information and

promises to break the limitations of big magnification. Re-

cently deep learning based methods [6, 14, 15, 2, 23] have

been introduced into SR problem due to their powerful abil-

ity to learn knowledge from large database. Most of these

convolutional methods use MSE loss to learn the map func-

tion of LR/HR image pairs, which leads to over-smooth out-

puts when the input resolution is very low and the magnifi-

cation is large.

Specific to face super-resolution, there have been about

three ways to alleviate this problem. The first one [29, 13,

28, 30, 35] is to exploits the specific static information of

face images with the help of face analysis technique. Yang

et al. [29] estimate landmarks and facial pose before recon-

structing HR images while the accurate estimation is dif-

ficult for rather small faces. Zhu et al. [35] present a u-

nified framework of face super-resolution and dense corre-

spondence field estimation to recover textural details. They

achieve state-of-the-art results for very low resolution input-

s but fail on faces with various poses and occlusions, due to

the difficulty of accurate spatial prediction.

The second way [17, 33, 25, 5] is to bring in image prior

knowledge with the help of generative models. Yu et al. [33]

propose a generative adversarial network (GAN [8]) to re-
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solve 16×16 pixel-size faces to its 8× larger versions. Dahl

et al. [5] present a recursive framework based on PixelCN-

N [27] to synthesize details of 4× magnified images with

8 × 8 LR inputs. The 32 × 32 outputs are not sufficient-

ly perceptual appealing, and their method suffers from high

computational complexity.

The last way is to introduce perceptual losses to improve

the outputs’ perceptual quality directly. Johnson et al. [12]

use feature reconstruction loss as perceptual loss to recover

more semantic information. However, reconstruction fea-

tures are not as intuitive as wavelet coefficients to depict

perceptual quality.

Many wavelet-based methods have already been pro-

posed for super resolution problem. A large percentage of

them focus on multiple images SR [22, 10], which mean-

s inferring a high-resolution image from a sequence of

low-resolution images. As for single image super resolu-

tion, wavelet transform is mostly used to help interpolation-

based [1, 21] and static-based [34] methods. Naik et al. [21]

propose a modified version of classical wavelet-based inter-

polation method [1]. Gao et al. [7] propose a hybrid wavelet

convolution network. They use wavelet to provide a set of

sparse coding candidates and another convolution net for s-

parse coding, which is totally different with ours. Besides,

Mallat [19] uses wavelet transform to separate the variation-

s of data at different scales, while we predict the wavelets

from LR inputs, designed especially for super resolution.

3. Approach

In this section, we present a novel framework for face

super resolution, which predicts a series of corresponding

wavelet coefficients instead of HR images directly. Special

losses in wavelet domain are designed to capture both glob-

al topology information and local textural details. Then,

an extensible fully convolutional neural network (Wavelet-

SRNet) is proposed for multi-scale face super resolution. At

last, implement details of Wavelet-SRNet are given.

3.1. Wavelet packet transform

Our method is based on wavelet transform, more specif-

ically wavelet packet transform (WPT), which decomposes

an image into a sequence of wavelet coefficients of the same

size. We choose the simplest wavelet, Haar wavelet, for it

is enough to depict different-frequency facial information.

We use 2-D fast wavelet transform (FWT) [20] to compute

Haar wavelets. The wavelet coefficients at different levels

are computed by repeating the decomposition in Figure 2 to

each output coefficient iteratively. Example results of WPT

is showed in Figure 1 (b-d).

3.2. Wavelet­based super resolution

Generic single image super resolution aims to learn a

map function fθ(x) defined by the parameter θ to estimate

x
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Figure 2. Illustration of fast wavelet transform (FWT). FWT

uses low-pass and high-pass decomposition fillers iteratively

to compute wavelet coefficients, where Haar-based hlow =
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√
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√
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a high resolution image ŷ with a given low resolution in-

put x. Suppose that y denotes a ground-truth HR image

and D ≡ {(xi, yi)}
N
i represents a large dataset of LR/HR

image pairs, then most current learning-based SR methods

optimize the parameter θ through the following form

argmax
θ

∑

(x,y)∈D

log p(y|x) (1)

The most common loss function is pixel-wise MSE in

HR image space

lmse(ŷ, y) = ‖ŷ − y‖2F (2)

As argued in many papers [17, 33, 25, 5], merely mini-

mizing MSE loss can hardly capture high-frequency texture

details to produce satisfactory perceptual results. As texture

details can be depicted by high-frequency wavelet coeffi-

cients, we transform super resolution problem from origi-

nal image space to wavelet domain and introduce wavelet-

based losses to help texture reconstruction.

Consider n-level full wavelet packet decomposition,

where n determines the scaling factor r of super reso-

lution and the number of wavelet coefficients Nw, i.e.,

r = 2n, Nw = 4n. Let C = (c1, c2, · · · , cNw
) and

Ĉ = (ĉ1, ĉ2, · · · , ĉNw
) denote the ground-truth and inferred

wavelet coefficients, the model parameter θ of the map

function gθ(x) = (gθ,1(x), gθ,1(x), · · · , gθ,Nw
(x)) can be

optimized by the form

argmax
θ

∑

(x,C)∈D

log p(C|x) (3)

We propose two kinds of wavelet-based loss: wavelet

prediction loss and texture loss. The former one is a weight-

ed version of MSE in wavelet domain, defined as

lwavelet(Ĉ, C) = ‖W 1/2 ⊙ (Ĉ − C)‖2F

=

Nw∑

i=1

λi‖ĉi − ci‖
2
F

= λ1‖ĉ1 − c1‖
2
F +

Nw∑

i=2

λi‖ĉi − ci‖
2
F

(4)
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where W = (λ1, λ2, · · · , λNw
) is the weight matrix to bal-

ance the importance of different-band wavelet coefficients.

More attention can be paid on local textures with bigger

weights appointed to high-frequency coefficients. Mean-

while, the term ‖ĉ1 − c1‖
2
F captures global topology infor-

mation and serves as the loss function of an auto-encoder

when the approximation coefficient c1 is taken as input,

which is helpful for maintaining training stability.

The texture loss is designed to prevent high-frequency

wavelet coefficients from converging to zero, defined as

ltexture =

Nw∑

i=k

γi max(α‖ci‖
2
F + ε− ‖ĉi‖

2
F , 0) (5)

where k indicates the start index of the wavelet coefficients

to be penalized for taking small values, γi is balance weight-

s, α and ε are slack values. It keeps high-frequency wavelet

coefficients non-zero and hence prevents the degradation of

texture details.

A traditional MSE loss in image space, which is called

full-image loss, is also used to get a balance between s-

moothness and textures. The unified loss function is defined

as follows

ltotal = lwavelet + µltexture + νlfull−image

=

Nw∑

i=1

λi‖ĉi − ci‖
2
F

+ µ

Nw∑

i=k

γi max(α‖ci‖
2
F + ε− ‖ĉi‖

2
F , 0)

+ ν‖RĈ − y‖2F

(6)

where µ and ν are the balance parameters, and R is the

reconstruction matrix to generate ŷ from Ĉ, i.e., ŷ = RĈ.

3.3. Network Architecture

As outlined in Figure 3, our wavelet-based convolution-

al neural network consists of three subnetworks: embed-

ding, wavelet prediction, reconstruction networks. The em-

bedding net represents the low-resolution input as a set of

feature maps. Then the wavelet prediction net estimates

the corresponding wavelet coefficient images. Finally the

reconstruction net reconstructs the high-resolution image

from these coefficient images.

The embedding net takes a low-resolution image of the

size 3 × h × w as input and represents it as a set of feature

maps. All the convolution fillers share the same size of 3×3
with a stride of 1 and a pad of 1, which makes every fea-

ture map in the embedding net the same size with the input

image. The number of feature maps (or the channel-size)

increases in the forward direction to explore enough infor-

mation for wavelet prediction. Through the embedding net,

the input LR image is mapped to feature maps of the size

Ne ×h×w without up-sampling or down-sampling, where

Ne is the last layer’s channel-size.

The wavelet prediction net can be split intoNw parallel

independent subnets, where Nw = 4n on the condition that

the level of wavelet-packet decomposition is n and the mag-

nification r = 2n. Each of these subnets takes the output

feature maps of the embedding net as input and generates

the corresponding wavelet coefficient. We set all the convo-

lution fillers the size of 3× 3 with a stride of 1 and a pad of

1 similarly with the embedding net, so that every inferred

wavelet coefficient is the same size with the LR input, i.e,

3 × h × w. Besides, motivated by the high independence

between the coefficients of Haar wavelet transform, no in-

formation is allowed to interflow between every two sub-

nets, which makes our network extensible. It is easy to re-

alize different magnifications with different numbers of the

subnets in the prediction net. For example, Nw = 16 and

Nw = 64 stand for 4× and 8× magnifications, respectively.

The reconstruction net is used to transform the wavelet

images of the total size Nw × 3 × h × w into the original

image space of the size 3×(r×h)×(r×w). It comprises a

deconvolution layer with a filler size of r× r and a stride of

r. Although the size of the deconvolution layer is dependent

on the magnification r, it can be initialized by a constant

wavelet reconstruction matrix and fixed in training. Hence

it has no effect on the extensibility of the whole networks.

As mentioned above, all the convolution fillers of the

embedding and wavelet prediction nets share the same size

of 3 × 3 with a stride of 1 and a pad of 1, keeping ev-

ery feature map the same spatial size with the input im-

age. This reduces both the size of model parameters and the

computation complexity. Besides, to prevent gradients ex-

ploding/vanishing and accelerate convergence, we use skip-

connections between every two layers except the first layer.

Batch-norm is also used after every layer.

The definition of our networks can be formulated as fol-

lows

ŷ = φ(Ĉ) = φ{(ĉ1, ĉ2, · · · , ĉNw
)}

= φ{(ϕ1(ẑ), ϕ2(ẑ), · · · , ϕNw
(ẑ))}

= φ{(ϕ1(ψ(x)), ϕ2(ψ(x)), · · · , ϕNw
(ψ(x)))}

(7)

where

ψ : R3×h×w → RNe×h×w

ϕi : R
Ne×h×w → R3×h×w, i = 1, 2, · · · , Nw

φ : RNw×3×h×w → R3×(r×h)×(r×w)

(8)

are mappings of the embedding,wavelet prediction, recon-

struction nets, respectively.

3.4. Implementation details

A novel training technique for face super-resolution,

called as co-training, is used to make our model stable in
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Figure 3. The architecture of our wavelet-based super-resolution net (Wavelet-SRNet). All the convolution layers have the same filter map

size of 3x3 and each number below them defines their individual channel size. Skip connections exist between every two convolution layers

(except the first layer) in the embedding and wavelet predicting nets.

training and robust toward unknown down-sampling meth-

ods. Two types of low-resolution images are taken as input,

one of which is down-sampled by bicubic interpolation and

the other is the approximation coefficient of wavelet packet

decomposition. Take the case of 16 × 16 input-resolution

resolved to 128 × 128 for example. We resize all center-

cropped faces to 134 × 134 with bicubic interpolation and

randomly crop them to 128 × 128 images. Wavelet pack-

et decomposition at 3 level is used to get the ground-truth

wavelet coefficients ci in (6). The approximation coeffi-

cient c1 is treated as one version of low-resolution input.

With the mapping function ĉ1 = ϕ1(ψ(c1)), and the dis-

tance constraint ‖ĉ1 − c1‖
2
F , the embedding and predic-

tion nets serve as an auto-encoder, which assures no loss of

the original input information and facilitates training stabil-

ity. Another version of low-resolution input, directly down-

sampled by bicubic interpolation, is used cooperatively with

the wavelet version, which helps maintaining the robustness

of our model. In the testing phase, we evaluate on faces

down-sampled by bicubic interpolation.

Since our network is a fully convolutional architecture

without fully-connected layers, it can be applied to the input

of arbitrary size. We firstly train a model for 16 × 16 input

resolution with 8× magnification, and then fine-tune it for

8 × 8 input resolution with 8× magnification. For 8 × 8
input resolution with 16× magnification, we initialize the

parameters by the overlapping ones of the model for 8 × 8
with 8× magnification before fine-tuning it. For other cases,

we just choose the closest model for evaluation.

Our model is implemented with the Caffe frame-

work [11]. The loss in (6) is minimized using SGD with

a batch size of 256. For the hyper-parameters, we set em-

pirically λ1 = 0.01, λ2 = λ3 = · · · = λNw
= 1, µ =

1, k = 2, γk = γk+1 = · · · = γNw
= 1, ν = 0.1. The

learning rate is set to 0.01 initially and reduced by a factor

of 10 each 3000 iterations. It takes about 14, 000 ∼ 16, 000
iterations for our network to converge.

4. Experiments

Our experiments are implemented on two datasets: Cele-

bA [36] and Helen [16]. There are 202,599 faces in CelebA

and 2,230 faces in Helen. In the training phase, we use the

large train set of CelebA(162,700 images) for training and

the validation set(19,867 images) of CelebA for validation.

In the testing phase, we evaluate with the 19,962-image test

set of CelebA and the 330-image test set of Helen, assuring

no over-lapped images appearing in both the training and

testing phase. The images are cropped around the face with

eyes aligned horizontally.

We evaluate the performance of Wavelet-SRNet on mul-

tiple input resolutions, comparing with bicubic interpola-

tion, wavelet-based interpolation (WaveletIP, for short) [21]

and state-of-the-art methods: SRCNN [6], URDGN [33],

CBN [35]. WaveletIP [21] upsample images in both spatial

and wavelet domain. SRCNN [6] is a generic cnn-based su-

per resolution method so we retrain it on CelebA training

set to suit better for face images. URDGN [33] and CB-

N [35] are trained on CelebA. URDGN chooses 15,000 and

500 images randomly from CelebA for training and evalu-

ation respectively. CBN uses the whole CelebA dataset for

training. Hence their results on Helen may be more persua-

sive than on the CelebA test set. For a fair comparison, we

use the same set of eyes-aligned faces for all the method-

s with no extra preprocessing before down-sampling. We

adopt PSNR(dB) and SSIM for quantitative metric, and cal-

culate PSNR on the luminance channel, following by [35],

and SSIM on the three channels of RGB.
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4.1. Results on multiple resolutions

As mentioned above, our method can apply to different

input resolutions with multiple magnifications. In Figure 4,

we show the qualitative results of our method on different

input resolutions comparing with the bicubic interpolation

baseline. Our method can reconstruct faces from very small

inputs of 8 × 8 pixel-size and the inferred outputs are per-

ceptually identity-persistent to some degree, which implies

that a small number of 64 pixels constains most of a face’s

identity information. Besides, while the outputs of 8 × 8
input resolution are still a little blurry, the outputs of the

larger input resolutions are very close to the original high

resolution faces in human perception.

4.2. Comparison on very low resolutions

We compare our method qualitatively with state-of-the-

art methods on two very low resolution cases, 16 × 16 and

8× 8, both with a magnification of 8.

As for 16 × 16 input resolution in Figure 5 (a-h), our

method achieves the best perceptual performance. Bicu-

bic interpolation, WaveletIP [21] and SRCNN [6] fail to in-

fer high-frequency details and generate over-smoothed out-

puts. URDGN [33] promises to predict high-frequency in-

formation with an adversarial loss. However, we evaluate

URDGN with their offered model and find texture detail-

s over-synthesized, as Figure 5 (f) illustrates. It is perhaps

because that their train and test sets are much smaller than

ours and their adversarial networks lack in robustness. CB-

N [35] achieves the second-place performance except de-

formation in some cases. They hallucinate faces with the

help of dense correspondence field estimation and conse-

quently encounter abnormal results when unable to estimate

facial locations accurately. Comparing with other method-

s, our network infers the high-frequency details directly in

wavelet domain and the results prove its effectiveness.

As for 8 × 8 input resolution in Figure 5 (i-p), only our

method, URDGN [33] and CBN [35] can reconstruct faces.

While URDGN [33] contains much weird textures and CB-

N [35] tends to generate faces closer to the mean face, our

results are more identity-similar to the ground-truth and

plausible for human vision.

4.3. Discussion of the robustness

We evaluate the robustness of our method toward un-

known Gaussian blur, poses and occlusions. In this section,

we still adopt the same model used above, with no extra

efforts to deal with these special cases.

In Figure 6, the low-resolution faces are generated by

a Gaussian blur kernel with a stride of 8 corresponding to

8× down-sampling. σ for Gaussian blur kernel increases

from 0 to 6, where σ = 0 means nearest-neighbor interpo-

lation down-sampling. As shown in Figure 6, our method

demonstrates certain robustness when σ < 4 and generates

8× 8 input-size, 16× upscaling

16× 16 input-size, 8× upscaling

32× 32 input-size, 4× upscaling

128× 128 ground-truth
Figure 4. Results of various input resolutions: 8× 8, 16× 16 and

32 × 32. For each input resolution, the first row is generated by

bicubic interpolation and the second is ours.

smoother faces when σ >= 4. As a comparison, the results

of CBN become more similar with mean face.

For pose variations, as shown in Figure 7, CBN fails to

reconstruct plausible faces of large poses, perhaps due to

inaccurate spatial prediction. Meanwhile, our method can

still infer high-quality results.

For occlusion variations, we take some faces with nat-

ural occlusions for example. As shown in Figure 8, CBN

tends to over-synthesize occluded facial parts, e.g., the eyes

and lips, while ours resolves the occluded parts and the rest

dependently.

4.4. Quantitative results

We evaluate Wavelet-SRNet quantitatively using aver-

age PSNR(dB) and SSIM on the two test sets of Cele-

bA and Helen. We conduct evaluation on four cases:

(32× 32, 4×),(16× 16, 8×),(8× 8, 8×) and (8× 8, 16×)
((m ×m,n×) means m ×m input resolution with magni-

1694



(a) LR (b) HR (c) Bicubic (d) WaveletIP (e) SRCNN (f) URDGN (g) CBN (h) Ours

(i) LR (j) HR (k) Bicubic (l) WaveletIP (m) SRCNN (n) URDGN (o) CBN (p) Ours

Figure 5. Comparison with state-of-the-art methods on very low input resolutions. The input resolutions are 16× 16 and 8× 8 for the top

three and bottom three rows, respectively. The magnifications are both 8×. Images are selected randomly from Helen test set. We do not

try to crop the green area caused by the shape transform of CBN in (g) and (o) to avoid facial deformation.

(a) σ = 0 (b) σ = 0.5 (c) σ = 1 (d) σ = 2 (e) σ = 3 (f) σ = 4 (g) σ = 5 (h) σ = 6

Figure 6. Robustness toward unknown gaussian blur on Helen test set. The input resolution is 16 × 16 and the magnification is 8×. The

top, middle and bottom rows are the results of bicubic interpolation, CBN and ours, respectively.

fication of n). As is shown in Table 1, our method achieves

the best quantitative performance. As expected, bicubic

interpolation is better than other state-of-the-art method-

s because it is designed to minimize the pixel-wise MSE
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Dataset Method
32× 32, 4× 16× 16, 8× 8× 8, 8× 8× 8, 16×

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Celeba

Bicubic 29.20 0.9258 24.83 0.8525 21.84 0.7687 21.36 0.7838

WPSR 25.01 0.8467 21.50 0.7234 19.44 0.6476 19.03 0.6332

SRCNN 20.61 0.8004 20.15 0.7954 17.84 0.6927 18.39 0.6880

URDGN - - 24.63 0.8527 21.41 0.7614 - -

CBN 25.93 0.8749 24.68 0.8369 19.93 0.7201 19.78 0.7327

Ours 30.56 0.9432 26.61 0.8949 23.35 0.8370 22.65 0.8201

Helen

Bicubic 27.44 0.8762 23.96 0.7916 21.12 0.7068 20.96 0.7084

WPSR 24.17 0.7845 21.10 0.6494 19.45 0.5881 18.85 0.5580

SRCNN 21.93 0.8227 19.814 0.7321 17.46 0.6353 18.51 0.7367

URDGN - - 23.12 0.7708 19.32 0.6416 - -

CBN 23.39 0.7773 22.44 0.7486 19.58 0.6301 19.78 0.7201

Ours 27.94 0.8827 24.63 0.8276 21.83 0.7662 21.80 0.7491

Table 1. Quantitative results on CelebA and Helen test sets.

loss without considering the characteristics of human face.

The results in Table 1 demonstrate the fact that our method

preserves the pixel-wise consistence between LR inputs

and HR ground-truth while generates perceptually plausi-

ble faces.

5. Conclusion

We propose a novel wavelet-based approach for multi-

scale face super resolution, which transforms single image

super resolution to wavelet coefficients prediction task in

deep learning framework. A flexible wavelet-based con-

volutional neural network (Wavelet-SRNet) is presented,

which consists of three subnetworks: embedding, wavelet

prediction and reconstruction networks. Three types of loss,

wavelet prediction loss, texture loss and full-image loss,

are designed to capture both the global topology informa-

tion and local texture information of human faces. Due to

its extensible fully convolutional architecture trained with

simply-aligned faces, our network is applicable to different

input resolutions with various magnifications. Experimen-

tal results show that our method demonstrates promising

robustness toward unknown Gaussian blur, poses and oc-

clusions, and achieves better performance both qualitatively

and quantitatively than the state-of-the-art.
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Figure 7. Results of 16× 16 faces with large pose variations.
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Figure 8. Results of 16× 16 faces with occlusion variations.
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