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ABSTRACT

Foreground segmentation in video sequences is a classic top-
ic in computer vision. Due to the lack of semantic and prior
knowledge, it is difficult for existing methods to deal with so-
phisticated scenes well. Therefore, in this paper, we propose
an end-to-end two-stage deep convolutional neural network
(CNN) framework for foreground segmentation in video se-
quences. In the first stage, a convolutional encoder-decoder
sub-network is employed to reconstruct the background im-
ages and encode rich prior knowledge of background scenes.
In the second stage, the reconstructed background and current
frame are input into a multi-channel fully-convolutional sub-
network (MCFCN) for accurate foreground segmentation. In
the two-stage CNN, the reconstruction loss and segmentation
loss are jointly optimized. The background images and fore-
ground objects are output simultaneously in an end-to-end
way. Moreover, by incorporating the prior semantic knowl-
edge of foreground and background in the pre-training pro-
cess, our method could restrain the background noise and
keep the integrity of foreground objects at the same time. Ex-
periments on CDNet 2014 show that our method outperforms
the state-of-the-art by 4.9%.

Index Terms— Foreground segmentation, background
modeling, convolutional neural network

1. INTRODUCTION

Foreground segmentation in video sequences is classic top-
ic in computer vision. It is the fundamental step for many
high-level computer vision tasks, such as activity recognition,
object tracking and automated anomaly detection in video
surveillance. In the last two decades, many algorithms have
been proposed to solve this problem [1, 2, 3, 4, 5, 6, 7, 8, 9].

Statistically modeling background is a prevalent strategy
to extract foreground for its robustness and efficiency. Some
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typical methods, such as GMM [4], KDE [5], and ViBe [3] as-
sume the independence among pixels and model the variation
of every pixel over time. Several other works [6, 1, 7] attempt
to employ more discriminative hand-crafted features. Never-
theless, all existing methods perform poorly in scenes where
the night light, heavy shadows, or camouflaged foreground
are involved, because they all do not consider the semantic
explanation of the scenes. And usually, post-processing has
to be employed by them to smooth the foreground edges and
reduce the noises on the foreground.

In general, the existing background modeling methods are
considered unsupervised. The fact, however, is that there stil-
l exist many parameters in them to control the initialization,
classification, and update rate of background model, etc., and
unfortunately, all these parameters have to be set to adapt to d-
ifferent characteristics of videos. In order to achieve high per-
formance on the whole benchmark, a variety of experiential
rules for setting the parameters have to be designed accord-
ing to characteristics of the whole benchmark. This implies
that the background model is actually tuned with the test da-
ta. Therefore, it could be argued that the existing background
modeling methods might not be considered as unsupervised.
It would be more reasonable to exploit some labeled data to
train the model, and others to test it.

Therefore, in this paper, we propose a supervised end-
to-end two-stage deep convolutional neural network to seg-
ment the foreground regions, utilizing semantic information
learned by the network. An overview of the network is shown
in Fig. 1. It consists of a background reconstruction stage and
a foreground segmentation stage. Our network is designed
based on the deep fully-convolutional network (FCN). FCNs
can extract the semantic features of the input. And through
supervised learning, it shows good performance in pixel-wise
labeling tasks, such as semantic segmentation [10]. However,
the original FCN takes a single image as input, so that it lacks
the analysis on the foreground motion in its segmentation re-
sults, which is necessary to distinguish moving objects from
non-moving objects in the foreground segmentation task. To
combat this, we restore the background image first, and then
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concatenate it with the input image as multi-channel input for
segmentation network. Consequently, the motion information
of the foreground is naturally implied in the image pair of the
input image and its reconstructed background.

Specifically, in the background reconstruction stage, we
adopt a deep convolutional encoder-decoder network, which
establishes the background model according to training im-
ages and outputs the refined reconstructed background. Such
a background model encodes rich prior knowledge of back-
ground scenes and can handle various background changes
and generate clean background images. In the segmentation
stage, we adopt a multi-channel fully-convolutional network
(MCFCN), which is a variant of FCN. It processes a multi-
channel input, which is a six-channel concatenation of the
reconstructed background and the current image. The im-
age pair of reconstructed background and current image nat-
urally contains motion information of the foreground. There-
fore, besides utilizing the semantic information, the MCFCN
can distinguish the moving objects more accurately than the
FCN that has single-image input. The two sub-networks are
jointly trained for the final optimization, so that two tasks of
background reconstruction and foreground segmentation sub-
networks benefit from each other in the process of iteration.

The contribution of this paper is three-fold. First, we pro-
pose a new two-stage neural network architecture for fore-
ground segmentation, which encodes rich background knowl-
edge and combines semantic features with motion informa-
tion. Second, with the reconstructed background and curren-
t frame as input together, we adopt a multi-channel fully-
convolutional network to segment the foreground objects,
Third, the end-to-end network is jointly optimized with a
multi-task loss including reconstruction loss and segmenta-
tion loss. The performances of the two sub-networks are mu-
tually promoted by joint optimization.

2. RELATED WORK

Background Reconstruction. Traditional foreground detec-
tion approaches often reconstruct the background by PCA
[11] or RPCA [12, 13]. Oliver et al. [11] proposed a Prin-
cipal Component Analysis (PCA) based method that builds a
vectorization representation with a set of images, and decom-
poses the representation via PCA to restore the background.
In the last decade, Robust PCA (RPCA) based methods are
proposed to decompose the foreground and background. Can-
des et al. [12] proposed a convex optimization to address
the RPCA-PCP problem. Recently, Rodriguez and Wohlberg
[13] proposed an incremental PCP algorithm that consumes
low memory and calculation.

Convolutional Autoencoder. Denoising autoencoders
[14] take corrupted image as input and then output the original
image. But the original denoising autoencoders [14] can only
undo damages that are localized and low-level. In [15] Pathak

et al. presented Context Encoders, a convolutional encoder-
decoder network that can generate the contents of an arbi-
trary missing image region conditioned on its surroundings.
In Context Encoders, the missing image regions can be re-
garded as noises. Thus, Context Encoders share the same
characteristics with denoising autoencoders. Regarding the
foreground as noises, we use a similar convolutional encoder-
decoder framework for background reconstruction as Context
Encoders and get a satisfactory reconstruction result.

Semantic Segmentation. FCN [10] has shown good per-
formance in semantic segmentation. Based on FCN, Deeplab
[16] architecture uses atrous convolutions to produce a more
dense feature map and uses CRF [17] to get a better localiza-
tion especially along the edge of objects. We adopt almost the
same network architecture as the VGG-16 based DeepLab-
LargeFOV in the foreground segmentation sub-network, ex-
cept some modifications like that the first layer is changed to
take a 6-channel input, which is the concatenation of the re-
constructed background image and the current input frame.

For paired-image inputs, siamese networks [18] has been
widely used. Siamese networks is a two-stream network ar-
chitecture that has two same branches. Without using siamese
networks, Dosovitskiy et al. [19] and Khan et al. [20] adopted
one-stream multi-channel networks to process two input im-
ages in optical flow prediction and weakly supervised change
detection. The one-stream multi-channel network is more ef-
ficient than the siamese networks. In the second stage, we
adopt the one-stream multi-channel network architecture to
locate the foreground regions in the image, inputting the cur-
rent frame image and background image.

3. OVERVIEW

An overview of the proposed two-stage network is shown
in Fig. 1. The first-stage sub-network is a convolution-
al encoder-decoder network for encoding rich background
knowledge and background reconstruction. Next, the second-
stage sub-network is an MCFCN to segment the foreground
objects by inputting the current frame and its reconstructed
background image. Finally, the whole network is jointly op-
timized with a multi-task loss.

3.1. Encoder-decoder Network for Background Recon-
struction

Inspired by the network in [15] used for inpainting, we adop-
t an encoder-decoder network to reconstruct the background
image. The encoder contains a set of convolutions, and repre-
sents the input image as a latent feature vector. The decoder
restores the background image from the feature vector. Gen-
erally, in the encoder-decoder networks [21, 15, 14], the latent
feature vector distils the most useful information from the in-
put image. In our encoder-decoder network, the vector repre-
sents the context information and encodes the rich knowledge
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Fig. 1. An overview of the two-stage deep neural network for foreground segmentation. The current frame is input into the
encoder-decoder network to reconstruct the background. Then the reconstructed background image is concentrated to the
current frame and fed into the following fully convolutional network to segment the foreground.

of background scenes. Then the decoder restores the clean
background image from the latent feature vector.

Our encoder-decoder network is designed following the
pattern as DCGAN [22] and Context Encoders [15]. The lay-
ers of the encoder-decoder network are all convolutional lay-
ers. In the encoder part, the number of nodes in each layer
is reduced layer by layer. As in [22] and [15], we use strided
convolution layers with the stride of 2 instead of using spatial
pooling layers to downsample the layer’s input. We make the
convolution layers learn a pooling operation without limited
to “max” or “mean” operation [22], which allows the network
to learn customized downsampling function.

We choose the L2 loss as the reconstruction loss, and
the loss function of the encoder-decoder network can be ex-
pressed as follows:

Lrec =
∑
i,j,c

‖Bijc −B∗
ijc‖2, (1)

where Bijc is the value of the reconstruction background im-
age on the i-th row, the j-th colume and c-th color channel.
And B∗ is the ground truth background image.

The ground truth background images for each training
frames are manually generated according to their label maps.
After training, the encoder-decoder network can separate the
background from the input image and restore a clean back-
ground image. This is a good stepping-stone for the following
segmentation step.

3.2. MCFCN for Foreground Segmentation

The second stage of our network is a multi-channel fully-
convolutional network (MCFCN). Its input is the concatena-
tion of the reconstructed background image and the curren-
t frame. The network can learn semantic knowledge of the
foreground and background. Therefore, it could handle vari-
ous changes better, like the night light, shadows and camou-
flaged foreground objects. And by inputting the image pair of

the background image and current frame, it can easily catch
motion information, thus inferring the moving object easily.
Besides, according to our experiment results, the network seg-
ments rather refined foregrounds without any post processing
such as CRF when adding the background image as input.

As mentioned in [19, 20] and proven by our initial exper-
iment, a multi-channel network has comparable performance
to the traditionally siamese network [18] for paired images.
However, the siamese network consumes as almost twice the
memory as an MCFCN. Therefore, we take the 6-channel in-
put by concatenating the reconstructed background image to
the current frame, and then adopt MCFCN to segment the
foreground regions from the input.

The MCFCN derives from the VGG-16 based DeepLab-
LargeFOV network [16], and we make two modifications.
The one is that original first layer with 3-channel input is sub-
stituted with a new layer taking 6-channel input. The other
is to change the arous sampling rate in the “fc6” layer from
12 to 6. This leads to a smaller receptive field, which brings
benefit to segment small objects.

For an input image, given its ground truth of foreground
segmentation map L and the output probability map P from
the softmax layer of the network, the segmentation loss is cal-
culated as,

Lseg =
∑
i,j,k

logPi,j,k1[k = Li,j ]1[Li,j 6= lign], (2)

where 1 is the indicator function. Pi,j,k is the probability for
class k of the element on the i-th row and the j-th column.
And Li,j ∈ {0, 1,−1} is the ground truth label , for which
1 stands for the foreground, 0 stands for the background and
−1 stands for the ignored regions (lign = −1).

3.3. Joint Optimization

Multi-task Loss. Previous work on object detection [23] in-
dicates that multi-task learning usually leads to an improve-
ment on performance in tasks that relate to each other. In our



network, the two stages can be integrated into an end-to-end
architecture and trained jointly. Combining Eq. 1 and Eq. 2,
the multi-task loss can be represented as:

L = Lrec + λ× Lseg, (3)

where λ is a weight parameter.
In this way, the loss computed at the segmentation stage

can be back-propagated to the encoder-decoder network. The
two losses (Lrec and Lseg) lead to a more refined background
reconstruction and segmentation maps.

Training Details. We train the two-stage network in three
steps. In the first step, we train the encoder-decoder sub-
network using single loss Lreg . In the second step, we fix
the parameters of the encoder-decoder sub-network, and train
the MCFCN using single loss Lseg . Finally, we train the two
sub-networks jointly with the parameters of two pre-trained
sub-networks. The three-step training assures a faster conver-
gence to the optimal value than directly optimizing the entire
network in one single step.

The three steps all adopt the mini-batch stochastic gradi-
ent descent (SGD) method to optimize the network. The mini-
batch sizes for the three steps are 4, 2 and 1 respectively. And
the learning rate is set to 10−4, 10−3 and 10−5 respective-
ly. The first step trains the sub-network with 20k iterations.
The second and the third step take 6000 and 3000 iterations
respectively. The MCFCN is initialized with the weights of
pre-trained DeepLab model [16]. And the other layers of the
whole network is initialized from a zero-centered Normal dis-
tribution with standard deviation 0.01.

3.4. Implementation Details

Framework Details. We use the modified CAFFE [24] code
released with DeepLab v2 [25, 16] to implement the whole
neural network. The input image (I) is resized to 128 × 128
(I1) and 961×961 (I2), and I1 is fed into the first sub-network
to get the reconstructed background image (B) with the size
of 128 × 128. Then B is resized to size 961 × 961 and fed
into the second sub-network with I2 together. The resize op-
eration between the two sub-networks is implemented by a
neural network layer that is initialized with bilinear interpo-
lation’s weights. After initialization, this layer’s parameters
do not update in the training process. Our initial experiment
shows the parameter λ in Eq. 3 has little impact on the per-
formance. So, λ is set to 1 in this paper. On a computer with
Intel i7 CPU with 4.00GHz and a single NVIDIA GTX Titan
X GPU, our algorithm runs at five fps on test videos.

4. EXPERIMENTS

4.1. Dataset

We conduct experiments on the public ChangeDetection
benchmark 2014 (CDNet 2014) [26] to evaluate the perfor-
mance of our algorithm. CDNet 2014 dataset has 53 video
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Fig. 2. Visual comparison of foreground segmentation result-
s. From top to bottom, the sequences are “fluidHighway”
from Night Videos, “boulevard” from Camera Jitter, “peo-
pleInShade” from shadow, “park” from Thermal and “skat-
ing” from Bad Weather.

sequences belonging to 11 diverse categories. All video se-
quences are captured in real scenes. Since ground truth is
required in the training step of our network, we build up the
training and testing data set by dividing the frames having
ground truth. Specifically, suppose there are n frames hav-
ing ground truth, numbered as 1, . . . , n, the frames numbered
as [1, bn2 c] are used as training samples and [bn2 c + 1, n] are
used for testing. We select the F-Measure to evaluate the per-
formance, the same as CDNet 2014.

We train our network on each video’s training frames sep-
arately. For some videos, all their training frames have no
foreground regions. In this case, we randomly paste 1 or 2
objects as the foreground, which are cut from the object re-
gions of PASCAL VOC 2012 [27] .
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Table 1. F-measures for subset of ChangeDetection benchmark 2014 [26].PTZ: Pan/Tilt/Zoom; BW: Bad Weather; Ba: Base-
line; CJ: Camera Jitter; DB: Dynamic Background; IOM: Intermittent Object Motion; LF: Low Framerate; NV: Night Videos;
Sh: Shadow; Th: Thermal; Tu: Turbulence; Overall is the average F-measure of 11 categories. C-EFIC: [6], FTSG: [7],
PAWCS: [2], SuBSENSE: [1], SharedModel: [8], GMM: [4], KDE: [5],ViBe [3].

Approach PTZ BW Ba CJ DB IOM LF NV Sh Th Tu Overall

KDE 0.0512 0.7522 0.9101 0.5748 0.6226 0.3911 0.5097 0.4057 0.8157 0.7573 0.5004 0.5719
GMM 0.1937 0.7819 0.7845 0.5920 0.6650 0.4841 0.5008 0.4003 0.8047 0.6377 0.5364 0.5801
ViBe 0.0666 0.7734 0.8793 0.4476 0.6357 0.4726 0.3286 0.4019 0.8241 0.5512 0.6058 0.5443
C-EFIC 0.6140 0.7731 0.9382 0.8216 0.5531 0.5868 0.6984 0.6502 0.8808 0.8097 0.7230 0.7317
FTSG 0.3923 0.8672 0.9321 0.7066 0.8750 0.8423 0.7133 0.5347 0.8876 0.7791 0.7922 0.7566
PAWCS 0.5728 0.7937 0.9384 0.7880 0.8995 0.7756 0.7531 0.4193 0.9016 0.7975 0.7583 0.7634
SuBSENSE 0.4165 0.8665 0.9527 0.7995 0.8043 0.7259 0.6859 0.5127 0.9037 0.7820 0.8600 0.7554
SharedModel 0.4567 0.8072 0.9558 0.8034 0.8047 0.6834 0.7936 0.4794 0.8907 0.7889 0.8493 0.7557

Baseline-1 0.2815 0.7505 0.8681 0.7587 0.2369 0.6289 0.5780 0.3961 0.7450 0.7651 0.2993 0.5731
Baseline-2 0.5150 0.7228 0.9048 0.8706 0.6796 0.7779 0.7267 0.8042 0.8954 0.8373 0.4242 0.7417
Ours 0.4493 0.8004 0.9630 0.8699 0.7405 0.8734 0.8075 0.6851 0.9216 0.8536 0.6929 0.7870
Ours(joint) 0.5168 0.8550 0.9680 0.8988 0.7716 0.9066 0.7491 0.7695 0.9286 0.8586 0.7143 0.8124

4.2. Experiments on Background Reconstruction

To verify the performance of background reconstruction, we
design the first baseline (named Baseline-1) by appending a
threshold classifier to the reconstruction network.

We compare the Baseline-1’s foreground segmentation re-
sults with original PCA-based method (PCA for short) [11]
and an incremental PCP-based RPCA method (RPCA for
short) [13] on CDNet 2014. The three methods all use the
threshold-based classifier to segment the foreground regions.
We change the threshold from 0 to 0.5 to find the best value
for each method. Fig. 3 shows how the F-measure varies with
the threshold. It is clear that our method has better perfor-
mance than other methods. The reason is that the background
reconstruction of our method is more accurate than others.

In spite of the good performance on background recon-
struction, a threshold-based classifier only achieves an F-
measure less than 0.6. This classifier can not handle cases like
the night light, shadows and camouflaged foreground well.
We need a better classifier to segment the foreground regions
with the reconstructed background image and input frame.

4.3. Experiments on Foreground Segmentation

To evaluate how much the reconstructed background image
benefits the segmentation result, of the foreground segmenta-
tion sub-network, we design the second baseline (Baseline-2),
which segments the foreground using a 3-channel FCN shar-
ing the same structure with our multi-channel FCN at the sec-
ond stage. It takes the current image as input and produces
the foreground segmentation result. We train the Baseline-2
in the same way as our foreground segmentation sub-network.
We test both our two-stage network and Baseline-2 on the
CDNet 2014 dataset [26] and compare their performance.

In Tabel 1, it is clear that the two-stage network perform-

s better in most scenes than Baseline-2. Thus, we conclude
that the segmentation network can infer the foreground re-
gions more accurately by adding background image as input.

4.4. Evaluation on ChangeDetection benchmark

We compare the results of our two-stage network with the
state-of-the-art methods and several classic methods on CD-
Net 2014 in Table 1. We download the foreground segmenta-
tion results of some method [6, 7, 2, 1, 8, 4, 5, 3] from CDNet1

and calculate the F-measure on our testing data. Besides, the
result of ViBe is obtained with BGSLibrary [28]. In Table 1,
our method with joint optimization achieves the best perfor-
mance in 5 out of the 11 categories. The two-stage network
improves the state-of-the-art by 2.36%. And after joint opti-
mization, its has another 2.54% gain.

In scenes of Camera Jitter, Intermittent Object Motion,
Night Video and Thermal, our method outperforms the oth-
ers by a large margin. There are lots of camouflaged fore-
ground regions in the cases of Night Video, Intermittent Ob-
ject Motion and Thermal. Combining semantic knowledge
and motion information, our network can recognize the cam-
ouflaged foreground objects. And the good performance on
Shadow, Camera Jitter and Night Video categories demon-
strates the effectiveness of our method in dealing with illumi-
nation changes, various background changes, and shadows.
Fig. 2 shows some visual comparisons of foreground segmen-
tation results. The segmentation maps of our method have less
false detections in the background regions and more refined
boundaries in the foreground region. In the scene of Shadow,
compared to other methods, our method removes almost all
the shadow. For Bad Weather, the camouflaged foreground
regions are recognized correctly by our method.

1http://changedetection.net/



5. CONCLUSION

We design an end-to-end two-stage deep CNN architecture
for joint background reconstruction and foreground segmen-
tation. An encoder-decoder network is used to reconstruct the
background image, and an MCFCN is introduced to segmen-
t the foreground with the concatenation of the reconstructed
background image and the current frame. At last, the two sub-
networks are jointly optimized with a multi-task loss. Exper-
imental results on CDnet 2014 demonstrate the superiority of
the proposed approach.
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