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Inter and intra-hemispheric structural
imaging markers predict depression
relapse after electroconvulsive therapy: a
multisite study
Benjamin S. C. Wade1,2, Jing Sui3,4,5, Gerhard Hellemann6, Amber M. Leaver1, Randall T. Espinoza 2, Roger P. Woods1,
Christopher C. Abbott7, Shantanu H. Joshi1 and Katherine L. Narr1,2

Abstract
Relapse of depression following treatment is high. Biomarkers predictive of an individual’s relapse risk could provide
earlier opportunities for prevention. Since electroconvulsive therapy (ECT) elicits robust and rapidly acting
antidepressant effects, but has a >50% relapse rate, ECT presents a valuable model for determining predictors of
relapse-risk. Although previous studies have associated ECT-induced changes in brain morphometry with clinical
response, longer-term outcomes have not been addressed. Using structural imaging data from 42 ECT-responsive
patients obtained prior to and directly following an ECT treatment index series at two independent sites (UCLA: n = 17,
age = 45.41±12.34 years; UNM: n = 25; age = 65.00±8.44), here we test relapse prediction within 6-months post-ECT.
Random forests were used to predict subsequent relapse using singular and ratios of intra and inter-hemispheric
structural imaging measures and clinical variables from pre-, post-, and pre-to-post ECT. Relapse risk was determined as
a function of feature variation. Relapse was well-predicted both within site and when cohorts were pooled where top-
performing models yielded balanced accuracies of 71–78%. Top predictors included cingulate isthmus asymmetry,
pallidal asymmetry, the ratio of the paracentral to precentral cortical thickness and the ratio of lateral occipital to
pericalcarine cortical thickness. Pooling cohorts and predicting relapse from post-treatment measures provided the
best classification performances. However, classifiers trained on each age-disparate cohort were less informative for
prediction in the held-out cohort. Post-treatment structural neuroimaging measures and the ratios of connected
regions commonly implicated in depression pathophysiology are informative of relapse risk. Structural imaging
measures may have utility for devising more personalized preventative medicine approaches.

Introduction
Major depressive disorder (MDD) has a lifetime pre-

valence of 16% in the U.S., with comparable high rates in
other nations1. Approximately 40% of depressed patients
do not respond to standard first-line treatments2,3. Fol-
lowing the first major depressive episode, >50% of reco-
vering patients suffer relapse and >15% experience

unremitting, chronic symptoms4; recurrence will occur in
~80% of patients with a history of two or more prior
episodes5–7.
The high relapse and recurrence rates, usually defined

as deterioration to the full disease syndrome during a
period of remission or the appearance of a new episode
after a longer period of recovery, respectively8, underscore
the need for timely intervention. Identifying clinical,
demographic, and physiological markers predictive of
relapse and symptom recurrence are thus critical for
prevention. Previous reports have associated incomplete
recovery9, illness duration and number of previous
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episodes with long-term clinical outcomes8,10. Fewer
studies have related neuroimaging measures to clinical
outcome following treatment. Of these, the majority have
focused on prediction of acute response or remission
directly following treatment. Even less have attempted to
predict a patient’s likelihood of relapse/recurrence in the
months following treatment.
Of prior studies addressing neuroimaging markers of

long-term clinical outcomes following antidepressant
treatment, one investigation following 30 MDD patients
prospectively over 3-years reported that those with
smaller hippocampal volumes and recurrent depression
had worse outcomes, irrespective of continued medica-
tion status11. In a follow-up study, investigators showed
that patients who remitted during the 3-year timeframe
had less atrophy of the left hippocampus, left anterior
cingulate (ACC), and left dorsomedial prefrontal cortex,
lateralized to the left hemisphere, and bilateral dorso-
lateral prefrontal cortex, than non-remitters12. Corro-
borating evidence from a recent study following 49 MDD
patients over 5-years similarly found patients with smaller
ACC volumes (though right-lateralized) prior to treat-
ment had poorer clinical outcomes13. Further, inclusion of
volumetric measures of both the right ACC and right
inferior frontal cortex increased the explained variance for
change in mood by 20% over inclusion of clinical and
demographic measures alone. These findings support the
potential utility of structural imaging measures as bio-
markers of clinical outcome13.
Using naturalistic designs, others have shown that task-

related brain activation within dorsolateral and medial
prefrontal regions, striatum, and parietal regions are
predictive of a chronic versus a more favorable clinical
course of depression with up to 73% accuracy14. Inter-
estingly, structural imaging measures were not predictive
in this particular study. Another group also found that
activation of the ACC and ventromedial prefrontal cortex
during an emotional challenge task was strongly asso-
ciated with increased relapse risk ~18-months following
remission. Using a signal change threshold of ≥ 0% and
regions-of-interest targeted from statistical remitter-
control contrasts, relapsing patients were classified with
a sensitivity and specificity of 90% and 83%, respectively15.
Notably, while these studies made important strides

towards identifying biomarkers of clinical outcome, with
few exceptions14, these investigations tested for post-hoc
associations rather than the predictive utility of imaging
biomarkers in a cross-validation framework11–13,15. Fur-
ther, prospective studies have followed subjects within a
naturalistic setting where patients have received several
possible treatment regimens13,14. Generalization across
treatments is important, but since different treatment
strategies may have different response/relapse trajectories,
different degrees of compliance and differentially affect a

patient’s neurobiology, focus on a single treatment mod-
ality may be beneficial for targeting neural predictors of
relapse and symptom recurrence in MDD.
Here, we focus on predicting relapse/recurrence within 6-

months following treatment with electroconvulsive therapy
(ECT), which is a well-established treatment typically
reserved for patients with severe treatment-resistant
depression. ECT works more quickly (response can occur
in 2–4 weeks) and has higher remission rates than other
standard therapeutic approaches16. However, relapse/
recurrence rates of depression after ECT are similar to
those of other antidepressant treatments. Following ECT,
relapse occurs in ~50% of patients with most relapsing
within the first 6-months17. The fast acting and robust
clinical effects of ECT together with relapse and recurrence
risks comparable to other treatments make this treatment
ideal for determining whether variations in brain morpho-
metry are predictive of individual clinical outcome.
Selecting 42 patients who initially responded to ECT

from two studies conducted at independent sites, the
University of California, Los Angeles (UCLA) and the
University of New Mexico (UNM), we developed a ran-
dom forest (RF) classifier to identify structural neuroi-
maging, clinical, and demographic factors predictive of
symptom recurrence/relapse. Imaging measures were
derived from pre-treatment, post-treatment, and pre-post
treatment change in subcortical volumes and regional
cortical thickness and ratios between these measures. The
motivation for the latter included the following: (i) ratios
for cortical thickness/volumes are normalized within
subject, (ii) they capture effects of asymmetry since the
ratios of homologous regions are included, and (iii) they
represent structural relationships between spatially diffuse
regions in a spirit similar to modeling structural networks.
Because ECT was administered unilaterally in the
majority of patients, we hypothesized that measures of
asymmetry would relate to relapse risk.
The identification of a set of biomarkers informing a

patient’s probability of symptom recurrence following
treatment is of high translational value. Clinicians could
refine maintenance strategies for at-risk individuals to
prevent relapse, which could offset the disproportionately
high cost of managing recurrent major depression.

Patients and Methods
Participants
Patients experiencing a DSM-IV defined major depres-

sive episode and eligible to receive ECT were recruited
from UCLA (N= 42) and UNM (N= 40). All patients
received structural MRI scans and mood evaluations 24 h
prior to ECT (pretreatment) and within a week of com-
pleting ECT index (post-treatment). Patient mood was
again assessed approximately 6-months following index
(follow-up). The Hamilton Depression Rating Scale
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(HAM-D-17)18 tracked symptomology at each time point.
A patient was defined to have relapsed if (i) their HAM-D
reduced by ≥ 50% over ECT index indicating therapeutic
response and (ii) their long-term follow-up HAM-D score
was ≥ 17. The threshold for determining response was
selected since it the most commonly used definition of
clinically meaningful response19. Definitions of relapse
following initial response are less consistent. Since the
current study (a) included patients with severe and
treatment resistant depression, (b) the criterion used for
response still allowed for some residual symptoms, and (c)
HAM-D scores of ≥ 17 are considered a cut-off for
separating mild8–16 from moderate17–23 and severe
depression ( ≥ 24)20, a HAM-D score of ≥ 17 at final
follow-up was used to define relapse. A total of 17 patients
at UCLA (10 females, mean age= 45.41± 12.34) and 25 at
UNM (18 females, mean age= 65± 8.44) were defined as
ECT responders and included in the study. Following the
ECT index, patients continued on naturalistic course of
maintenance therapy. Ten UCLA patients and 11 at UNM
received maintenance or continuation (m-/c-ECT),
respectively. Within 6 months following ECT index 6
patients (35%) relapsed at UCLA while 13 (52%) relapsed
at UNM.
All patients had experienced two or more earlier major

depressive episodes and failed to respond to at least two
prior adequate medication trials in the index episode.
Exclusionary criteria included first-episode depression,
diagnosed neurological or neurodegenerative disorder,
any head injury with loss of consciousness over 5 min,
comorbid psychiatric conditions such as schizophrenia or
schizoaffective disorder, current drug or alcohol abuse
(excluding nicotine), and MRI contraindications. Bipolar
disorder was exclusionary at UNM but not at UCLA,
though mania in the index episode was exclusionary at
UCLA. UCLA patients were excluded if the age of
depression onset was over 50 years. UCLA patients were
tapered off of antidepressants and benzodiazepines in
preparation for ECT and were completely free of medi-
cation for at least 48–72 h before enrollment and ECT
treatment. The UNM cohort was not tapered off of
medication before ECT. All participants provided written
informed consent as approved by the UCLA or UNM
Institutional Review Board.

MR acquisition
At UCLA, high-resolution motion-corrected multi-echo

T1-weighted MPRAGE structural brain images21 were
acquired on a Siemens 3 T Allegra system (Erlangen,
Germany) for all subjects and time points (TEs/TR= 1.74,
3.6, 5.46, 7.32/2530ms, TI= 1260 ms, flip angle= 7°,
voxel resolution= 1.3× 1× 1mm3). Patients at UNM
were scanned on a 3-Tesla Siemens Trio scanner with a
similar multi-echo T1-weighted MPRAGE (TR= 2.53 s

(s), TE= 1.64, 3.5, 5.32, 7.22, 9.08 ms, TI= 1.20 s, flip
angle= 7°, number of excitations= 1, and voxel resolu-
tion= 1× 1× 1mm3).

Image preprocessing
Validated FreeSurfer22 workflows, including removal of

non-brain tissue, intensity normalization and automated
volumetric parcellation based on probabilistic informa-
tion from manually labeled training sets, were used for
whole brain cortical (Desikan Killiany atlas-based parcel-
lations23) and subcortical segmentation. Each segmenta-
tion was visually inspected to ensure its quality.

Candidate features
Clinical, demographic and structural neuroimaging

features of each participant were included as candidate
features for the RF classifier. Demographic information
included age and sex; clinical information was comprised
of pre- and post-treatment HAM-D-17 scores, number of
ECT sessions received, and electrode placement (right
unilateral or bilateral). Maintenance therapy status (m-/c-
ECT) was not a predictor. Imaging features included
volumes of the accumbens, amygdala, caudate, hippo-
campus, pallidum, putamen, thalamus, and lateral ven-
tricles and the mean thickness of 34 homologous cortical
regions.
In addition to individual measures of subcortical

volumes and cortical thickness we included pairwise
ratios of each subcortical volume to every other sub-
cortical volume and likewise for cortical thickness. These
ratios have several important benefits. First, they are
normalized within subject and thus robust to confounds
of age- and sex-related group differences. Ratio measures
additionally capture the asymmetry of homologous
regions that may reflect underlying neurobiological
properties related to clinical outcome. Second, the dis-
tribution of ECT electrode placements largely determines
the electrical field distribution within the brain and the
distribution of ECT’s direct effects. Since unilateral elec-
trode placement is mostly applied at UCLA and UNM,
there are likely to be highly lateralized effects, which may
also relate to clinical outcome.

Predictive modeling
We used supervised RFs24 to classify relapse status

based on either pre- or post-treatment features or changes
in these features over treatment. RFs were used due to
their robustness against overfitting in high-dimensions,
minimal tuning parameters, and overall competitive per-
formance relative to other state-of-the-art methods25.
Alternative classifiers were not compared to RFs in order
to mitigate type 1 errors. We considered models built
from participants exclusively at UCLA or UNM and
observations combined across sites. Models fit to a single
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cohort were additionally assessed by predicting relapse
across site.
We implemented leave-one-out cross-validation (LOO-

CV) to validate our classifier. Within each iteration of LOO-
CV, the set of N-1 participants used to train the model was
partitioned into 10 nested folds to further randomize the
feature selection process which consisted of multiple steps.
We first held out one of the 10 folds. Second, features in the
remaining folds were subjected to a collinearity filter in
which we identified pairs of features correlated above a
threshold, |r|. The feature in this pair with the highest
correlation with the remaining features in the dataset was
excluded. The optimal threshold, |r|, was found using a grid
search over the space r ∈ {0.1, 0.2,…, 1.0}. The remaining
features were then passed to a recursive feature elimina-
tion26 (RFE) algorithm where the internal classifier was a RF
composed of 1000 trees and the feature set maximizing
classification specificity was selected.
After this process was repeated 10 times, we evaluated

the frequency with which each feature was selected by
RFE. We retained features selected above the ⍴-th quan-
tile of frequencies where ⍴ ∈ {0.1, 0.2,…, 1.0}. Finally, the
features identified by this process were used to fit a RF to
the entire N-1 set of training observations. RF-specific
tuning parameters are outlined in Supplementary Meth-
ods. The final RF predicted the originally held-out
observation (Fig. 1). A grid search was performed over
the space of parameters r and ⍴ for each location and
time-point specific model. Models constructed within-site
were additionally used to predict the patient relapse
across site as further validation. All RFs were imple-
mented using the caret27 package in R version 3.3.228.
Performance measures in binary classification with

imbalanced class proportions are biased towards the more
prevalent class. To avoid reporting optimistic perfor-
mances we report the balanced accuracy (BA)29 defined as
the arithmetic mean of sensitivity and specificity. We
additionally compare the BA to the baseline detection rate
(BDR), which is the accuracy obtained by hypothetically
assigning each unknown patient to the most prevalent
class. The BDR is naturally >50% in problems with
imbalanced classes.
Two post-hoc analyses were also conducted (see Sup-

plementary Methods and Results). First we explored our
model’s performance as a function of classifying only
patients for which the classifier had more than a particular
level of confidence, known as classification with a rejec-
tion option30. We secondly repeated our entire analysis
using 10 repeated 10-fold cross-validation to assess the
classifier’s robustness across cross-validation schemes.

Code availability
Code developed for these analyses are available upon

request.

Results
Demographic and clinical measures
Table 1 shows patient demographic and clinical char-

acteristics. The UNM cohort was significantly older than
the UCLA cohort. Post-treatment HAM-D scores were
significantly lower at UNM. However, the cohorts did not
differ significantly by sex, average number of ECT ses-
sions, proportion of patients receiving RUL electrode
placement, pretreatment HAM-D or the proportion
relapsers.
All relapsing patients were female at UCLA; 10 of the 13

relapsing patients were female at UNM. This proportion
did not differ significantly from non-relapsers. Across
both sites, relapsers did not differ significantly from non-
relapsers in terms of pre- or post-treatment HAM-D
scores, number of ECT sessions received, proportion of
patients receiving right unilateral electrode placement,
age, or m-/c-ECT status.

Prediction from pre-treatment measures
Here we detail the highest performing model from each

location provided their BAs are above the BDR of the

N  1

N-1

9 Folds

Collinearity
Filter

Frequency 
Threshold

Fit Training
Data

Predict
Hold Out

Repeat x 10

RFE

Create 10-Folds

1 Fold

Repeat x N

Fig. 1 Flowchart of classification process. At each leave-one-out
cross-validation fold, training subjects are randomly assigned to each
of ten folds and feature selection based on collinearity filtering and
recursive feature elimination (RFE) is performed on nine of the folds.
Features selected by this process above a given threshold are used to
train a model on the whole training set and the parameters from this
model are used to predict the originally held-out observation
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cohort used to train the model. Classifier performances
from pre-, post-, and change during ECT series for indi-
vidual and combined sites are presented in Table 2.
Regions important to each classifier are illustrated in
Fig. 2. In Fig. 3 we plot the BA obtained across all para-
meterizations of the models explored in the grid search
and compare this distribution to the model’s BDR.
Relapse at UCLA was well-predicted from pre-

treatment measures with a BA of 78%; well above the
68% BDR. Cingulate isthmus thickness asymmetry was
the most important feature, followed by the ratio of left
superior frontal to left rostral middle frontal cortical
thickness. In post-hoc examination of these measures,
relapsing patients were shown to have numerically smal-
ler, though not statistically different, right to left hemi-
sphere cingulate isthmus thickness ratios than non-

relapsers. The asymmetry of the cingulate isthmus tren-
ded towards a significant association with sex (t= 2.075,
p= 0.056, Supplementary Fig. 4). No statistically sig-
nificant post-hoc relapse/non-relapser difference for the
left superior frontal to left rostral middle frontal cortical
thickness ratio was observed. While several UCLA-based
models exceeded the BDR, many did not, suggesting some
degree of model instability. Supplementary Table 1 fur-
ther outlines important features that were selected by
each classifier in at least 50% of LOO-CV folds.
Using RFs fitted to 10 randomly resampled sets of

observations we modeled the predicted probability of a
simulated patient’s relapse given an observed range of
these two ratios. Each simulated patient was assigned the
within-cohort average of each feature except for the ratio
measure to be evaluated, which itself took on a series of 20

Table 1 Demographic and clinical characteristics

UCLA, N = 17 UNM, N = 25 t or χ2 (p-value)

Age, mean (SD), years 45.41 (12.34) 65.00 (8.44) p = 5.34e-06

Sex, (M/F) 7/10 7/18 p = 0.57

# of ECT index sessions, mean (SD) 10.11 (2.31) 10.36 (3.05) p = 0.77

# of RUL arrangements, (RUL/BT) 16/1 21/4 p = 0.61

Pretreatment HAM-D-17, mean (SD) 27.29 (5.24) 26.44 (7.26) p = 0.66

Post-treatment HAM-D-17, mean (SD) 6.82 (3.28) 3.12 (3.07) p = 0.00082

# Relapsers/Non-relapsers 6/11 13/12 p = 0.45

# Unipolar/Bipolar 14/3 25/0 p = 0.11

UCLA Relapsers, N = 6 UCLA Non-relapsers N = 11 Significance

Age, mean (SD), years 43.16 (13.89) 46.63 (11.94) p = 0.61

Sex, (M/F) 0/6 7/4 p = 0.04

# of ECT index sessions, mean (SD) 10.00 (1.67) 10.18 (2.67) p = 0.86

# of RUL arrangements, (RUL/BT) 6/0 10/1 p = 1

Pretreatment HAM-D-17, mean (SD) 28.83 (4.79) 26.45 (5.50) p = 0.37

Post-treatment HAM-D-17, mean (SD) 6.66 (2.65) 6.90 (3.70) p = 0.87

# Maintenance ECT, (Yes/No) 5/1 5/6 p = 0.30

UNM Relapsers, N = 13 UNM Non-relapsers N = 12 Significance

Age, mean (SD), years 65.15 (9.76) 64.83 (7.17) p = 0.92

Sex, (M/F) 3/10 4/8 p = 0.90

# of ECT index sessions, mean (SD) 10.53 (3.38) 10.16 (2.79) p = 0.76

# of RUL arrangements, (RUL/BT) 10/3 11/1 p = 0.64

Pretreatment HAM-D-17, mean (SD) 25.92 (6.10) 27.00 (8.60) p = 0.72

Post-treatment HAM-D-17, mean (SD) 3.23 (3.46) 3.00 (2.73) p = 0.85

# Continuation ECT, (Yes/No) 6/7 5/7 p = 1

UCLA University of California, Los Angeles, UNM University of New Mexico, ECT Electroconvulsive therapy, RUL Right unilateral electrode placement, BT Bi-temporal,
HAM-D Hamilton depression rating scale.
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evenly spaced values between the observed minimum and
maximum of the cohort. Predictions of the simulated
patient’s outcome from each of the 10 RFs were estimated
using a nonparametric LOESS model (Fig. 2a). Patients
with smaller right to left cingulate isthmus ratios had
lower predicted probabilities of relapse. Perturbations of
the left superior frontal to left rostral middle frontal ratio

exerted less influence on the posterior probability of
relapse after accounting for this measure. Characteristics
of the distribution of RF split points for the most
important features are reported in Supplementary Results.
We assessed the generalizability of all UCLA pretreat-

ment model parameterizations that yielded a BA greater
than the UCLA BDR by attempting to predict relapse at

Fig. 2 Regions predictive of relapse and their relationship to the predicted probability of relapse. Top row illustrates anatomical locations of
cortical and subcortical regions most important to relapse prediction. The middle row indicates the posterior probability of individual relapse over an
observed range (minimum to maximum in 20 even increments) of region ratios locally averaged across 10 bootstrapped resamples of the data set
and refitted to the derived classifier. A non-parametric LOESS model was fit to the predicted responses. Points about each line indicate predicted
probabilities from each resample while rugs of each plot indicate the density of observed values in the whole sample. The bottom row illustrates
corresponding distributions of random forest decision points (black) for these regions across underlying 1000 classification trees in the determination
of relapse status. These are compared to distributions of these regions for relapsing (red) and non-relapsing (blue) patients

Table 2 Classifier performance summaries: highest-performance models by site and time point

Location Time point Accuracy Balanced Accuracy Sensitivity Specificity PPV NPV BDR (Balanced Accuracy)

UCLA T1 82% 78% 90% 66% 83% 80% 68%(10)

T2 70% 62% 90% 33% 71% 66% 68% (-6)

TΔ 76% 66% 100% 33% 73% 100% 68 (-2)

UNM T1 60% 60% 66% 53% 57% 63% 52% (8)

T2 72% 71% 66% 76% 72% 71% 52% (19)

TΔ 52% 52% 66% 38% 50% 55% 52 (0)

Merged T1 54% 53% 65% 42% 57% 50% 54% (-1)

T2 76% 76% 73% 78% 80% 71% 54% (22)

TΔ 59% 59% 60% 57% 63% 55% 54% (5)

T1 Time point 1 (pretreatment), T2 Time point 2 (post-treatment), TΔ features derived from the change in values over ECT index, i.e., T2 - T1, PPV positive predictive
value, NPV negative predictive value, BDR baseline detection rate. ‘Positive’ class is non-relapse. Balanced accuracy–BDR is a proxy for the improvement of the
classifier above baseline chance levels of classification.
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UNM from pretreatment measures using the models
trained on UCLA data (see Supplementary methods).
Figure 3b illustrates the distribution of these cross-site
prediction performances. The mean BA obtained by
predicting relapse at UNM from UCLA models was 47%
(SD= 0.03%, range= 44–53%), less than the UNM BDR
of 52% and the averages of the two region ratios were not
consistently larger or smaller by relapse status across sites
(Supplementary Fig. 3).
Using the UNM cohort to train our classifier yielded a

BA of 60%, which is slightly above the 52% UNM BDR. In
addition, the highest-performing RF obtained by merging
the UCLA and UNM cohorts performed at near-chance
levels and below the BDR (BA= 53%, BDR= 54%).

Prediction from post-treatment measures
Prediction of relapse at UCLA using post-treatment

measures resulted in a 62% BA, below the 68% BDR. In
contrast, post-treatment measures were the best pre-
dictors of relapse at UNM yielding a BA= 71%, well
above the 52% BDR. Here, the right to left pallidum
volume ratio was the most discriminative feature.

Groupwise means of this feature did not differ (t=−0.21,
p= 0.82). The second most informative feature was left
pericalcarine to right precuneus cortical thickness ratio,
which tended (non-significantly) to be larger among non-
relapsing patients (t=−1.94; p= 0.06). Using the fitted
RF to predict simulated patients, we observed that pre-
dicted relapse was lowest when the right to left pallidum
volume ratio was ~0.9 and the left pericalcarine to right
precuneus ratio was ~0.7, but increased steadily as these
ratios deviated from these points (Fig. 2b).
RFs with BAs above the UNM BDR generally performed

poorly when used to predict relapse at UCLA from post-
treatment measures attaining an average BA= 54% (SD
= 0.06, range= 40–69%) with most falling below the
UCLA BDR of 68% (see Fig. 3b). Prediction of relapse at
UCLA using post-treatment measures resulted in a BA of
only 62%, below the BDR.
Classification using the combined cohorts resulted in a

BA of 76% using post-treatment measures. The left lateral
occipital lobe to left pericalcarine gyrus (t= 3.75, p=
0.0005) and left paracentral gyrus to left precentral gyrus
(t= 2.46, p= 0.019) ratios were most informative with
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Fig. 3 Distributions of balanced accuracies across all classifier parameterizations. a Performances of classifiers trained and tested within a
cohort. Horizontal red lines indicate the site-specific baseline detection rate. b Distributions of balanced accuracies achieved in cross-site predictions.
All models exceeding their respective baseline detection rates within site for UCLA at pre-treatment (b, left) and UNM post-treatment (b, right) were
used to predict relapse in the independent site. These performances are compared to the independent site’s respective baseline detection rate
shown in the horizontal red line
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both ratios being significantly larger in relapsers. Patients
with larger ratios had greater a predicted probability of
relapsing (Fig. 2c). Interestingly, the majority of this
model’s parameterizations were well above the BDR
suggesting it is relatively stable across parameterizations
(Fig. 3).

Prediction from measures of change
When examining pre to post ECT-related change in

structural imaging markers, both sites did not show pre-
dictive utility above their respective BDRs (UCLA= 66%
and UNM= 52%). Merging the two sites resulted in a BA
of 59% only slightly above the BDR of 54%.

Discussion
To our knowledge this is the first study to predict

relapse/recurrence of depression following ECT where
findings are expected to be relevant to prediction of other
antidepressant treatments. We used advanced classifica-
tion algorithms and novel feature representations
including structural neuroimaging, demographic, and
clinical measures to identify biomarkers of long-term
clinical outcome. Our investigation extends beyond many
classification-based studies by further interrogating our
fitted models to understand the relationships between
salient features and a patient’s relapse risk. This is an
important step in the application of machine learning to
data with clinical implications since a black-box algorithm
yield less information about the driving mechanisms.
Using these tools, we demonstrated that ratios and
asymmetries of particular cortical and subcortical brain
regions implicated in the pathophysiology of depression
present promising biomarkers for prognosis of symptom
recurrence and/or relapse.

Significance of intra and interhemispheric regional ratios
Remarkably, using an entirely data-driven approach, we

identified that the intra and interhemispheric ratios of
homologous or proximal regions present biomarkers of
symptom recurrence/relapse in MDD. The validity of
these findings is bolstered by the observation that the
selected ratios do not appear to be randomly distributed
throughout the brain as we would expect if we were
merely detecting noise. Instead, the constituents of these
ratios were either homologous or neighboring regions.
A substantial body of evidence suggests asymmetrical

neural representation of emotional control and proces-
sing31,32 and structural and functional imaging findings
commonly report lateralized effects in MDD33–35. Several
previous studies have related hemispheric asymmetry to
clinical outcome following antidepressant treatment. For
example, differential patterns of asymmetric functional
connectivity have been noted between rTMS responders
and non-responders36. The intracranial distribution of the

electric field induced by ECT, and therefore the set of
structures most affected, is shown to be impacted by
electrode placement37. Since both our sites used pre-
dominantly right unilateral electrode placement, regional
asymmetries and/or ratios observed post-treatment may
affect clinical outcome.

Regions influencing relapse risk
The highest performing model was obtained when the

cohorts were combined. Nonetheless within-site models
warrant discussion due to the significant age differences
between the cohorts. ECT has been established to have
greater clinical benefits in older individuals38, which
suggests that changes in neural integrity with age might
modulate the antidepressant mechanisms of ECT. Thus
differential sets of important features across site may
highlight age-related predictors of relapse risk.
Within the UCLA cohort we observed that the hemi-

spheric balance of cingulate isthmus thickness and the
ratio of left superior to left rostral middle frontal cortical
thickness were highly predictive of relapse from pre-
treatment ECT measures. Cingulate isthmus asymmetry
was additionally associated with sex (Supplementary
Fig. 4), which suggests sex is a potentially informative
predictor of relapse. Women are known to be at a two-
fold increased lifetime risk for MDD compared to men39.
This trend is reflected both by the higher proportions of
women and the higher relapse rates observed in women at
both our study sites. Structural and functional abnorm-
alities of the cingulate are repeatedly implicated in
depression40,41. Notably, prior studies assessing imaging
markers of longer-term outcomes have shown links with
pre-treatment cingulate volumes12,13. This region forms a
key part of the limbic system involved in memory and
other complex cognitive functions42. Our UCLA-based
model also identified the ratio of the left superior to left
rostral middle frontal cortical thickness as important. This
feature may point to altered reward and mood regulation
circuitry, which include dorsolateral prefrontal nodes.
The involvement of these regions is consistent with
widespread reports of fronto–striatal–limbic network
disruptions in MDD43–45.
Post-treatment measures best informed relapse predic-

tion at UNM. The asymmetry of pallidum volume and the
left pericalcarine to right precuneus cortical thickness
ratio was critical to prediction. The pericalcarine and
precuneus are cortical association regions in close proxi-
mity and reciprocally connected to the retrosplenial cin-
gulate observed in the UCLA cohort. Notably, the
precuneus forms part of the default mode network con-
sistently implicated in MDD46. In a sample overlapping
with this study, our group recently reported on differential
ECT-induced morphological changes in the pallidum
between responding and non-responding MDD patients
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following ECT47. The current findings suggest these
regions are also relevant to relapse. Structural pallidal
abnormalities are repeatedly implicated in MDD pathol-
ogy and again point to disruptions in
fronto–striatal–limbic circuitry though at different net-
work nodes48,49. Further, depressive symptomatology
including amotivation, anhedonia, apathy, and rumination
are often linked to abnormalities of the ventral striatum
and pallidum50–52, suggesting a potential functional
correlate.
Within-site classifiers were additionally tested by

attempting to predict relapse at the held-out site. These
classifiers’ BAs were below the independent sites’ BDRs.
These may result from systematic differences across the
two cohorts. Principally, UNM patients were significantly
older than UCLA patients and only the UCLA cohort was
tapered from medications during the acute phase of ECT
treatment. Age-related neurodegeneration well-
established53,54 and interactions with depression may
present confounds for classifiers trained on patients with
differing ages. Further, late onset depression may have a
different etiologies such as vascular contributions from
cardiovascular disease and hypertension55,56 that could
predispose geriatric patients to depressive symptoms. Ill-
ness duration and lifetime number of depressive episodes
are also likely to be greater in older individuals may
impact symptom recurrence8. Given these systematic
differences, future work will validate these models on
well-matched independent cohorts.
The highest performing model, in terms of BA above its

BDR, was obtained using post-treatment information
from the combined cohorts resulting in BAs consistently
above the BDR across nearly every model parameteriza-
tion, whereas site-specific classifiers inconsistently out-
performed the BDR. Here, the ratios of two pairs of
ipsilateral and neighboring left hemisphere cortical
regions were most informative in relapse prediction: the
paracentral to precentral cortical thickness ratio and the
lateral occipital to pericalcarine cortical thickness ratio.
Paracentral thickness has been linked with impulsivity in
MDD57 and emotional perception and interpretation58 A
recent review of 10 studies surveying 329 first-episode
patients and 340 healthy controls also reported a con-
sistent increase in the left paracentral lobe volume43.
Several studies have also reported change in motor cir-
cuits in relation to MDD59. Studies using transcranial
magnetic stimulation60 and ECT61 have specifically shown
significant changes in left lateralized motor-related cor-
tical excitability, suggesting a mechanism of treatment
response, which may also impact relapse.
The second highly predictive feature in the pooled

classifier was the left lateral occipital to left pericalcarine
cortical thickness ratio. White matter microstructural,
resting state connectivity, and volumetric abnormalities in

MDD have been noted in these regions62–65. In a study of
65 patients with recurrent MDD and 65 matched controls,
Na et al. identified significantly thinner lateral occipital
lobes in MDD patients versus controls66. The pericalcar-
ine is arguably less studied or implicated in MDD. How-
ever, prior studies have shown changes in gamma-
aminobutyric acid within this region in relation to dif-
ferent antidepressant treatments, including ECT67–69.
In the context of prior reports, the constituents of the

regional ratios informing our classifiers have plausible
biological grounding. Depression is considered a brain-
network disorder40, thus structural abnormalities are
expected and reported to occur in spatially diffuse
regions. As such, a data-driven approach capturing the
relative thickness/volume relationships of spatially dis-
tinct regions is valuable. As a brain-network disorder,
ECT-induced neural plasticity of these spatially diffuse
regions is a plausible mechanism by which ECT may
mediate relapse. A body of pre-clinical and neuroimaging
data suggest that changes in neural plasticity may con-
tribute to the antidepressant effects of ECT70,71. Symptom
recurrence may likewise relate to neuroplastic processes
which vary across brain regions and may return to pre- or
post-ECT homeostasis to predict future recurrence.
Though this interpretation remains speculative, our
results support that structural variations in particular
brain features before and after treatment impact future
relapse.
It is noteworthy that post-treatment measures yielded

more accurate predictions for both UNM and the merged
cohorts than pre-treatment or change measures. One
plausible reason for this is that changes in brain morpho-
metry induced by ECT are highly related to relapse and this
information is unavailable at pre-treatment. However, we
might expect change measures to be more informative than
either time point in isolation. But, from a statistical per-
spective, change measures include noise from both time
points, which is not proportionally offset by differing sig-
nals from pre- and post-treatment measures.

Limitations
While this is the first study to attempt prediction of

depression relapse following ECT, there are important
limitations. It was only possible to determine predictors of
relapse in patients initially showing treatment response
where the UCLA and UNM cohorts consisted of 17 and
25 ECT responders, respectively. As models using the
combined cohorts consistently outperformed the BDR,
while models from individual sites did not, within-site
models were likely underpowered. To maximize the
number of participants used to train our classifiers, we
used leave-one-out cross-validation. A related limitation
is that since the highest performing model was built using
the merged cohorts we cannot evaluate its generalizability.

Wade et al. Translational Psychiatry  (2017) 7:1270 Page 9 of 12

Translational Psychiatry



In addition, several patients transitioned from RUL to
BL electrode placement during ECT index. Because BL
arrangement is associated with higher remission/response
rates it is also possibly associated with differential relapse
rates relative to RUL. However, only a minority of patients
were transitioned: Four at UNM (three of whom relapsed)
and one at UCLA (a non-relapser). The small number of
transitioned patients precludes statistical associations of
relapse and transition status.
Differences in medication status by site is noteworthy.

The UCLA cohort was tapered off of psychotropic med-
ication before ECT unlike UNM patients. Several studies
have noted that ECT increases the permeability of the
blood-brain barrier72,73 promoting interactions between
ECT and medication. Such an interaction could augment
clinical outcomes between sites.
The use of m-/c-ECT is also potentially meaningful.

Although we observed no association between m-/c-ECT
status and relapse rates in either site we did not include
m-/c-ECT status as a predictor due to its ostensible lack
of influence and because it is an unknown factor at each
time point in practice.
Though the poor generalizability of the classifiers

trained within site is possibly due to overfitting and/or
small sample sizes, biological differences between elderly
and non-elderly patients may be relevant. Since the
highest performing models were derived from pooling the
cohorts we anticipate improved generalizability with lar-
ger samples. Further, we acknowledge that our definition
of relapse as an initially responsive patient (i.e., reduction
of HAM-D by ≥ 50%) and a subsequent return to a HAM-
D ≥ 17 is one of several possible definitions, to avoid a
potential increase in type 1 errors we did not attempt
classification of relapse according to other definitions.
A further criticism is the use of a grid-search over a

large parameter space whereby one may expect to identify
models exceeding the BDR merely by chance. However,
rather than viewing each parameterization of the model as
a separate model, the identification of a set of parameters
maximizing the model’s performance can simply be
viewed as the optimization of a single model. If, however,
each reparameterization of the model is viewed as an
independent model, the proportion of parameterizations
yielding performances above chance can be evaluated
statistically. This latter view is explored in Supplementary
Results Section.

Conclusions
Though much work remains to develop models with

cross-site predictive value, our current findings are novel
and add important new leads. For each site we identified
models that performed well above their respective BDRs.
Currently, post-treatment measures appear most pre-
dictive. Models based on pretreatment measures might be

useful for clinical decisions regarding patient exposure to
the unwanted side-effects of ECT if benefits are not
enduring. However, post-treatment models, which yielded
BAs between 71 and 78%, may contribute towards more
targeted monitoring of patients at elevated risk of relapse
allowing for more timely prevention strategies.
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