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 
Abstract— As an important safety critical cyber-physical 

system (CPS), the braking system is essential to the safe operation 
of the electric vehicle. Accurate estimation of the brake pressure is 
of great importance for automotive CPS design and control. In 
this paper, a novel probabilistic estimation method of brake 
pressure is developed for electrified vehicles based on multilayer 
Artificial Neural Networks (ANN) with Levenberg-Marquardt 
Backpropagation (LMBP) training algorithm. Firstly, the 
high-level architecture of the proposed multilayer ANN for brake 
pressure estimation is illustrated. Then, the standard 
backpropagation (BP) algorithm used for training of the 
feed-forward neural network (FFNN) is introduced. Based on the 
basic concept of backpropagation, a more efficient training 
algorithm of LMBP method is proposed. Next, real vehicle testing 
is carried out on a chassis dynamometer under standard driving 
cycles. Experimental data of the vehicle and the powertrain 
systems are collected, and feature vectors for FFNN training 
collection are selected. Finally, the developed multilayer ANN is 
trained using the measured vehicle data, and the performance of 
the brake pressure estimation is evaluated and compared with 
other available learning methods. Experimental results validate 
the feasibility and accuracy of the proposed ANN-based method 
for braking pressure estimation under real deceleration scenarios.  
 

Index Terms— Cyber-Physical System, Safety Critical System, 
Artificial Neural Networks, LMBP, Brake Pressure Estimation, 
Electric Vehicle. 
 

I. INTRODUCTION 

YBER physical systems, which are distributed, networked 
systems that fuse computational processes with the 

physical world exhibiting a multidisciplinary nature, have 
recently become a research focus [1-4]. As a typical application 
of CPS in green transportation, electric vehicles have been 
widely studied with different topics by researchers and 

 
 

engineers from academia, industry and governmental 
organizations [5-11]. In an electric vehicle (EV), the cyber 
world of control and communication, the physical plant of 
electric powertrain, the human driver, and the driving 
environment, are tightly coupled and dynamically interacted, 
determining the overall system’s performance jointly [12]. 
These complex subsystems with multi-disciplinary 
interactions, strong uncertainties, and hard nonlinearities make 
the estimation, control and optimization of electric vehicles 
very difficult [13]. Thus, there are still a number of 
fundamental issues and critical challenges varying in their 
importance from convenience to safety of EV remained open 
[14-17]. 

Among all those concerns in EV CPS, a key one is safety. 
Safety critical systems are those ones whose failure or 
malfunction may result in serious injury or severe damage to 
people, equipment, or environment [18]. As one of the most 
important safety critical systems in EV, the correct functioning 
of braking system is essential to the safe operation of the 
vehicle [19]. There are a variety of safety standards, control 
algorithms, and developed devices helping guarantee braking 
safety for current EVs.  However, with increasing degrees of 
electrification, control authority and autonomy of automotive 
CPS, safety critical functions of braking system are also 
required to evolve to keep pace [20].  

In the braking system of a passenger car, the braking torque 
is generated by the hydraulic pressure applied in the brake 
cylinder. Thus, the accurate measurement of the brake pressure 
through a pressure sensor is of great importance for various 
braking control functions and chassis stability logics. However, 
failures of the brake pressure measurement, which may be 
caused by software discrepancies or hardware problems, could 
result in vehicle’s critical safety issues. Thus, high-precision 
estimation of brake pressure become a hot research area in 
automotive CPS design and control. Moreover, in order to 
handle the trade-offs between performance and cost, 
sensor-less observation is required. This makes the study of 
brake pressure estimation highly motivated. 

Based on advanced theories and algorithms from the aspect 
of control engineering, observation methods of braking 
pressure for vehicles have been investigated by researchers 
worldwide. In [21], a recursive least square algorithm for 
estimation of brake cylinder pressure was proposed based on 
the pressure response characteristics of anti-lock braking 
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Fig. 1  High-level architecture of the proposed brake pressure estimation algorithm based on multilayer Artificial Neural Networks. 

system (ABS). In [22], an extended-kalman-filter-based 
estimation algorithm was developed considering hydraulic 
model and tyre dynamics. In [23], an algorithm for online 
observation of brake pressure was designed through a 
developed inverse model, and the algorithm was verified in the 
vehicle’s electronic stability program. In [24], the models of 
brake pressure increase, decrease and hold are proposed, 
respectively, by using the experimental data. And the models 
can be used for fast online observation of hydraulic brake 
pressure. In [25], a brake pressure estimation algorithm was 
proposed for ABS considering the hydraulic fluid 
characteristics. In [26], the estimation algorithm was performed 
by calculating the volume of fluid flowing through the valve. 
The amount of fluid is a function of the pressure differential 
across the valve and the actuation time of the valve. 
Nevertheless, the existing research on brake pressure 
estimation was mainly investigated from the perspective of 
control engineering, and an approach with the probabilistic 
method, such as machine learning, has rarely been seen. 

In this paper, an Artificial-Neural-Network-based estimation 
method is studied for accurately observing the brake pressure of 
an electric passenger car. The main contribution of this work 
lies in the following aspects: 1) an ANN-based machine 
learning framework is proposed to quantitatively estimate the 
brake pressure of an EV; 2) The proposed approach is 
implemented with experimental data obtained via vehicle 
testing, and compared with other methods; 3) The proposed 
approaches has a great potential to achieve a sensorless design 
of the braking control system, removing the brake pressure 
sensor existing in the current products and largely reducing the 
cost of the system. Moreover, it also provides an additional 
redundancy for the safety-critical braking functions. 

The rest of this paper is organized as follows. Section II 
describes the high-level architecture of the proposed multilayer 
ANN for brake pressure estimation. Section III briefly 
introduces the standard backpropagation algorithm and 
illustrate the notations and basic concepts demanded in the 
Levenberg-Marquardt algorithm. Section IV presents details of 
the application of the LMBP method to training the 
feed-forward neural networks. In Section V, experiment 
implementations including feature selection, data collection 
and preprocessing are presented. Section VI reports the 
experimental results of the proposed brake pressure estimation 
algorithm including performance comparison to other 

approaches. Finally, conclusions are made in Section VII.  

II. MULTILAYER ARTIFICIAL NEURAL NETWORKS 

ARCHITECTURE 

In order to achieve the objective of brake pressure 
estimation, multilayer artificial neural networks are firstly 
constructed with the input of vehicle and powertrain states. 
Details of the high-level system architecture and structure of 
the component are described in this section. 

A. System Architecture 

The system architecture with proposed methodology is 
shown in Fig. 1. The multilayer artificial neural network 
receives state variables of the vehicle and the electric 
powertrain system as inputs, and then yields the estimation of 
the brake pressure through the activation function. The 
Levenberg-Marquardt Backpropagation algorithm is then 
operated with the performance function, which is a function of 
the ANN-based estimation and the ground truth of brake 
pressure. The weight and bias variables are adjusted according 
to Levenberg-Marquardt method, and the backpropagation 
algorithm is used to calculate the Jacobian matrix of the 
performance function with respect to the weight and bias 
variables. With updated weights and biases, the ANN further 
estimates the brake pressure at the next time step. On the basis 
of the above iterative processes, the ANN-based brake pressure 
estimation model is well trained. The detailed method and 
algorithms are introduced in the following subsection. 

B. Multilayer Feed-Forward Neural Network 

 
Fig. 2  Structure of the multilayer feed-forward neural network. 

In this work, a multilayer feed-forward neural network is 
chosen to estimate brake pressure. A FFNN is composed of one 
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input layer, one or more hidden layers and one output layer. 
Since a neural network with one hidden layer has the capability 
to handle most of the complex functions, in this work the FFNN 
with one hidden layer is constructed.  Fig. 2 shows the structure 
of a multilayer FFNN with one hidden layer. 

The basic element of a FFNN is the neuron, which is a 
logical-mathematical model that seeks to simulate the behavior 
and functions of a biological neuron [27]. Fig. 3 shows the 
schematic structure of a neuron. Typically, a neuron has more 
than one input. The elements in the input vector 

1 2[ , , , ]Rp p pp   are weighted by elements 1 2, , , jw w w  of 

the weight matrix W respectively. 

 
Fig. 3  Structure of the multi-input neuron. 

The neuron has a bias b, which is summed with the weighted 
inputs to form the net input n, which can be expressed by 

1

R

j j
j

n w p b b


    Wp                          (1) 

Then the net input n passes through an active function f, 
which generates the neuron output a. 

( )a f n                                    (2) 

In this study, the log-sigmoid activation function is adopted. 
It can be given by the following expression: 

1
( )

1 x
f x

e


                              (3) 

Thus, the multi-input FFNN in Fig. 2 implements the 
following equation 

2 2 2 1 1 1 2
1, ,

1 1

( ( ) )
S R

i i j j i
i j

a f w f w p b b
 

                (4) 

where a2 denotes the output of the overall networks. R is the 
number of inputs, S is the number of neurons in the hidden 

layer, and jp  indicates the jth input. 1f  and 2f  are the 

activation functions of the hidden layer and output layer, 

respectively. 1
ib represents the bias of the ith neuron in the 

hidden layer, and 2b  is the bias of the neuron in the output 
layer. 1

,i jw  represents the weight connecting the jth input and 

the ith neuron of the hidden layer, and 2
1,iw  represents the 

weight connecting the ith source of the hidden layer to the 
output layer neuron. 

III. STANDARD BACKPROPAGATION ALGORITHM  

In order to train the established FFNN, the backpropagation 
algorithm can be utilized [28]. Considering a multilayer 

feedforward neural network, such as the one with three-layer 
shown in Fig. 2, its operation can be described using the 
following equation: 

1 1 1 1( )m m m m m=   a f W a b                        (5) 

where am and am+1 are the outputs of the m-th and (m+1)-th 
layers of the networks, respectively. bm+1 is the bias vector of 
(m+1)-th layers of the networks. 0,1,..., 1m = M  , where M is 
the number of layers of the neural network. The neurons of the 
first layer obtain inputs: 

0 =a p                                         (6) 

    Eq. (6) provides the initial condition for Eq. (5). The outputs 
of the neurons in the last layer can be seen as the overall 
networks’ outputs: 

M=a a                                        (7) 

The task is to train the network with associations between a 
specified set of input-output pairs 1 1 2 2{( , ), ( , ),..., ( , )}Q Qp t p t p t , 

where pq is an input to the network, and tq is the corresponding 
target output. As each input is applied to the network, the 
network output is compared to the target. 

The backpropagation algorithm uses mean square error as 
the performance index, which is to be minimized by adjusting 
the network parameters, as shown in Eq. (8). 

( ) [ ] [( ) ( )]T TF = E E  x e e t a t a                     (8) 

where x is the vector matrix of network weights and biases. 
Using the approximate steepest descent rule, the performance 
index F(x) can be approximated by 

ˆ ( ) ( ( ) ( )) ( ( ) ( )) ( ) ( )T TF = k k k k k k  x t a t a e e           (9) 

where the expectation of the squared error in Eq. (8) has been 
replaced by the squared error at iteration step k. 

The steepest descent algorithm for the approximate mean 
square error is 

, ,
,

ˆ
( 1) ( )m m

i j i j m
i j

F
w k = w k

w
 

 


                      (10) 

ˆ
( 1) ( )m m

i i m
i

F
b k = b k

b
 

 


                       (11) 

where   is the learning rate. 
Based on the chain rule, the derivatives in Eq. (10) and Eq. 

(11) can be calculated as: 

, ,

ˆ ˆ m
i

m m m
i j i i j

nF F

w n w

 
 

  
,  

ˆ ˆ m
i

m m m
i i i

nF F

b n b

 
 

  
              (12) 

We now define m
is as the sensitivity of F̂ to changes in the 

ith element of the net input at layer m.  

ˆ
m
i m

i

F
s

n





                                      (13) 

Using the defined sensitivity, then the derivatives in Eq. (12) 
can be simplified as 

1

,

ˆ
m m
i jm

i j

F
s a

w





                                (14) 
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ˆ
m
im

i

F
s

b





                                     (15) 

Then the approximate steepest descent algorithm can be 
rewritten in matrix form as: 

1( 1) ( ) ( )m m m m Tk = k   W W s a                    (16) 

( 1) ( )m m mk = k  b b s                            (17) 

where 

1 2

ˆ ˆ ˆ ˆ
[ , ,..., ]

m

m T
m m m m

S

F F F F

n n n

   
 
   

s
n

                  (18) 

To derive the recurrence relationship for the sensitivities, the 
following Jacobian matrix is utilized. 

1 1 1

1 1 1
1 1 1

1 2

1 1 1
2 2 21

1 2

1 1 1

1 2

m

m

m m m

m

m m m

m m m

S

m m m

m
m m m

Sm

m m m

S S S
m m m

S

n n n

n n n

n n n

n n n

n n n

n n n

  

  

  



  

   
    
        

  
 
    
    

n

n





  



              (19) 

Consider the i, j element in the matrix: 

1
1 11

, ,
1

( )
mm
jm m m m

i j i j jm m
j

an
w w f n

n n


 

 
 

                  (20) 

Thus, the Jacobian matrix can be rewritten as 

1
1 ( )

m
m m m

m






n

W F n
n

                         (21) 

where 

1

2

( ) 0 0

0 ( ) 0
( )

0 0 ( )m

m m

m m
m m

m m

S

f n

f n

f n

 
 
   
 
  

F n

 



  



           (22) 

Then the recurrence relation for the sensitivity can be 
obtained by using the chain rule: 

1

1

1 1

ˆ ˆ

( )( )

Tm
m

m m m

m m m T m

F F



 

   
      


n
s

n n n

F n W s

                   (23) 

This recurrence relation is initialized at the final layer as 

2

1

( )
ˆ (( ) ( ))

2( ) 2( ) ( )

MS

j jT
jM

i M M M
i i i

m mi
i i i i iM

i

t a
F

s
n n n

a
t a t a f n

n



 
   

  
  


     




t a t a



       (24) 

Thus the recurrence relation of the sensitivity matrix can be 
expressed as 

2 ( )( )M M M  s F n t a                        (25) 

The overall BP learning algorithm is now finalized and can 
be summarized as the following steps: 1) firstly, propagate the 
input forward through the network; 2) secondly, propagate the 
sensitivities backward through the network from the last layer 
to the first layer; 3)  finally, update the weights and biases using 
the approximate steepest descent rule.  

IV. LEVENBERG-MARQUARDT BACKPROPAGATION  

While backpropagation is a steepest descent algorithm, the 
Levenberg-Marquardt algorithm is derived from Newton’s 
method that was designed for minimizing functions that are 
sums of squares of nonlinear functions [29, 30]. 

Newton’s method for optimizing a performance index ( )F x  

is 
1

1k k k k


  x x A g                                (26) 

2 ( ) |
kk F   X XA x                              (27) 

( ) |
kk F   X Xg x                               (28) 

where 2 ( )F x  is the Hessian matrix and ( )F x  is the 

gradient. 
Assume that ( )F x  is a sum of squares function: 

2

1

( ) ( ) ( ) ( )
N

T
i

i

F v


 x x v x v x                       (29) 

then the gradient and Hessian matrix are 

( ) 2 ( ) ( )TF x J x v x                            (30) 

2 ( ) 2 ( ) ( ) 2 ( )TF  x J x J x S x                   (31) 

where ( )J x  is the Jacobian matrix 

1 1 1

1 2

2 2 2

1 2

1 2

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

n

n

N N N

n

v v v

x x x

v v v

x x x

v v v

x x x

   
    
   
     
 
 
   
    

x x x

x x x

J x

x x x





  



                 (32) 

and 

2

1

( ) ( ) ( )
N

i i
i

v v


 S x x x                         (33) 

If ( )S x  is assumed to be small then the Hessian matrix can 

be approximated as 

2 ( ) 2 ( ) ( )TF x J x J x                          (34) 

Substituting Eq. (30) and Eq. (34) into Eq. (26), we achieve 
the Gauss-Newton method as: 
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1[ ( ) ( )] ( ) ( )T T
k k k k k

  x J x J x J x v x             (35) 

One problem with the Gauss-Newton method is that the 
matrix may not be invertible. This can be overcome by using 
the following modification to the approximate Hessian matrix: 

 G H I                                     (36) 

This leads to the Levenberg-Marquardt algorithm [31]: 

1[ ( ) ( ) ] ( ) ( )T T
k k k k k k    x J x J x I J x v x             (37) 

Using this gradient direction, and recompute the 
approximated performance index. If a smaller value is yield, 
then the procedure is continued with the k  divided by some 

factor 1  . If the value of the performance index is not 
reduced, then k  is multiplied by   for the next iteration step. 

The key step in this algorithm is the computation of the 
Jacobian matrix. The elements of the error vector and the 
parameter vector in the Jacobian matrix (32) can be expressed 
as 

1 2 1,1 2,1 1,2,1 ,Q
[ ] [ ]M M

T
N S S

v v v e e e e e v             (38) 

1 1

1 1 1 1 1 2
1 2 1,1 1,2 1 1,1,

[ ] [ ]M

T M
N S R S S

x x x w w w b b w b x        (39) 

where the subscript N satisfies: 

MN Q S                                      (40) 

and the subscript n in the Jacobian matrix satisfies: 

1 2 1 1( 1) ( 1) ( 1)M Mn S R S S S S                  (41) 

Making these substitutions into Eq. (32), then the Jacobian 
matrix for multilayer network training can be expressed as 

1

1

1

1

1,1 1,1 1,1 1,1

1 1 1 1
1,1 1,2 1,

2,1 2,1 2,1 2,1

1 1 1 1
1,1 1,2 1,

,1 ,1 ,1 ,1

1 1 1 1
1,1 1,2 1,

1,2 1,2 1,2 1,2

1 1 1 1
1,1 1,2 1,

( )
M M M M

S R
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S S S S
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S R

e e e e
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e e e e

w w w b

e e e e
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 

 
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

 
 
 
 
 
 
 
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 
 
 
 
 
 



       (42) 

In standard backpropagation algorithm, the terms in the 
Jacobian matrix is calculated as 

ˆ ( )
T

q q

l l

F

x x




 

e ex                              (43) 

For the elements of the Jacobian matrix, the terms can be 
calculated by 

,
,

,

[ ] k qh
h l

l i j

ev

x w


 
 

J                            (44) 

Thus in this modified Levenberg-Marquardt algorithm, we 
compute the derivatives of the errors, instead of the derivatives 
of the squared errors as adopted in standard backpropagation. 

Using the concept of sensitivities in the standard 
backpropagation process, here we define a new Marquardt 
sensitivity as 

,
,

, ,

k qm h
i h m m

i q i q

ev
s

n n


 
 

                              (45) 

where ( 1) Mh q S k   . 

Using the Marquardt sensitivity with backpropagation 
recurrence relationship, the elements of the Jacobian can be 
further calculated by 

, , , 1
, , ,
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m

k q k q i q m m
h l i h j qm m m

i j i q i j

e e n
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if xl is a bias, 
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, ,

,

[ ]
m

k q k q i q m
h l i hm m m

i i q i

e e n
s

b n b

  
  
  

J                    (47) 

The Marquardt sensitivities can be computed using the same 
recurrence relations as the one used in the standard BP method, 
with one modification at the final layer. The Marquardt 
sensitivities at the last layer can be given by 
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,
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               (48) 

After applying the qp  to the network and computing the 

corresponding output M
qa , the LMBP algorithm can be 

initialized by 

( )M M M
q q S F n                                  (49) 

Each column of the matrix should be backpropagated 
through the network so as to generate one row of the Jacobian 
matrix. The columns can also be backpropagated together using 

1 1( )( )m m m m m
q q q

 S F n W S                         (50) 

The entire Marquardt sensitivity matrices for the overall 
layers are then obtained by the following augmentation 

1 2| | |m m m m
Q

   S S S S                             (51) 

V. EXPERIMENTAL TESTING AND DATA COLLECTION 

In order to train the FFNN model with the LMBP algorithm 
proposed above and validate its effectiveness for brake pressure 
estimation, real vehicle driving data is needed. Thus, 
experiments using an electric passenger car are carried out on a 
chassis dynamometer. The testing vehicle together with the 
testing scenarios, selected feature vectors, data collection and 
data pre-processing are described as follows.  
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A. Testing Vehicle and Scenario 

The experiment is implemented on a chassis dynamometer 
with an electric passenger car, as shown in Fig. 4(a). The 
utilized electric vehicle is driven by a permanent-magnet 
synchronous motor, which is able to work in either driving or 
regenerating mode. The battery pack is connected to the electric 
motor via D.C. bus, releasing or absorbing power during 
driving and regenerative braking processes, respectively. Key 
parameters of the test vehicle are presented in Table 1. 

  
                           (a)                                                            (b) 

Fig. 4. (a) The testing vehicle operating on a chassis dynamometer; (b) Speed 
profile of the NEDC driving cycle. 

TABLE 1 
KEY PARAMETERS OF THE ELECTRIC VEHICLE. 

Parameter Value Unit 

Total vehicle mass 1360 kg 

Wheel base 2.50 m 

Frontal area 2.40 m2 

Nominal radius of tyre 0.295 m 

Coefficient of air resistance 0.32 — 

Motor peak power 45 kW 

Motor maximum torque 144 Nm 

Motor maximum speed 9000 rpm 

Battery voltage 326 V 

Battery capacity 66 Ah 
 

To set up the testing scenario on a chassis dynamometer, 
standard driving cycles can be utilized. In this study, the New 
European Drive Cycle (NEDC) which consists of four repeated 
ECE-15 urban driving cycles and one Extra Urban Driving 
Cycle (EUDC) is adopted [32]. As Fig. 4(b) shows, the four 
successive ECE-15 driving cycles in the first section of the 
NEDC represent urban driving with low operating speed while 
the second section, i.e. the EUDC driving cycle, indicates a 
highway driving scenario with the vehicle speed up to 120 
km/h. 

B. Data Collection and Processing 

Vehicle data and powertrain states on CAN bus are collected 
with a sampling frequency of 100 Hz. Finally, experimental 
data of 6327 seconds containing six NEDC driving cycles in 
total are recorded. The vehicle speed and brake pressure of the 
collected testing data during the four successive ECE-15 
driving cycles are presented in Fig. 5. 

In order to achieve a better training performance of the 
FFNN model with machine learning methods, the raw 
experimental data are smoothed at first using the following 
equation: 

1 N

t tn
n

d d
N

                                    (52) 

where dt is the value of a signal at time t, dtn is the n-th sampled 
value of signal d at time step t, and N is the total amount of 
samples within each second. 

 
Fig. 5  Collected data of the vehicle speed and corresponding brake pressure.   

Then, in order to eliminate the effect brought by different 
units of signals utilized, the input signals are scaled to be in the 
range of 0 to 1. 

C. Feature Selection and Model Training 

In this work, the important vehicle and powertrain state 
variables are selected for the training of the multilayer ANN 
model for brake pressure estimation, while the real value of the 
brake pressure is utilized as a ground truth during the training 
process. When the electric vehicle is decelerating, the electric 
motor operates as a generator, recapturing vehicle’s kinetic 
energy. During this period, the values of the motor and battery 
current change from positive to negative, indicating that the 
battery is charged by regenerative braking energy. Thus, apart 
from the vehicle states, the signals of motor speed and torque, 
battery current and voltage, state of charge (SoC) are also 
chosen as features, i.e. the input vector of the FFNN. The data 
of some of the selected feature variables during one driving 
cycle are shown in Fig. 6. 

 
Fig. 6  Experimental data of selected features during one driving cycle. 

Besides, statistical information, including the mean value, 
maximum value, and standard deviation (STD) of some of the 
vehicle states in the past few seconds are also adopted in this 
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work. The features used for model training are listed below in 
Table 2. 

TABLE 2  
SELECTED FEATURES FOR FFNN MODEL TRAINING 

No. Signal Unit 
1 Vehicle Velocity km/h 
2 Mean Value of Velocity km/h 
3 STD of Velocity km/h 
4 Maximum Value of Velocity km/h 
5 Vehicle Acceleration m/s2 

6 Motor Speed rad/s 
7 Motor Torque Nm 
8 Battery Current A 
9 Battery Voltage V 

10 Battery SoC % 
11 Gradient of Bat. Voltage V/s 
12 Gradient of Bat. Current A/s 

 

 

After determining the feature vectors, the regression model 
of the FFNN is trained. To modulate and evaluate the model 
performance, the K-fold cross validation approach is adopted 
[33]. In this method, among the K folds divided, (K-1) ones are 
utilized to train the model, and the rest one fold is adopted for 
testing. Thus, the overall recorded data are divided into two 
sets, namely the training set and the testing one. The testing set, 
which is used for model validation, contains 1400 samples 
chosen randomly from the raw data, and rest of the data are 
allocated to the training set. The final evaluation of the model 
performance is carried out based on the K test results. In this 
work, the value of K is set as 5. Then, with the 5-fold cross 
validation, the constructed FFNN is trained using the fast 
LMBP algorithm developed in Section IV. Some key parameter 
of FFNN are illustrated below. 

TABLE 3  
KEY PARAMETERS OF THE FFNN MODEL 

Parameter Value 
Maximum number of epochs to train 1000 

Performance goal 0 
Maximum validation failures 6 

Minimum performance gradient 1e-7 
Initial  0.001 

 decrease factor 0.1 
 increase factor 10 
Maximum  1e10 

Epochs between displays 25 
Maximum time to train in seconds Infinite 

VI. EXPERIMENT RESULTS AND DISCUSSIONS 

In this section, results of the estimated ANN-based brake 
pressure with LMBP learning algorithm are presented and 
discussed. The algorithms are implemented in a computer with 
the MATLAB 2017a platform. The processor of the computer 
is an Intel Core i7-4710MQ CPU which supports 4 cores and 8 
threads parallel computing, while the RAM equipped is a 32G 
one. The time consuming for the FFNN training varies with the 
number of the hidden neurons selected. In this study, since the 
range of hidden neurons number is from 10 to 100, thus the 
training time for FFNN varies from 0.6s to 10s, and the average 
training time cost for the FFNN with 70 neurons is 3.4s. 

A. Results of the ANN-based Braking Pressure Estimation 

To quantitatively evaluate the estimation performance, two 
commonly used indicies, namely the coefficient of 

determination R2 and the root-mean-square-error (RMSE), are 
adopted. The definitions of the R2 and RMSE are presented as 
follows. Suppose the reference data is { }1 NT t t  , and the 

predicted value is { }1 NY y y  . Then R2 can be calculated as: 

2 1 res

tot

E
R

E
                                 (53) 

2( )
N

res i i
i

E t y                             (54) 

2( )
N

tot i
i

E t T                             (55) 

where resE is the residual sum of square, totE  is the total sum of 

square, and T is the mean value of the reference data.  
The RMSE can be obtained by: 

2( )
N

i i
i

t y
RMSE

N





                          (56) 

Firstly, the impact of the neuron number on the brake 
pressure estimation performance is analyzed. Considering the 
complexity of the problem, the estimation performance is tested 
under different number of neurons ranging from 10 to 100. 
According to Fig. 7, as the number of neurons changes, the 
estimation accuracy of the FFNN varies slightly. The best 
prediction performance is yield by FFNN with the number of 
neurons at 70. 

 
Fig. 7  Estimation performance of FFNN with different number of neurons.  

 
Fig. 8  Regression performance of the FFNN model with 70 neurons. 
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Then, the linear regression performance of the trained model 
is investigated. Based on the linear regression result shown in 
Fig. 8, the test regression result R is of 0.96677, indicating the 
FFNN model with 70 neurons can accurately estimate the 
braking pressure through selected features. 

Fig. 9 shows the brake pressure estimation result in time 
domain. The x-axis presents the 1400 samples of the testing 
data set, and the y-axis shows the estimation results of the 
scaled brake pressure. Since the input and output data for model 
training is scaled to the range of [0, 1], the model testing output 
is then falling within the range between 0 and 1 accordingly. 
Based on the results, the FFNN model achieves high-precision 
regression performance, and the RMSE is around 0.1 MPa, 
demonstrating the feasibility and effectiveness of the developed 
method. 

 
Fig. 9  ANN-based braking pressure estimation results with 1400 testing data 
points.  

B. Importance Analysis of the Selected Features 

Besides, the utilized feature variables are further investigated 
through analyzing the importance of predictors [34]. A larger 
value of the predictor importance indicates that the feature 
variable has a greater effect on the model output. 

 

Fig. 10 The predictor importance estimation results. 

Fig. 10 illustrates the estimation results of the predictor 
importance. Based on the results, the most important feature in 
the model is the battery current, followed by STD of velocity, 
vehicle velocity, and acceleration. Besides, the battery voltage, 
the gradients of the battery voltage and current also exert 
impacts on the model estimation performance. 

 

C. Comparison of Estimation Results with different Learning 
Methods 

The developed ANN-based approach is compared with other 
machine learning methods, including regression decision tree, 
Quadratic support vector machine (SVM), Gaussian process 
model, and regression Random Forest. These models are also 

trained and tested with the 5-fold cross validation method. 
Apart from R2 and RMSE, other two evaluation parameters, i.e. 
the training time and the testing time, are also utilized to assess 
the performance of different models. 

Detailed results of the comparison are shown in Table 4. 
According to the results, the single decision tree algorithm 
gives much shorter training time and a much faster testing 
speed in comparison to the other algorithms. In terms of 
real-time application, the regression decision tree could be a 
good candidate because of its simplicity and high computation 
efficiency. However, with respect to the brake pressure 
estimation accuracy (both R2 and RMSE), the developed ANN 
algorithm yields the best performance with acceptable training 
time and testing speed. 

TABLE 4 
 COMPARISON OF BRAKING PRESSURE ESTIMATION PERFORMANCE 

Method R2 
RMSE 
(MPa) 

Training 
Time (s) 

Testing 
Speed(obs/s) 

Decision Tree 0.912 0.133 1.092 ~240000 

Quadratic SVM 0.867 0.188 141.93 ~46000 

Gaussian Process model 0.921 0.125 156.89 ~8100 

Random Forest 0.903 0.104 3.79 ~36000 

ANN 0.935 0.101 3.42 ~82000 

VII. CONCLUSIONS 

 In this paper, a novel probabilistic estimation method of 
brake pressure is developed for a safety critical automotive CPS 
based on multilayer ANN with LMBP training algorithm. The 
high-level architecture of the proposed multilayer ANN for 
brake pressure estimation is illustrated at first. Then, the 
standard BP algorithm used for training of FFNN is introduced. 
Based on the basic concept of BP, a more efficient algorithm of 
LMBP method is developed for model training. The real 
vehicle testing is carried out on a chassis dynamometer under 
NEDC driving cycles. Experimental data of the vehicle and 
powertrain systems is collected, and feature vectors for FFNN 
training collection are selected. With the vehicle data obtained, 
the developed multilayer ANN is trained. The experimental 
results show that the developed ANN model, which is trained 
by LMBP, can accurately estimate the brake pressure, and its 
performance is advantageous over other learning-based 
methods with respect to estimation accuracy, demonstrating the 
feasibility and effectiveness of the proposed algorithm. 

Further work can be carried out in the following areas: the 
proposed algorithm will be further refined with onboard road 
testing; intelligent control algorithms of braking system will be 
designed based on state estimation.   
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