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Abstract— Parking is one basic function of autonomous
vehicles. However, parking still remains difficult to be im-
plemented, since it requires to generate a relatively long-
term series of actions to reach a certain objective under
complicated constraints. One recently proposed method used
deep neural networks(DNN) to learn the relationship between
the actual parking trajectories and the corresponding steering
actions, so as to find the best parking trajectory via direct
recalling. However, this method can only handle a special
vehicle whose dynamic parameters are well known. In this
paper, we use transfer learning technique to further extend this
direct trajectory planning method and master general parking
skills. We aim to mimic how human drivers make parking
by using a specially designed deep neural network. The first
few layers of this DNN contain the general parking trajectory
planning knowledge for all kinds of vehicles; while the last
few layers of this DNN can be quickly tuned to adapt various
kinds of vehicles. Numerical tests show that, combining transfer
learning and direct trajectory planning solution, our new
approach enables automated vehicles to convey the knowledge
of trajectory planning from one vehicle to another with a few
try-and-tests.

I. INTRODUCTION

Autonomous vehicles are designed to complete most driv-

ing tasks that human drivers can do[1]. Among all these

tasks, parking problem remains to be an essential one, not

only because it is a common scenario that every driver meets

in their daily life, but also because it reflects a fundamen-

tal relationship underlying all driving tasks: a relationship

between control actions and trajectories under constraint of

vehicle dynamics.

In general, solving the parking control problem can be

defined as finding a control strategy or a series of detailed

control actions that guides a vehicle to move from initial

situation to the given final position and orientation.
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Various approaches have been proposed to address this

issue, one of the most widely used methods is trajectory

planning method [2], [3]. It considers an equivalent formation

of the parking control problem as finding a valid trajectory,

which can be tracked by vehicle so as to move from the given

initial position and orientation to the given final position

and orientation. Noticing that, a certain parking control

strategy will determine a trajectory, it is clear that as soon

as valid trajectories are planned, steering actions can be

decided under some constrains on action space. Usually,

these approaches can be categorized into two kinds: indirect

trajectory planning and direct trajectory planning.

By designing a reference parking trajectory, usually be-

longs to a set of special curves(e.g. polynomial curves

[1], β -spline curves [4]) that an autonomous vehicle could

approximately follow, indirect trajectory planning methods

simplify the trajectory planning problem by curves’ distinc-

tive geometric properties.

Though such simplification makes the problem more

tractable, it may violate the dynamic constrain of vehicles

in certain situation, and results in a wider gap between the

designed curves and the actual trajectories.

To fix this problem, direct trajectory planning method was

first proposed in [5]. It enumerates all the possible parking

trajectories that a vehicle can make and learns to set up a

direct relationship between any initial/final state pair and

the corresponding steering action as well as the parking

trajectory. Based on this learning result, the autonomous

vehicle will soon recall the desired steering action/parking

trajectory, if an initial/final state pair is given; See Fig. 1 for

an illustration.
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Fig. 1. The solution framework of direct trajectory planning for au-
tonomous parking

The core of direct trajectory planning method is to estab-

lish the relationship between an initial/final state pair and the

parking trajectory precisely. A neural network is proposed in

[5] to achieve this goal. However, training such a network

is computationally intensive since the action space increase
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exponentially over the time length of trajectories, and huge

amounts of data will be needed to make controller having

an acceptable performance. Moreover, this method failed to

learn general parking skill. Once the vehicle yaw dynamic

has change, the trajectory-steering mapping relationship will

be changed as well.

In this paper, we proposed a novel approach to tackle

problems existing in previous method. Inspired by human

drivers, our model will first gain a general understanding of

trajectory-steering mapping relationship regardless of vehicle

dynamic constraint, then learn the mapping relationship

between vehicle, trajectory and steering actions given data of

specific vehicle type. The model can be pre-trained on one

kind of vehicle, then perform parking actions on the other

kind of vehicles with additional few trainings. Combining

transfer learning and direct trajectory planning solution, our

new approach enables automated vehicles to master general

parking skills and adapt different vehicles with a few try-

and-tests.

We will illustrate the general idea of this method in Section

II, propose a feasible implementation in Section III, then

set up an experiment to test its performance in Section IV.

Finally, we briefly conclude the paper in Section V.

II. DIRECT TRAJECTORY PLANNING USING PARALLEL

LEARNING

Drivers make a lot efforts to learn driving at the beginning,

but can easily learn to drive different vehicles with similar

operating characteristics in different situations once they

master the skill. A plausible hypothesis of human driving

behaviour is that, the very beginning training built up a

general understanding of the relation between control actions

and its possible trajectories, then with the guidance of this

understanding, human drivers establish a mapping mecha-

nism of steering-possible trajectories for a specific vehicle

type with try-and-tests. In parking scenario, drivers predict

a trajectory according to target position first, then use the

mapping mechanism to find the optimal control action.

Inspired by the way human learn to drive, direct trajec-

tory planning methods were proposed to mimic this plan-

then-execute behavior pattern. Constrained by computational

power, previous work [5] used ideal model such as bicycle

model for trajectories sampling. Since the change of vehicle

dynamics, weather/road conditions, the number of passengers

and other factors can all affect the values of parameters

and thus influence the accuracy of the ideal model, previous

methods can only be used in limited circumstances, other-

wise the sampled and stored mapping relation will not hold

in practice.

With development of computational power, using data-

driven approach to deal with problems used to be handled

by model-based methods has become a trend in intelligent

vehicle field. However, traditional data-driven approaches are

extremely data hungry and not be general[6]. To enhance

the generality of direct trajectory planning solution without

severely constrained by the amount of the data, we apply

parallel learning technique on vanilla framework.

Parallel learning is a method first proposed in [7], which

combines data-driven approach with predictive learning and

transfer learning. By building a parallel system upon domain

knowledge and existing data, parallel learning methods can

learn from limited size of dataset without compromising the

performance of data-driven models.

Compared with model-based method, parallel learning is

easier to adapt the change of dynamics and environments.

Instead of making assumption on the actual dynamic models

and what factors may affect its behaviour, such methods

focus on the parameters that can be measured, make the best

guest about corresponding results depend on given dataset,

and continuously improve their performance by obtaining

records needed, just as human driver will do under limited

observation.

Another advantage of parallel learning is its transferability.

Since the dynamic of vehicles can be various for different

types or in different environments, the steering-trajectory

mapping relationship changed from time to time, and the

data collected can be outdated easily. Transfer learning[8]

can be beneficial in such cases. Given a source domain

DS and learning task TS, a target domain DT and learning

task TT , transfer learning aims to help improve the learning

of the target function fT (·) in DT using the knowledge in

DS and TS, where DS �= DT , or TS �= TT . We can refer the

trajectories under constraint of specific types of vehicles’

dynamic to DS, and the corresponding control actions to park

in given position and orientation to TS. Then DT and TT

is the trajectories and actions of other types of vehicles, or

vehicles under different environment. By forming knowledge

as neural network, parallel learning takes benefit from its

representation ability to gain a good transferability.

In the context of parking scenario context, we build a par-

allel system by distilling knowledge from actions-trajectories

pairs collected from both specific type of vehicle and a

theoretical model. The knowledge will be presented as the

structure of a generative model, who takes control sequence

as input and output the corresponding trajectory. Mixed data

generated from both actual and artificial system will be used

to update the initial knowledge, and a general parking skill

can then be drawn from it, which results in control actions

and corresponding trajectories. Such process will cycle until

it converges to attain an acceptable performance. See Fig. 2

for a visualization.

To implement this framework, we use a deep neural

network to learn the mapping relationship from velocity and

steering sequence to trajectories under complex dynamic

constraints, and try to generate trajectories corresponding

to actions that have not happened. Deep neural network

is a non-linear function approximator capable of modelling

complex dynamics in an end-to-end style without making

a strong assumption on the underlying models[9]. It also

exhibits a phenomenon that, it tends to learn first-layer

features in a very general way, while the features computed

by the last layers depend greatly on the chosen dataset and

task[10]. These features make it capable to build a general

parking model. The network will be first pre-trained on the
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Fig. 2. A parallel learning framework to solve parking problem

source domain, which has sufficient records, then transfer the

knowledge to the target type. Once the performance of the

network exceeds threshold, we can use actions-trajectories

pairs generated by the network to perform a feed-forward

control.

III. IMPLEMENTATION OF GENERAL PARKING MODEL

A. Vehicle Dynamics Variables and Trajectories Sampling

Without losing generality, we consider the parking prob-

lem of front steering vehicles. The parking problem of full

steering vehicles can be solved in a similar manner [1]. We

characterize vehicle’s dynamics, actions and corresponding

trajectory by the following variables listed in Table I

TABLE I

NOMENCLATURES USED TO DESCRIBE VEHICLE DYNAMICS

Symbol Meaning
X −Y The coordinate system

β Vehicle side slip angle which is between the heading of
the vehicle and the velocity

ψ The angle from the X-axis to the longitudinal axis of the
vehicle body AB.

r Yaw rate of the vehicle, r = ψ̇
δ f Front steering angle

δmax The maximum absolute value of the front steering angle
v The velocity of the vehicle
m Mass of the vehicle
I Inertial moment around the vertical axis through CG
l f Distance from point A and point CG
lr Distance from point B and point CG
l f o Front overhang, the lengths of vehicle which extend be-

yond the point A
lro Rear overhang, the lengths of vehicle which extend beyond

the point B
lw Overall width of vehicle
c f Stiffness coefficients of front tire
cr Stiffness coefficients of rear tire

We consider the situation of going forward only in this

paper, while going backward can be dealt with in a similar

manner [1]. Suppose a vehicle is operating on a flat surface,

the motion of the vehicle can be simplified as Fig. 3.

As shown in Fig. 3, reference point CG is the vehicle’s

center of mass, and its coordinate value (x,y) represents the

X

Y

f
l

rl

CG

r fv

Fig. 3. A simplified model of the front steering vehicle when vehicle going
forward

position of the vehicle. Velocity v is defined at the reference

point CG. Heading Angle ψ refers to the angle from the

X-axis to the longitudinal axis of the vehicle body AB. Slide-
slip Angle β is the angle from AB to the direction of the

vehicle velocity.

The origin of the coordinate system is set at the CG of the

vehicle at the initial time, and the direction of the positive

X-axis is assumed to point to the head of the vehicle.

To make the problem tractable for neural network, we

discretize the control variables δ f along the time axis. All the

possible parking trajectories could be generated by assigning

distinct steering sequences δ N
f = {δ f (1), . . . ,δ f (N)} for N

consequent time segments. During each time segment, the

steering angle is chosen from a preselected steering set Sδ =
{δ1,δ2, . . . ,δK} and remains constant within this segment,

K is the number of steering angles we considered, and for

all angles in Sδ has δi ∈ [−δmax,δmax]. Therefore, the control

action space is sampled into a set I consisting of KN steering

angle sequences as its elements.

Once a sufficient number of samples is obtained, a model

approximates the mapping relationship between actions and

trajectories can then be learned, then used to enumerate

allowable control sequences and corresponding trajectories.

B. Using Deep Neural Network to Learn General Parking

skill

A computational model is proposed to discover the in-

tricate structure underlying the relationship of vehicle dy-

namics, control actions and parking trajectories. The mean

component of this model is a deep neural network composed

of multiple processing layers. Since deep neural network

can learn representations of data with multiple levels of

abstraction [11], we take its advantage to distil a knowledge

of general relationship between steering actions and parking

trajectories, then specify it to fit the certain type of vehicle

and environment.

To achieve this purpose, a hierarchical generative model

is set. As visualized in Fig. 4, control sequences during

the parking trajectory will be fed into this model. The first

few layers which marked as general hidden layer(s), will

learn the general relationship between control actions and

trajectories, and generate a general trajectory corresponding

to given velocities and control actions. Then this trajectory
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will flow through another multiple layers network marked as

specific hidden layer(s) to generate a specific parking trajec-

tory under specific physical constrains of vehicle dynamics.

Control Actions

Of Vehicle B

Control Actions

Of Vehicle A

General Hidden Layers

Specific Hidden Layers Parking Trajectories

Of Vehicle A

Parking Trajectories

Of Vehicle B

Fig. 4. Structure of Neural Network used to generate trajectories

In Fig. 4, vehicle A refers to the source domain and vehicle

B the target domain. While source domain contains sufficient

records for the model to learn the relationship, the target

domain is what we are actually interested in yet lack of

sufficient data. We apply the transfer learning technique to

handle this issue. In initial stage, both general and specific

hidden layers will be trained by the actions-trajectories pair

of vehicle A, letting the neural network to obtain multiple

levels of abstraction about the mapping relationship. Specific

hidden layers will then be trained on data of vehicle B. The

output of the network is a generative trajectory corresponding

to the input action.

The performance of trajectory generative model are mea-

sured by the Euclid distance from the real position for gen-

erative coordinate and the rectilinear distance for generative

orientation. The objective function of the entire model is

L = γ1‖(X ,Y )− (X̃ ,Ỹ )‖2 + γ2‖Ψ− Ψ̃‖1 (1)

γ1,γ2 is loss weights used to specify relative importance of

generative coordinate and orientation accuracy. These hyper-

parameters may be varied under different setting.

Once the performance of the generative model exceeds the

threshold, we use it to enumerate all the possible trajectories

and store them to build the direct trajectory planning model,

since the relationship between optimal control actions and

parking destination is plain straight forward given generative

data.

C. Combining Feedback Control to deal with rare situation

Besides the feed-forward controller provided by deep

neural network, combining a feedback controller could be

helpful in this general parking solution under rare situation.

First, without evidence accumulation, cold start problem

may occur to the data-driven models. Relationship between

steering and trajectory for different types of vehicles under

some situations, such as extreme weather, might not happen

frequently and left sufficient data to train a usable model.

Therefore, the generative model cannot draw a solid infer-

ence in these rare circumstances and an expedient solution

will be needed. Another reason is due to the complexity of

the traffic scenario, the parking situation might change after

the trajectory has been planned. A feedback controller can

deal with minor change and avoid planning the trajectory

once more.

Such combination can be created in many ways. For

example, take the difference between the desired state and

the practical state in every moment as the negative feedback

signal and the planned input steering sequence given by

an imperfect model as the feed-forward signal, an adjusted

steering angle sequence can be obtained to make the practical

trajectory overlap the planned trajectory as much as possible.

Adjustments and adjusted trajectories will back propagate to

generator and controller neural networks for further training.

Given steering sequence û send by neural network, the

control signal u = {δ1,δ2, . . . ,δn} can be calculated by (2)

u = û− γ ·K(x− x̂) (2)

where K is the feedback matrix and γ the weight of feedback

control signal.

Given control signal u, system state x= [X ,Y,ψ] is the real

parking trajectory of vehicle corresponding to control actions

while x′ is the trajectory generated by generative model. The

real actions-trajectories pairs < u,x > will be feedback to

controller for a more precise control, and prediction error

e = x′ − x will be used to modify the generative model’s

weights for a better prediction.

By assigning proper feedback matrix K, we can guarantee

the practical stability (convergence to a bounded error) of

the tracking error [12]. Ensemble such a feedback control

with deep neural network and decay the weight of it with

the increasing of network’s performance, a smooth control

can be performed to deal with the rare situation. Since how

to design such a feedback control does not fit with the main

theme of this paper, we do not further discuss it here.

IV. SIMULATION EXPERIMENTS

We set up a numerical simulation to exam our methods.

By using a simplified model of vehicle dynamic, we simulate

parking scenarios met by an autonomous vehicle and test the

convergence speed of our model respect to the size of dataset.

The stability and accuracy of such model are examined as

well.

A. Experimental Setup

We adopted the well-known bicycle model [13] to generate

parking trajectories for the following experiment. It should

be noticed, though there exists non-linear dynamics that

cannot be accurately modelled by bicycle model as pointed

out in [14], such simplification will not compromise our

model’s ability since it does not rely on the theoretical

model describing the parking trajectories. Provided enough

data which roughly reflect the nature of vehicle motion, this

novel approach can update and eventually have a satisfactory

performance on guiding vehicle parking.

Parameters of bicycle model are selected from two com-

mon types of vehicles, where vehicle type A is sedan and
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type B is SUV. Lateral/yaw dynamics of a typical model for

each type are listed in Table II.

TABLE II

FEATURES OF TYPICAL VEHICLE MODELS

Type A Type B
l f (mm) 1108 1003.2
lr(mm) 1662 1638.8
l f o(mm) 960 870
lro(mm) 1080 750
lw(mm) 1820 1780
m(kg) 1441 1424
c f (N/rad) 75000 75000
cr(N/rad) 78000 75000

I(kg.m2) 2200 2200

For presentation simplicity, we only consider the case that

the vehicle keeps v = 1m/s throughout the whole parking

process, and the parking behavior of the vehicle must be

accomplished in 12s, which is uniformly divided into 4

segments. So the time interval in each segment is 3s.
The steering angles are selected from the set Sδ =

{−0.6,−0.4,−0.2,0,0.2,0.4,0.6}. Setting N = 4 and K = 7,

we can generate 74 = 2401 trajectories for each type, as

shown in Fig. 5
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y
(m

) start point

Vehicle Type A

5 0 5 10 15

x(m)

start point

Vehicle Type B

Fig. 5. Trajectories of different type vehicle. To make the plot clear, only
about 1/10 of the generated 2401 trajectories are drawn;

Fig. 6 shows a sampled trajectory with steering sequence

δ 4
f = {0.6,0.6,0.4,0.6}. With same control actions, the dif-

ference of vehicle dynamics results in different trajectories.

The neural network we set up in this experiment takes

a vector consists of {v1,v2, . . . ,vt} and {δ1,δ2, . . . ,δt}
as input, where t = 4 is the length of time segments.

One hidden layers consists of 120 Rectified Linear Unit

(ReLU)[15] served as general hidden layer, followed by

two layers with same structure as specific hidden layers.

The output of network is corresponding trajectory, decom-

posed into (X̃ ,Ỹ ) = {(x̃1, ỹ1),(x̃2, ỹ2), . . . ,(x̃t , ỹt)} and Ψ̃ =
{ψ̃1, ψ̃2, . . . , ψ̃t}. Since most parking space in the city is

2.5m× 5m, the error should be less than 0.2m around the

ending position of generative trajectories.
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Fig. 6. Example of different types of vehicles’ trajectories

We use stochastic gradient descent(SGD) to optimize the

network. The learning rate α is set to 0.1, and decays 1e−6

in every epoch. Gradients will be clipped to a maximum

value of 1 and a minimum value of −1 to prevent gra-

dient explosion. It should be pointed out that, using fine-

tuned hyper-parameters with SGD or other methods such as

adaptive moment estimation(Adam)[16] can achieve a better

result. The setting in our paper is mainly for reproducibility

and serves as a baseline.

To examine the performance of such method, we compare

transferred deep neural network(TDNN) described in Section

III.B with two other models. Both of them have the same

structure, but the layers’ functionalities are different. One

is a pre-trained network(PDNN) with three specific layers

and pre-trained on vehicle type A, another is a normal

network(DNN) with the same structure as PDNN but without

pre-trained.

Three networks will be trained on the control-trajectory

pairs of vehicle type B. For each training epoch, the data

size obtained by the network is constrained to 1, and this

trajectory is sampled uniformly from all possible situations.

This constraint simulates the actual driving environment,

where drivers will perform specific parking actions only a

few times a day. In such situation, the model can only sample

very limited size of data from the target domain.

B. Results and Discussion

Models’ performances are evaluated by the accuracy of

trajectories they generate given all possible steering se-

quences. The mean and standard deviation values of pre-

diction errors made by each network are shown in Fig. 7.

It can be found that, pre-trained on vehicle type A will

improve models’ performance on vehicle type B, letting

both TDNN and PDNN have lower mean prediction er-

rors compared than DNN. However, without general hidden

layers, PDNN is more sensitive to the randomness brought

by actions-trajectories pair sampling compared with TDNN.

Though PDNN has met the same amount of data as TDNN,

its final performance is still inferior to TDNN.

Such results point out the difference between data aug-

mentation and transfer learning, that without a constrained

on layers’ functionality, the underlying knowledge may not
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be learned. The general hidden layers, transferring general

parking knowledge and served as a generalization, make

TDNN attain an acceptable level of performance with a tiny

fraction of target domain data, and perform more accurate

and stable. A detailed plot of a sampled trajectory generated

by different models is shown in Fig. 8. It indicates that,

combining with parallel learning, deep neural network can

generate higher accurate trajectories than other methods.
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Fig. 8. Example of Trajectories generated by different models

We can use this deep neural network to enumerate all the

possible parking trajectories that a vehicle can make in high

resolution and learn to set up a direct mapping from any

initial/final state pair to the corresponding steering action.

V. CONCLUSIONS

In this paper, we address the parking control problem by

combining direct trajectory planning method with parallel

learning. Based on the study of the reference vehicle and its

trajectories corresponding to control actions, a deep neural

network learns the general relationships between operations

and movements. With acquaintance of this knowledge, park-

ing trajectories of all possible steering actions in various

vehicles can be generated, then refined as a general parking

skill.

Tests prove the high reliability and efficiency of proposed

method. In addition, unlike classic models such as the bicycle

model, the generative model used in this method can be

updated in its entire life, or forming a collective intelligence

by sharing weights with similar models, which possesses a

good application prospect in the Internet of Vehicle field.

To the best of our knowledge, this is the first attempt

to apply parallel learning and transfer learning trick in

intelligent vehicle motion control field. It brings new hope to

build more intelligent automated vehicles so as to implement

more difficult tasks.
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