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An ACP-Based Approach to Intelligence
and Security Informatics

Fei-Yue Wang, Xiaochen Li and Wenji Mao

1 Introduction

The field of Intelligence and security informatics (ISI) is resulted from the integration
and development of advanced information technologies, systems, algorithms, and
databases for international, national, and homeland security-related applications,
through an integrated technological, organizational, and policy-based approach [2].
Traditionally, ISI research and applications have focused on information sharing
and data mining, social network analysis, infrastructure protection, and emergency
responses for security informatics. Recent years, with the continuous advance of
related technologies and the increasing sophistication of national and international
security, new directions in ISI research and applications have emerged that address
the research challenges with advanced technologies, especially the advancements in
social computing. This is the focus of discussion in the current chapter.

As a new paradigm of computing and technology development, social comput-
ing can help us understand and analyze individual and organizational behavior and
facilitate ISI research and applications in many aspects. To meet the challenges
and achieve a methodology shift in ISI research and applications, in this chapter, we
shall propose a social computing-based research paradigm consisting of a three-stage
modeling, analysis, and control approach that researchers have used successfully to
solve many natural and engineering science problems, namely the ACP (Artificial
societies, Computational experiments and Parallel execution) approach [10–14].
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Based on the ACP approach, in this chapter, we shall focus on behavioral model-
ing, analysis and prediction in security informatics. We shall first present a knowledge
extraction approach to acquire behavioral knowledge from open-source intelligence
and facilitate behavioral modeling. On the basis of behavioral modeling, we shall
then present two approaches to group behavior prediction. The first approach employs
plan-based inference and explicitly takes the observed agents preferences into con-
sideration. The second approach employs graph theory and incorporates a graph
search algorithm to forecast complex group behavior. We finally provide the results
of experimental studies to demonstrate the effectiveness of our proposed methods.

2 The ACP Approach

The ACP approach [10–14] is composed of three interconnected parts: artificial
societies for modeling, computational experiments for analysis and parallel execution
for control. We shall discuss them in detail below.

2.1 Modeling with Artificial Societies

In the literature, there are no effective formal methods to model complex social-
techno systems, especially those heavily involving human and social behavior. The
ACP framework posits that agent-based artificial societies are the most suitable mod-
eling approach to social modeling and social computing. An artificial society-based
approach has three main components: agents, environments, and rules for interac-
tions. In this modeling approach, how accurately the actual system can be approx-
imated is no longer the only objective of modeling, as it is the case in traditional
computer simulations. Instead, the artificial society developed is considered as an
actual systemłan alternative possible realization of the target society. Along this line
of thinking, the actual society is also considered as one possible realization. As such,
the behaviors of the two societies, the actual and the artificial, are different but fit dif-
ferent evaluation and analysis purposes. Note that approximation with high fidelity
is still the desired goal for many applications when it is achievable but can be relaxed
otherwise, representing a necessary compromise that recognizes intrinsic limits and
constraints of dealing with complex social-techno-behavioral systems.

2.2 Analysis with Computational Experiments

Traditional social studies primarily rely on passive observations, small-scale human
subject experimental studies, and more recently computer simulations. Repeatable
experiments are very difficult to conduct, due to a number of reasons including
but not limited to research ethics, resource constraints, uncontrollable conditions,
and unobservable factors. Artificial societies can help alleviate some of these prob-
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lems. Using artificial societies as social laboratories, we can design and conduct
controllable experiments that are easy to manipulate and repeat. Through agent and
environmental setups and interaction rule designs, one can evaluate and quantita-
tively analyze various factors and what-if scenarios in social-computing problems.
These artificial society-based computational experiments are a natural extension to
traditional computer simulation. Basic experimental design issues related to model
calibration, analysis, and verification need to be addressed. Furthermore, design prin-
ciples such as replication, randomization, and blocking, guide these computational
experiments just as they would guide experiments in the physical world.

2.3 Control and Management Through Parallel Execution

Parallel execution refers to the fact that long-lived artificial systems can run in par-
allel and co-evolve with the actual systems they model. This is a generalization of
controllers as used in classical automation sciences, which use analytical models
to drive targeted physical processes to desired states. This parallel execution idea
provides a powerful mechanism for the control and management of complex social
systems through co-evolution of actual and artificial systems. The entire system of
systems can have three major modes of operations. In the learning and training mode,
the actual and artificial systems are disconnected. The artificial systems can be used
to train personnel. In the experimenting and evaluating mode, connections or syncing
between the actual and artificial systems take place in discrete times. Computational
experiments can be conducted between these syncs, evaluating various policies. In
the controlling and managing mode, the artificial systems are used as the generalized
controllers of the actual systems with two systems constantly connected. Social com-
puting applications, especially those involving security, control and management of
social activities, can benefit directly from parallel execution.

3 Modeling Organizational Behavior

Action knowledge has been widely used in modeling and reasoning about agent’s
behavior. Action knowledge is typically represented using plan representation, which
includes domain actions and the states causally associated with the actions (i.e., action
preconditions and effects) [3]. Action precondition is the condition that must be made
true before action execution. Action effect is the state achieved after action execution.
Since action knowledge is the prerequisite of various security-related applications
in behavior modeling, explanation, recognition and prediction, in this section, we
present a knowledge extraction approach to acquire action knowledge, making use
of the massive online data sources. The action extraction procedure includes action
data collection, raw action extraction and action refinement [7]. Below we introduce
the automatic extraction of action preconditions and effects from online data.
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3.1 Extracting Action Knowledge from the Web

Extracting causal relations has been studied in previous related research (e.g.,
[4, 6, 8]). The focus of our work is different from those of previous research in
two aspects. First, instead of finding general causal relations between two clauses
or noun phrases, our focus is to find the causal relations between actions and states
C action knowledge for behavioral modeling. Second, we need to acquire richer
knowledge types C not only causal relations, but also goals, reasons and conditions
associated with the actions. Sil et al. [9] propose a SVM-based approach to build
classifiers for identifying action preconditions and effects. As their work only tests a
small number of actions all selected from one frame in FrameNet, and all the actions
are treated as single verbs, the performance of their approach in complex and open
domain is unclear.

In extracting action preconditions, we differentiate several types of precondition:
necessity/need, permission/possibility and means/tools. We classify the patterns into
four categories based on their types and polarities. Tables 1 and 2 shows the linguistic
patterns we design for extracting action preconditions and effects. To ensure the
quality of the extracted causal knowledge, we prefer rule-based approach which can
achieve relatively high precision. On the other hand, as our work is based on the
open source data, recall rate could be compensated by the huge volume of online
resources.

3.2 Computational Experiment on Terrorist Organization

As a great amount of reports about this group and its historical events are available
online, we employ computational methods to automatically extract group actions
and causal knowledge from relevant open source textual data. The textual data
we use are the news about Al-Qaeda reported in The Times, BBC, USA TODAY,
The New York Times and The Guardian, with totally 953,663 sentences.

Among the official investigation reports, 13 real attacks perpetrated by Al −
Qaeda have relatively complete descriptions. Intelligence analyst helped us manu-
ally compose the action knowledge of each attack based on these descriptions, and
these form the basis of our experiment. We evaluate the performance of our method
by checking how many actions and states specified in each attack example are already
covered by the domain actions and causal knowledge we extract. Table 3 shows the
results of the experimental study. The average coverage rates of the actions, pre-
conditions, effects and states (preconditions plus effects) are 85.8, 74.1, 78.7 and
75.6 %, respectively. In general, the experimental results verify the effectiveness of
our approach.

After action knowledge acquisition, we collect organizational behavior knowledge
with quality. Based on the action knowledge we collect, we further employ planning
algorithm to generate attack plans about this group and construct the plan library
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Table 3 Experimental results on causal knowledge and action extraction

Attack example Action converge Precondition converge Effect converge State converge

1 0.833 0.818 0.833 0.824

2 0.800 0.778 0.800 0.786

3 0.900 0.727 0.900 0.781

4 0.889 0.737 0.778 0.750

5 0.857 0.733 0.714 0.727

6 0.833 0.727 0.833 0.765

7 0.875 0.765 0.750 0.760

8 0.833 0.667 0.833 0.722

9 0.889 0.684 0.889 0.750

10 0.900 0.800 0.800 0.800

11 0.857 0.750 0.714 0.739

12 0.857 0.692 0.714 0.700

13 0.833 0.750 0.667 0.722

Average 0.858 0.741 0.787 0.756

[7]. Plan library represents the groups strategic plans and behavioral patterns, which
are the key of organizational behavior modeling. Below is an example plan in this
groups plan library (The rectangles denote actions and the rounded rectangles denote
preconditions and effects).

4 Forecasting Group Behavior via Plan Inference

Group behavior prediction is an emergent research and application field in intelli-
gence and security informatics, which studies computational methods for the auto-
mated prediction of what a group might do. As many security-related applications
could benefit from forecasting an entitys behavior for decision making, assessment
and training, it is gaining increasing attention in recent years. Recent progress has
made it possible to automatically extract plan knowledge (i.e., actions, their pre-
conditions and effects) from online raw textual data and construct group plans by
means of planning algorithm, albeit in the restrictive security informatics domain
(see Sect. 3). On the basis of this, we present two plan-based approaches to group
behavior forecasting in this section. The first approach is based on probabilistic plan
inference, and the second approach is aimed at forecasting complex group behavior
via multiple plan recognition (Fig. 1).
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Fig. 1 An example strategic plan of the group

4.1 The Probabilistic Plan Inference Approach

Plan representations are used by many intelligent systems. In a probabilistic plan
representation, the likelihood of states is represented by probability values. To rep-
resent the success and failure of action execution, we use execution probability
Pexecution to represent the likelihood of successful action execution given action
preconditions are true. An action effect can be nondeterministic and/or conditional
nondeterministic. We use effect probability Peffect to represent the likelihood of the
occurrence of an action effect given the corresponding action is successfully exe-
cuted, and conditional probability Pconditional to represent the likelihood of the occur-
rence of its consequent given a conditional effect and its antecedents are true. The
desirability of action effects (i.e., their positive/negative significance to an agent) is
represented by utility values. Outcomes are those action effects with non-zero utility
values. We use expected utility (EU ) to represent the overall benefit or disadvantage
of a plan.
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Our approach is based on the fundamental M EU (maximum expected utility)
principle underlying decision theory, which assumes that a rational agent will adopt
a plan maximizing the expected utility. The computation of expected plan utility
captures two important factors. One is the desirability of plan outcomes. The other is
the likelihood of outcome occurrence, represented as outcome probability. We use the
observed evidence to incrementally update state probabilities and the probabilities
of action execution. The computation process is realized through recursively using
plan knowledge represented in plans.

4.1.1 Probability of States

Let E be the evidence. If state x is observed, the probability of x given E is 1.0.
Observations of actions change the probabilities of states. If action A is observed
executing, the probability of each precondition of A should be 1.0, and the proba-
bility of each effect of A is the multiplication of its execution probability and effect
probability. If A has conditional effects, the probability of a consequent of a condi-
tional effect of A is the product of its execution probability, conditional probability
and the probabilities of each antecedent of the conditional effect.

• IF x ∈ precondition(A), P(x |E) = 1.0
• IF x ∈ e f f ect (A), P(x |E) = Pexecution(A|precondition(A)) × Pef f ect (x |A)

• IF x ∈ consequent (e) ∧ e ∈ conditional − e f f ect (A),
P(x |E) = Pexecution(A|precondition(A))×Pconditional(x |antecedent (e), e)×∏

e′ ∈antecedent (e) P(e
′ |E)

Otherwise, the probability of x given E is equal to the prior probability of x .

4.1.2 Probability of Action Execution

If an action A is observed executed, the probability of successful execution of A given
E is 1.0, that is, P(A|E) = 1.0. If A is observed executing, P(A|E) equals to its
execution probability. Otherwise, the probability of successful execution of A given
E is computed by multiplying the execution probability of A and the probabilities
of each action precondition.

P(A|E) = Pexecution(A|precondition(A)) ×
∏

e∈precondition(A)

P(e|E)

4.1.3 Outcome Probability and Expected Utility of Actions

The probability changes of action execution impact the calculation of outcome prob-
abilities and expected utilities of actions. Let OA be the outcome set of action A,
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and outcome oi ∈ OA. The probability of oi given E is computed by multiplying
the probability of executing A and the effect probability of oi .

Paction(oi |E) = P(A|E) × Pef f ect (oi |A)

4.1.4 Outcome Probability of Plans and Expected Plan Utility

Let OP be the outcome set of plan P , and outcome o j ∈ OP . Let {A1, ..., Ak} be the
partially ordered action set in P leading to o j , where o j is an action effect of Ak . The
probability of o j given E is computed by multiplying the probabilities of executing
each action leading to o j and the effect probability of o j (Note that P(Ai |E) is
computed according to the partial order of Ai in P).

Pplan(o j |E) = (
∏

i=1,...,k

P(Ai |E)) × Pef f ect (o j |Ak)

The expected utility of P given E is computed using the utilities of each plan
outcome in P and the probabilities with which each outcome occurs.

EU (P|E) =
∑

o j ∈OP

(Pplan(o j |E) × Utili t y(o j ))

4.2 The Multiple Plan Recognition Approach

In real-world situations, a group often engages in complex behavior and may pursue
multiple plans/goals simultaneously. These complex group behaviors can hardly
be captured by conventional plan inference approaches as they often assume that
an agent only commits to one plan at a time. To achieve complex group behavior
forecasting, we propose a novel multiple plan recognition approach in this section.

From a computational perspective, multiple plan recognition poses great chal-
lenge. For observed group actions, the hypothesis space of multiple plan recognition
turns out to be rather huge and the computational complexity is extremely high. To
address the challenge, our approach consider using searching techniques to efficiently
find the best explanation. Intuitively, if we view the actions of plans as vertexes and
links between actions as edges, we can convert plans into a graph. We intend to
map multiple plan recognition into a graph theory problem and adopt graph search
techniques to find a near best explanation.

Below we first give the problem definition and represent the hypothesis space
of input observations as a directed graph (i.e. explanation graph). We then describe
how to compute the probability of an explanation. We finally present an algorithm
for finding the best explanation.



An ACP-Based Approach to Intelligence and Security Informatics 79

4.2.1 Problem Definition

Our approach adopts the hierarchical plan representation. A hierarchical plan library,
P L , is a set of hierarchical partial plans. Each partial plan is composed of abstract
and/or primitive actions. The actions in the partial plan form a tree-like structure,
where an abstract action corresponds to an AN D node (i.e., there exists only one
way of decomposition) or an O R node (i.e., multiple ways of decomposition exist)
in the plan structure. At an AN D node, each child is decomposed from its parent
with decomposition probability 1. At an O R node, each child is a specialization of
its parent. The sum of specialization probabilities of each child is 1.

For each observation, it can be either a primitive action or a state. Given a plan
library, an explanation, SEi , for a single observation, Oi , is an action sequence
starting from a top-level goal, G0, to Oi : SEi = {G0, SG1, SG2, ..., SGm, Oi },
where SG1, SG2,..., and SGm are a set of abstract actions. There can be multiple
explanations for a single observation. An explanation, E j , for an observation set
O = {O1, O2, ..., On} is defined as E j = SE1 ∪ SE2 ∪ ... ∪ SEn , where SEi is an
explanation for the single observation Oi . If SE1 = SE2 = ... = SEn , the explana-
tion E j corresponds to a single plan. Otherwise it corresponds to multiple plans.

We define the multiple plan recognition problem as follows. Given a hierarchical
plan library P L and an observation set O , the task of multiple plan recognition is to
find the most likely explanation (best explanation), Emax , from the explanation set,
E , for O

Emax = argmax
Ei ∈E

P(Ei |O)

4.2.2 Constructing Explanation Graph

Given a set of observed actions and a plan library, the procedure of constructing
explanation graph is as follows:

Step 1. Construct an explanation graph EG which is an empty graph and add all
observations to the bottom level of EG.

Step 2. Expand the parents of each observation following a breadth-first strategy
and add these parents to EG. Decomposition/specialization links between actions are
treated as directed edges and are also added to EG. The direction of the edges denotes
decomposition or specialization relation. A decomposition/specialization probability
is attached to each edge. Duplicate actions and edges are combined during expansion.

Step 3. Apply this breadth-first expansion strategy on EG until all the actions in
EG are expanded.

Step 4. Then add a dummy node on the top of the graph and connect the dummy
node to all the top-level goals. The edges from the dummy node to top-level goals
are associated with the prior probabilities of each top-level goal.

Now our approach constructs an explanation graph which contains all the possible
explanations for the given observed actions.
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Fig. 2 Illustration of an
explanation graph
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Figure 2 is an explanation graph for the observed actions A1, A2 and A3. It is
a directed graph with bold lines denoting an explanation. The symbols P1, P2,...,
P16 denote the decomposition/specialization probabilities associated with edges. An
explanation corresponds to a connected sub-graph in the explanation graph contain-
ing the dummy node, top-level goals, sub-goals, and all the observations. In the
explanation, the nodes with input degree 1 correspond to observations.

Here we define an explanation for an observation set as a tree in an explanation
graph, in which the root is a dummy node and the leaves are all the observations.
The tree exactly specifies an explanation for each observation.

4.2.3 Computing the Probability of an Explanation

Let O1:i = {O1, O2, ..., Oi } be observed actions, the probability of an explanation
E j is computed as

P(E j |O1:i ) = P(E j , O1:i )|P(O1:i ) = P(O1:i |E j )P(E j )|P(O1:i )

As 1/P(O1:i ) is a constant for each explanation, we denote it as K . P(O1:i |E j ) is
the probability that O1:i occurs given the explanation E j and is 1 for all hypotheses.
P(E j ) is the prior probability of T H explanation, i.e., the probability of entire tree
of the explanation graph. For explanation E j , let G1:m = {G1, ..., Gm} be top-level
goals and SG1:n = {SG1, ..., SGn} be sub-goals. We denote the vertex set of the tree
E j as V = dummy ∪ G1:m ∪ SG1:n ∪ O1:i . Let E = {e1 = dummy → G1, ..., es =
SGx → SG y, ..., et = SGz → Oi } be the set of edges of E j , where 1 ≤ x , y,
z ≤ n and 1 ≤ s ≤ t . Here we assume the decomposition of each action is directly
influenced by its parent node. The prior probability of the explanation E j is
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P(E j ) = P(V |E)

= P(Oi , et |V/Oi , E/et ) ∗ P(V/Oi , E/et )

= P(et ) ∗ P(V/Oi , E/et )

= ... = P(dummy) ∗
∏

edge∈E

P(edge)

P(Oi , et |V/Oi , E/et ) is the conditional probability that the decomposition rule,
et , activates and Oi is decomposed given the tree (V/Oi , E/et ). This is equal to
P(et = SGz → Oi ) according to our decomposition assumption. In addition,
P(edge) is the probability of the edge in the explanation and P(dummy) is the
prior probability that an observed agent will pursue goals. This is constant for each
explanation.

4.2.4 Finding the Best Explanation

Now the problem of finding the best explanation can be formulated as

Emax = argmax P(O1:i |E j )P(E j )|P(O1:i )

= argmax
E j ∈E

∏

edgei ∈E j

P(edgei )

= argmax
E j ∈E

∑

edgei ∈E j

ln(P(edgei ))

= argmax
E j ∈E

∑

edgei ∈E j

ln(P(
1

edgei
))

where P(edgei ) is the decomposition probability associated with edgei . We denote
ln(1/P(edgei )) as the weight of edgei . As 0 < P(edgei) < 1, we get ln(1/P
(edgei )) > 0. For explanation graph EG, we attach the weight ln(1/P(e)) to each
edge e ∈ EG (where P(e) is the probability on edge e) and then we can convert
an explanation graph to a directed weighted graph. Now the problem of finding the
most likely explanation is reformulated as finding a minimum weighted tree in the
explanation graph with the dummy node as the root and observations as leaf nodes.

Finding a minimum weight tree in a directed graph is known as the directed
Steiner tree problem in graph theory [1, 15]. It is defined as follows: given a directed
graph, G = (V, E), with weights, w(w0), on the edges, a set of terminals, S ⊆ V ,
and a root vertex, r , find a minimum weight tree, T , rooted at r , such that all the
vertices in S are included in T . A number of algorithms have been developed to solve
this problem. In our approach, we employ an approximation algorithm proposed by
Charikar et al. [1].
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4.3 Computational Experiments

4.3.1 Experimental Study 1

We still choose Al − Qaeda as the representative realistic group for our study.
Among the official investigation reports, 13 real attacks perpetrated by Al − Qaeda
have relatively complete descriptions. Based on our automatically generated plans,
intelligence analyst helped choose 13 plans that match the reported real attacks.
These plans form the plan library for our experimental study. We randomly generate
a set of evidence using the combination of actions and initial world states in the plan
library, and collect 95 lines of evidence. Each line contains either two observations
(constituting 49 % of the evidence set) or three observations (constituting 51 % of
the evidence set).

Four human raters experienced in security informatics participate in the experi-
ment. According to the plan library we construct, each rater examined the evidence
set line by line and predicted the most likely plans based on each line of evidence.
The test set is composed of each raters predictions together with the corresponding
evidence, with inter-rater agreement (K appa) 0.764. The prior state probabilities,
action execution probabilities and effect probabilities used by our approach (less than
100 items in total) were assigned by intelligence analyst. The intelligence analyst
also assigned prior and conditional probabilities for Bayesian reasoning. Mapping
plans to Bayesian networks is based on the generic method provided in [5].

Table 4 shows the experimental results using our approach and Bayesian reason-
ing. We measure the agreement of the probabilistic plan inference approach and each
rater using the K appa statistic. The average agreements between our approach and
human raters are 0.664 (for two observations) and 0.773 (for three observations),
which significantly outperform the average agreements between Bayesian reasoning
and the raters. As 0.6 < k < 0.8 indicates substantial agreement, the empirical
results show good consistency between the predictions generated by our approach
and those of human raters.

4.3.2 Experimental Study 2

We still choose Al − Qaeda as a representative group. Based on our previous work
[7], we automatically extract group actions and construct group plans from relevant
open source News (e.g., T imes Online and U S AT O D AY ). Domain experts helped
connect the hierarchical partial plans in the plan library. The plan library we use for
this experiment includes 10 top-level goals and 35 primitive and abstract actions (we
allow primitive/abstract actions to appear in multiple plans). Although large numbers
of plans are computationally feasible by our approach, we prefer a relatively small
and realistic plan library so that it is tractable by human raters in the experiment.
Figure 3 illustrates the plan structure for a top-level goal in the plan library.
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Fig. 3 Plan structure for a top-level goal in the plan library

Table 5 Agreements between MPR algorithm and human raters for various observations (obs.)

Rater P(A) K

2 obs. 3 obs. 4 obs. 2 obs. 3 obs. 4 obs.

1 0.967 0.932 0.899 0.961 0.908 0.874

2 0.978 0.913 0.869 0.974 0.887 0.837

3 0.956 0.917 0.859 0.949 0.891 0.830

4 0.906 0.924 0.902 0.856 0.899 0.877

5 0.838 0.895 0.878 0.765 0.866 0.847

We randomly generate a number of observation sets using the combination of
primitive actions in the plan library. We collect 90 lines of observation sets in total,
each line corresponding to one observation set. Among them, 30 observation sets
contain two observations each, 30 contain three observations each and 30 contain
four observations each. Five human raters who have at least 3 years experience in the
security informatics domain participated in the experiment. Based on the constructed
plan library, each rater examined the observation sets one by one and predicted the
most likely plans (single plan or multiple plans) based on each observation set.
The test set is composed of each raters predictions together with corresponding
observations (with inter-rater agreement of 0.88).

Table 5 shows the experimental results between the multiple plan recognition
approach and each human rater. We measure the agreement of the results generated
by our approach and those of the raters for two, three and four observations using
precision, P(A), and Kappa statistics, K . The agreements between our approach and
human raters for two observations, three observations, and four observations are all
above 0.8, thus the empirical results show good consistency between the predictions
generated by our M P R approach and those of human raters.
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5 Conclusion

In this chapter, we propose an ACP-based approach for behavioral modeling, analysis
and prediction in security informatics. To facilitate behavioral modeling, we present
a knowledge extraction approach to acquire behavioral knowledge from open-source
intelligence. On the basis of behavioral modeling, we propose two plan inference
approaches for group behavior forecasting. The first explicitly takes the observed
agents preferences into consideration to infer the most likely plan of groups. The
second employs a graph search algorithm to discover multiple intentions underlying
complex group behavior. Experimental results to demonstrate the effectiveness of
these computational methods we propose as well as the underlying ACP approach.
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