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Abstract—This paper proposes a new methodology of 

achieving human-like automated driving, and presents a decision 

making framework and the minimum thresholds of the occupied 

widths of multi-point turn for autonomous vehicles. The concept 

of human-like automated driving and the multi-point turn 

decision making framework for autonomous vehicles are 

proposed at first. Then, the geometric characteristics that are 

provided by the reference paths of turn around manoeuvres are 

analysed. The minimum operation widths from U Turn to Five-

Point Turn are investigated respectively, and the methodology 

and results are then generalized to solve the multi-point turn (i.e. 

N-Point Turn) scenario. Finally, by using the derived results and 

characteristics analysed above, the functions that are able to 

evaluate the most feasible turn around manoeuvre within the 

current situation are provided. 

Keywords—human-like automated driving; turn around 

manoeuvre; multi-point turn; decision making. 

I. INTRODUCTION 

The on-vehicle automation system is primarily developed 
to replace the human driver in driving tasks in order to enhance 
the driving performance and traffic efficiency [1]-[7] and avoid 
the possible fatalities [8]-[12] (e.g. correcting manipulation 
mistakes, reducing the traffic crashes related to human 
behaviours and decisions, etc.). However, most published 
researches neglect that the human imperfection and preference 
not always leads to negative consequences. An explicit 
example is the motion sickness, which has been confirmed that 
it is one of the primary after-effects while riding an 
autonomous vehicle [13]-[16]. In order to mitigate the 
undesired influence and increase the public acceptance, a 
functionality which is able to imitate the behaviours of human 
drivers on the premise of safety is required. This paper aims to 
deliver the preliminary effort of achieving the human-like turn 
around automated driving. 

Being one of the common vehicle driving scenarios in both 
rural and urban area, the turning manoeuvre has been 
researched for over twenty years [17], [18]. Turn around is a 
specific version of turning manoeuvres, and can be seen as a 
general terminology that describes the vehicle behaviours 
while reorienting to the opposite heading direction. This 
manoeuvre is often executed under emergent or unexpected 
situations; for instance, driving into a dead end street, avoiding 

front obstacles and traffic [19], interrupting by a higher-priority 
driving mission, redirecting to the new destination, etc. As the 
pioneer in developing autonomous vehicles, Google realises 
that turn around is one of the trickiest driving tasks even for a 
professional driver to master. Therefore, Google Cars are 
assigned to execute hundreds of multi-point turns per week 
with the purpose of improving the performance while operating 
these difficult driving manoeuvres [20]. 

Since the heading direction of a vehicle can be adjusted 
through steering the front wheels during forward or backward 
movements, turn around manoeuvres can be divided into two 
categories: One enables the vehicle to achieve target (i.e. turn 
180 degrees) without any transition between forward driving 
and reversing, including detours and U Turn; the other is 
comprised of multiple forward and backward reorientations, 
which is so called N-Point Turn. Apart from the former has the 
possibility to provide efficient performance but requires a 
broad area, the latter can be manipulated within the permitted 
width less than two standard traffic lanes.  

This paper presents a multi-point turn decision making 
framework and derives the related minimum thresholds of the 
occupied widths; the reference paths are referred to the Reeds-
Shepp path [21] so as to approach human-like behaviours that 
drivers prefer to make a brief stop while operating the hand 
steering wheel from one direction to the other. The remaining 
sections of the paper are organised as follows. Section II 
introduces the human-like automated driving framework and 
the multi-point turn decision making flowchart for autonomous 
vehicles. Section III remarks the geometric characteristics that 
are followed by the reference paths of multi-point turn and 
derives the minimum operation widths from U Turn to Five-
Point Turn respectively, which can be generalized to N-Point 
Turn. By taking advantage of the outcomes which are acquired 
from the prior derivations, two equations that calculate the 
minimum number of multi-point turn based on the 
environmental information are provided in Section IV. Finally, 
the contributions of this paper are concluded in Section V. 

II. PROPOSED FRAMEWORKS 

Fig. 1 presents the framework for achieving human-like 
automated driving. The concept of human-like automated 
driving can be primarily divided into three parts, which are 



 

the motion planning, the driver behaviour identification and the 
tracking control. In the motion planning section, the target is to 
utilise existed planning techniques to generate the vehicle-
dynamics-based trajectory of the determined driving task [5], 
[9], [22]-[24]. On the other hand, the purpose of the driver 
behaviour identification part is to classify the real driving data 
from human drivers into selected number of different driving 
styles (e.g. Aggressive, Moderate, and Mild) through machine 
learning techniques [25]. Once the values of style-related 
parameters are generated, the results will be combined with the 
vehicle-dynamics-based trajectory in the motion planning 
section to modify relevant variables and enable the trajectory 
planner to provide human-like trajectories. Finally, the control 
algorithm tracks the trajectories of different driving styles in 
the tracking control part and enables the autonomous vehicle to 
perform human-like automated driving. 

The perception system of an autonomous vehicle is 
composed of several types of sensors (e.g. Radar, Camera, 
Lidar, GPS, etc.). It provides the autonomy with surrounded 
environment information so as to execute decision making and 
planning process and guarantee the driving safety. In this 
paper, we assume that the ego vehicle equips a decent 
perception system which has the ability to observe and measure 
all the required environmental information. It should be noticed 
that the following figures and examples are based on left-hand 
traffic regulations (e.g. UK, JP, etc.). 

Fig. 2 shows a basic traffic scenario while the vehicle is 
performing driving tasks, where P is the middle point of the 
vehicle rear axis; a is the lateral distance from point P to the 
right permitted border and d is the full permitted width which 
limits the active area of the vehicle. As mentioned previously, 

the request of executing 180 degrees turn cannot be expected in 
most instances and will have a higher priority. Hence, it is 
crucial to evaluate the feasibility of achieving the turn around 
target under the current environmental conditions and select 
the most convenient solution. 

 

There is no doubt that a turn around manoeuvre can be 
treated as a high-risk activity since its operational area will 
overflow the current driving lane. As each transition between a 
forward and a reverse cornering costs a period of time, the 180 
degrees turning with the less number of points is preferred to 
shorten the risk period. In order to realise the above 
functionalities, a general decision making framework is 
proposed in Fig. 3. D1, D3 and DN represent the minimum 
utilised width of U Turn, Three-Point Turn and N-Point Turn 
respectively, where N is requested to be an odd number 
according to the property of multi-point turn. 

 
Fig. 1. The general framework for an autonomous vehicle to achieve human-like automated driving. 

 
Fig. 2. A typical scenario while activating the turn around manoeuvre. 



 

Starting with normal forward driving, the vehicle autonomy 
is assumed to be able to determine the necessity of turn around 
and the maximum acceptable value of N referring to the traffic 
conditions, the vehicle dimensions and the passenger’s 
command. Once the request has been approved, both the full 
width d and the lateral distance a between P and the right 
boundary will be measured by the vehicle perception sensors. 
If a is equal to or greater than D1, a U Turn will be selected and 
executed from the current position; if a is less than D1 but d is 
equal or greater than D1, the vehicle will remain forward 
driving and reposition its location until the new a is equal to D1 
in order to operate a U Turn from the new location. The same 
strategy is evaluated in selecting Three-Point Turn up to 
maximum acceptable N-Point Turn. Considering the 

preference of passengers and the constraints of vehicle 
dimensions, the vehicle is asked to remain forward driving if d 
cannot support the maximum acceptable N-Point Turn. This 
forward driving stage will be maintained until the new d is 

equal or greater than one of D1, D3, , DN. 

III. ANALYSIS OF THE TURN AROUND MANOEUVRES 

This section illustrates and derives the narrowest requested 
road width D1, D3, D5 and DN, and the optimal reference paths 
that are based on geometric circles for a vehicle to achieve turn 
around tasks. To simplify the problem, the ego vehicle is 
considered as a point model (i.e. the point P in Fig. 2); and its 
heading direction is required to converse (i.e. turn 180 degrees) 
to complete the manoeuvre. A turn around manoeuvre 
comprises one or more forward and backword movements 
(Exception: U Turn is formed with only one forward 
movement); and will occupy the adjacent area which might be 
the oncoming traffic lane. Considering the safety and the 
efficiency, we assume that the hand steering wheel is steered to 
either the left or the right full lock position with cornering 
radius Rlock during each forward or backward driving; where 
Rlock can be calculate from the turning circle provided by car 
manufacturer. Moreover, the left and the right road boundaries 
are assumed to be two parallel lines and the turn around 
mission has to be operated within the area. 

A. Geometric Properties and Constraints 

The hand steering wheel (e.g. Ackermann Steering Angle 
in the Bicycle Model) controls the vehicle cornering radius and 
the driving path. As the hand steering wheel continues 
inputting the full lock steering signal while turning, the driving 
path becomes an arc or a circumference of the circle which has 
radius Rlock. Therefore, three geometry-related properties and 
constraints are depicted below. 

1) Remark 1: The reference path of N-Point Turn is 

formulated by N arcs from N different circles, where N is an 

odd number. 

2) Remark 2: Two circles that govern the sequential path 

pieces for a vehicle to converse the cornering direction are 

“tangented” at the transition point, at which the vehicle is 

requested to stop and manipulate the hand steering wheel to 

the opposite full lock position. Hence, the centres of the two 

circles are symmetric with each other to the transition point. 

3) Remark 3: Each forward or reverse cornering has the 

ability to adjust the heading direction of the vehicle. With the 

purpose of finding the narrowest operation width, the process 

of executing a N-Point Turn has to get the utmost out of the 

available space. In other words, the start, the end and the 

transition points of the reference path have to be placed on 

either the left or the right road borders. 

B. U Turn (N=1) 

To converse the heading direction of a vehicle, U Turn is 
the simplest and most efficient solution a driver can operate, as 
shown in Fig. 4a. The reference path of U Turn can be treated 
as the arc of a semicircle with radius r if the steering angle is 
fixed. With manipulating the hand steering wheel at the full 

 
Fig. 3. The decision making framework for an autonomous vehicle to 

perform the most suitable turn around manoeuvre. 



lock position (r = Rlock) while cornering, the minimum 
threshold of the road width D1 for a vehicle to perform a U 
Turn can be acquired as in (1). 

 D12r2Rlock 

 

C. Three-Point Turn (N=3) 

Although U Turn is preferable to other turn around 
manoeuvres, it might not be suitable under normal driving 
scenarios. The primary reason is that the driving path of U 
Turn will cross more than two standard traffic lanes, but the 
permitted width for a vehicle to converse the driving direction 
is often less than D1. In order to achieve the turn around task 
within the above situation, the vehicle has to be stopped before 
breaking through the right road boundary and made a reverse 
with opposite steering but not to exceed the left road boundary; 
once the lateral distance to the right road boundary could afford 
the remaining turning, the vehicle makes the second stop and 
performs another forward cornering to finish the turn around 
manoeuvre, which is known as Three-Point Turn. 

In general, Three-Point Turn comprises two forward and 
one reverse cornering. According to the geometric properties 
and the full lock position steering assumption, the reference 
path of Three-Point Turn can be decomposed into the arcs from 
three different circles with same radius Rlock. Fig. 4b depicts the 
scenario of utilising the narrowest road width to operate a 
Three-Point Turn, where O1, O2, and O3 are the centres of 
circles that guide the vehicle to drive from the start point to the 
right road boundary, reverse to the left road boundary, and 
finalise the remaining cornering respectively; S1 and S2 are the 
vehicle stop points (i.e. transition points) at the right and the 
left road boundaries; D3 is the minimum requested road width 
to implement a Three-Point Turn. Note that the points O1, End, 
Start and O3 are on the same line which is vertical to the road 
direction. 

To find D3, the line O1Start and the line O3End are first 
discussed; both their lengths are equal to Rlock. Accordingly, the 
lengths of the line O1End and the line O3Start are equal, and 
can be acquired as (Rlock – D3). Considering the properties of 

congruent triangles, the lateral distances from O2 to the left and 
the right road boundary can be determined, which also 
illuminate the relation between D3 and Rlock, as shown in (2). 

 D32Rlock–D32Rlock/ 

D. Five-Point Turn (N=5) 

Five-Point Turn is another possible strategy to complete the 
turn around mission. It will consume more time, but can be 
applied to the situation which the permitted width is narrower 
than the minimum threshold D3 of Three-Point Turn. The 
reorientation sequence for Five-Point Turn requires an 
additional forward and an additional backward cornering to 
compensate for the diminished width, since the maximum 
achievable turning angle of each path piece (e.g. from Start to 
S1, from S1 to S2, etc.) is reduced. 

In other words, the arcs from five different circles 
formulate the reference path of Five-Point Turn, including 
three forward and two reverse turnings. Taking the geometric 
properties and the aforementioned assumptions into account, a 
specific distribution of the five circles with same radius Rlock is 
able to minimise the occupied width, which is illustrated in 
Fig. 5. O1, O2, O3, O4 and O5 are the centres of the above 
circles that guide the vehicle to complete the turn around 
manoeuvre. S1 and S3 are the transition points when the vehicle 
reaches the right border during the Five-Point Turn; S2 and S4 
are the ones at the left border. D5 is the lateral distance that 
represents the lower limit of the available width to perform a 
Five-Point Turn. Similar to Fig. 4b, the points O1, End, Start 
and O5 can be connected to form the line that is vertical to the 
left and the right operation borders. 

 

The length D5 can be obtained through deriving the side 
lengths of the congruent triangles. Start with calculating the 
lengths of the line O1End and the line O5Start, which are both 
equal to (Rlock – D5) and confirm the lateral distances from O2 

 
Fig. 5 The reference path (red curves) and the narrowest requested road 

width of Five-Point Turn. 

 
Fig. 4. The reference path (red curves) and the narrowest requested road 

width of (a) U Turn and (b) Three-Point Turn. 



to the right boundary and from O4 to the left boundary. By 
subtracting D5 from the results, both the lateral distance 
between O2 and the left boundary and the lateral distance 
between O4 and the right boundary can be acquired as (Rlock – 
2D5). Owing to the equivalent distances of the line O2S2, the 
line O3S2, the line O4S3 and the line O3S3 which are equal to the 
full lock cornering radius Rlock, these line are able to form 
another two pair of congruent triangles with the left and the 
right boundaries. Hence, the lateral distances from O3 to the 
left and the right operational boundary can be determined in 
the meantime. Accordingly, the summation of these two 
distances (i.e. the lateral distances from O3 to the left and the 
right operational boundary) generates the outcome of the 
length D5, and the relation is stated in (3). 

 D52Rlock–D52Rlock/ 

E. N-Point Turn 

The operational tactic of N-Point Turn is similar to Three-
Point Turn and Five Point Turn: the vehicle starts with the 
forward cornering from a certain position, and recursively 
adjusts its heading direction through numerous forward and 
reverse reorientations within the permitted space (i.e. between 
the left and the right boundary) until the remaining turning can 
be achieved by the final forward cornering without breaking 
the right boundary. 

 

According to the distribution patterns from U Turn to Five-
Point Turn, several regulations were observed and can be 
utilised to solve the narrowest operation width DN for N-Point 
Turn. First, the reference path of N-Point Turn is composed of 
N arc pieces which are belong to N different circles with same 
radius Rlock. Moreover, the centres of the initial circle and the 
final circle (i.e. O1 and ON) can be connected by extending the 
line StartEnd, which is vertical to the road direction. Then, the 
functionality of No.[(N + 1)/2] circle is to bridge the vehicle 
heading direction from less than 90 degree to over 90 degree 
(the heading direction at the start point and the end point are 
defined as degree 0 and degree 180 respectively); and the 

centre of this circle is located at a point on the central line of 
the road. On the other hand, the coordinates of two sequential 
centres (e.g. O[(N + 1)/2] and O[(N + 1)/2 + 1]) are symmetric to their 
transition point with distance Rlock, which the point is on either 
the left or the right border. 

Fig. 6 shows the draft distribution of sequential centres near 
the operation area, where O1 to ON are the centres of circles 
that provide N arc pieces to form the reference path of N-Point 
Turn. We first assume the lateral distance from O[(N + 1)/2 + 1] to 
the left border is x, and the lateral distance between O[(N + 1)/2 + 

1] and O[(N + 1)/2 + 3] is y. In order to calculate x and y, the 
properties of congruent triangles have to be applied. By 
focusing on the red congruent triangles, the distance between 
O[(N + 1)/2] and the left border has the same length with x and is 
shown in (4). The blue congruent triangles illustrate that the 
width from O[(N + 1)/2 + 1] to the right border is equal to the width 
from O[(N + 1)/2 + 2] to the right border, which is (x + DN). 
Furthermore, the green congruent triangles determine that the 
lateral distance from O[(N + 1)/2 + 2] to the left border has the 
same length (x + 2DN) with the width between O[(N + 1)/2 + 3] and 
the left border, which can be expressed as y + x. Consequently, 
the relation between y and DN can be stated in (5). 

 xDN/ 

 yDN 

The above procedures are derived recursively so as to 
compute the lateral distances between every two adjacent 
centres from O[(N + 1)/2 + 1] to ON, which are all equal to y. 
Hence, the lateral distance from ON to the left border (i.e. Rlock 
– DN) can be expressed by x and y, and the equation is stated in 
(6). Combing these three equations (i.e. (4), (5) and (6)), the 
narrowest occupied width DN of N-Point Turn can be expressed 
by the cornering radius Rlock, as in (7). 



1
( 1)

2[ ]
2

lock N

N
N

R D y+ x


 

    

 DN2Rlock/ 

The validity of DN can be confirmed by comparing the 
outcomes of aforementioned D1, D3 and D5 in (1), (2) and (3). 
Note that Fig. 6 only presents the situation that O[(N + 1)/2] is 
above the line O1ON; the opposite situation (i.e. O[(N + 1)/2] is 
below the line O1ON) can be derived with the similar 
techniques and will deliver the same result as in (7). 

IV. DISCUSSIONS 

Based on the relationship between the minimum occupied 
width of N-Point Turn that has been derived in the previous 
section and the vehicle full lock steering radius, we intends to 
form the functions which have the ability to continuously 
evaluate the most feasible turn around manoeuvre under 
current traffic conditions. Since the number of partitions during 
reorienting has to be odd numbers to complete a 180 degree 
turning, O is first defined as the set of the positive odd 
numbers, as shown in (8). 

 Omm2n1n 

 
Fig. 6 The chart of deriving the min. operation width of N-Point Turn. 



Considering the proposed turn around decision making 
framework in Fig. 3, the environment observation process will 
be activated once the turn around manoeuvre is approved. 
Therefore, the lateral distance from the current position to the 
right available boundary (i.e. a) and the full permitted width 
(i.e. d) can be measured and provided as known variables to the 
targeted functions. Through inputting these two variables and 
the vehicle minimum cornering radius Rlock which can be 
acquired from the vehicle dynamic data to (9) and (10), the 
function f1 is able to compute the minimum number of 
partitions of N-Point Turn that can achieve the turn around 
mission; the latter function f2 will provide the result while 
considering the full permitted width. 

 f1Rlocka minkk2Rlock/a 

 f2Rlockd minkk2Rlock/d 

According to the derivation outcomes in Section Three, (1), 
(2), (3), and (7) indicate that the minimum required widths of 
different turn around manoeuvres only depend on its partition 
number and the minimum cornering radius of the vehicle. The 
reason is that the ego vehicle is assumed and treated as a point-
mass model in this paper, but it occupies a certain volume and 
cannot be neglected in reality. Hence, the work of re-analysing 
the vehicle from a point-mass model to a more complex model 
(e.g. bicycle model, four wheel model, etc.) and extending the 
outcomes of this paper to meet the realistic requirements will 
be focused in the next stage. 

V. CONCLUSIONS AND FUTURE WORK 

This paper proposes a new framework of achieving human-
like automated driving, which combines the real human driving 
data and the vehicle-dynamics-based motion planning. A 
general turn around decision making is then suggested, which 
can be referred while an autonomous vehicle intends to 
perform a turn around manoeuvre. The geometric 
characteristics that are followed by the reference paths of turn 
around manoeuvres are also analysed. Following with 
investigating the minimum operation widths from U Turn to 
Five-Point Turn respectively, the methodology and results are 
generalized to the N-Point Turn. Lastly, the derivative results 
and characteristics analysed above are treated as the input 
variables so as to formulate the functions that are able to 
evaluate the most feasible turn around manoeuvre within the 
current situation. Currently, the team is conducting multi-point 
turn road testing by different human drivers, characterising 
driving styles, and developing algorithms for multi-point turn 
decision making, path planning and tracking control for 
human-like automated vehicles. 
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