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Abstract

Bipolar disorder (BD) and major depressive disorder (MDD) share similar clinical characteristics 

that often obscure the diagnostic distinctions between these conditions. Both functional and 

structural brain abnormalities have been reported in these two disorders. However, the direct link 

between altered functioning and structure in these two diseases is unknown. To elucidate this 

relationship, we conducted a multimodal fusion analysis on the functional network connectivity 

(FNC) and gray matter density (GMD) from MRI data from 13 BD, 40 MDD, and 33 matched 

healthy controls (HC). A data-driven fusion method called mCCA+jICA was used to identify the 

co-altered FNC and GMD components. We found reduced GMD in the parietal and occipital 

cortices related to lower FNC in a sensory-motor network as well as stronger interconnection in 

frontal regions in BD compared to HC. Meanwhile, the MDD group exhibited GMD deficits in the 

amygdala and cerebellum. Among preliminary classifiers trained using features generated from 

these group discriminative components, the overall accuracy with resampling and cross-validation 

reached 91.3% for 3 groups and 99.5% for BD versus MDD. Our findings suggest that both 
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overlapping and unique functional and structural deficits exist in BD and MDD, and the 

abnormalities may be utilized as potential diagnostic biomarkers.
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Introduction

The major mood disorders, bipolar disorder (BD) and major depressive disorder (MDD, or 

unipolar depression), rank among the top illnesses worldwide causing disability and early 

death (Lancet 2015; Salomon et al. 2012). However, differentiating BD and MDD poses a 

major clinical challenge due to the high prevalence of similar symptoms (Angst et al. 2010; 

Judd et al. 2012). Objective markers derived from neuroimaging hold the potential to 

increase the accuracy of differentiating between BD and MDD patients to an extent that may 

improve the clinical and functional outcomes for individuals suffering from these disorders 

(de Almeida and Phillips 2013). In the decade both functional (Cerullo et al. 2014; 

Delvecchio et al. 2012) and structural (Kempton et al. 2011; Konarski et al. 2008) brain 

abnormalities in BD and MDD have been extensively studied in the magnetic resonance 

imaging (MRI) literature, however, few studies focused on data-driven, multimodal fusion 

techniques that exploit the complementary information between fMRI and sMRI in order to 

differentiate the two mood disorders.

Functional connectivity (FC) assessed from functional MRI (fMRI) captures the temporal 

coherence of blood oxygenation level dependent (BOLD) signal fluctuations in functionally-

related gray matter regions that putatively reflect spontaneous neural activity (Biswal et al. 

1995; Friston 2002). Recently, several studies have explored the differences in FC between 

BD and MDD using resting-state (Ellard et al. 2015; Goya-Maldonado et al. 2016; 

Marchand et al. 2013; Wang et al. 2015) or task-related fMRI (Anand et al. 2009; Redlich et 

al. 2015; Satterthwaite et al. 2015). We previously studies compared neuroimaging data 

between BD and MDD by constructing the functional network connectivity (FNC), 

composed of a whole brain graph with nodes defined by independent components analysis 

(ICA) (Jafri et al. 2008). We found that the FNC in BD was characterized by more closely 

connected and more efficient topological structures compared to MDD (He et al. 2016).

During neurodevelopment the formation of gyral folding patterns within the cerebral cortex 

is thought to reflect the anatomical connections between distinct cortical areas, which in turn 

relate to cerebral function (Poldrack 2010; Van Essen and Dierker 2007). This relationship 

between brain structure and function has been supported by previous neuroimaging studies 

(Greicius et al. 2009; Mars et al. 2011; van den Heuvel et al. 2009). However, the 

relationship between altered brain function and structure in mood disorders remains unclear. 

Generally, each neuroimaging modality provides a certain perspective on brain function or 

structure. However, data fusion through a joint analysis not only capitalizes on the strengths 

of each imaging modality, but also reveals underlying inter-relationships, potentially 

providing a more comprehensive understanding of brain deficits in psychiatric disorders 
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(Calhoun et al. 2006; Calhoun and Sui 2016; Sui et al. 2012a). To date, few studies of BD 

and MDD have assessed multimodal brain imaging data collected from the same subject 

sample. A conventional multimodal practice is firstly to analyze each modality separately, 

and then to compare at the results level (Rigucci et al. 2010). However, such an approach 

cannot capture directly the joint information available in multimodal imaging data (Calhoun 

and Sui 2016; Sui et al. 2012a). In a classification analysis on BD and MDD, Jie et al (Jie et 

al. 2015) utilized a machine learning model to select multimodal diagnostic discriminating 

features from combined fMRI and structural MRI (sMRI) data. Nevertheless, the joint 

function-structure changes that span across fMRI and sMRI in BD and MDD have not been 

characterized previously.

In this study, we utilized the resting-state FNC generated from our prior study as 

characteristics of fMRI. At the same time, gray matter densities (GMD) from the same 

subject samples were acquired using sMRI. In order to identify the co-altered networks 

across modalities, we assume that 1) whole brain FNC is a linear mixture of sources in the 

form of multiple sub-networks (Park et al. 2014), 2) whole brain GMD can also be linearly 

separated into a number of sources as spatial independent components (Xu et al. 2009), and 

3) disorder incurred functional and structural brain changes are correlated across the source 

factors of modalities. A joint analysis was applied to FNC and GMD using a data fusion 

approach called multi-set canonical correlation analysis + joint independent component 

analysis (mCCA+jICA) (Sui et al. 2010; Sui et al. 2012b). We expected that the analysis 

which incorporates FNC and brain structure would reveal changes specific to BD or MDD, 

and that the abnormalities defined using this approach ultimately may served as potential 

diagnostic biomarkers with the potential to discriminate these two mood disorders.

Materials and Methods

Subjects

Resting-state fMRI and sMRI data were collected from 13 BD, 40 MDD, and 33 HCs at the 

Laureate Institute for Brain Research, Tulsa, OK, USA. The subjects in the three groups 

were comparable in age and gender (Table 1). The study received institutional ethical review 

board approval, and all subjects provided written informed consent to participate. The 

diagnoses of BD and MDD were established using the Structured Clinical Interview for the 

DSM by trained raters and confirmed by an unstructured interview with a psychiatrist. All 

patients included were either treatment naive or had discontinued prescribed medications on 

their own during at least the 3 weeks (8 weeks for fluoxetine) prior to scanning.

Data Acquisition

All images were collected on a GE Discover MR750 3-Tesla scanner with a 32-channel 

radio frequency coil. During the fMRI scan, participants were instructed to keep their eyes 

open and to not fall asleep. The resting-state scan lasted 6.4 min (191 volumes). T2*-

weighted functional images were acquired using a gradient-echo EPI sequence with TE = 27 

ms, TR = 2 s, flip angle = 78°, slice thickness = 2.9 mm, field of view = 240 mm, matrix size 

= 96×96. For structural scans, T1 images were acquired using a gradient-echo MP-RAGE 
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sequence with TE = 2.008 ms, TR = 5 s, flip angle = 8°, slice thickness = 0.9 mm, field of 

view 240 mm, matrix size = 256×256.

Preprocessing

For the fMRI data, the first seven volumes were excluded from analysis to allow for T1 

equilibration. The SPM8 software package (http://www.fil.ion.ucl.ac.uk/spm/software/spm8) 

was employed to perform fMRI preprocessing on the remaining volumes. The images were 

first realigned using INRIalign (Freire et al. 2002), and were then spatially normalized to the 

standard Montreal Neurological Institute (MNI) space, resampled to 3 × 3× 3 mm3 voxels 

using the nonlinear (affine + low frequency direct cosine transform basis functions) 

registration implemented in SPM8 toolbox. The imaging data were smoothed using a 

Gaussian kernel with a full-width at half-maximum of 8 mm.

Gray Matter Segmentation—Structural data were preprocessed using the SPM8 

software package, such that each subject’s brain image was segmented into white matter, 

gray matter, and cerebral spinal fluid with unmodulated normalized parameters via the 

unified segmentation method (Ashburner and Friston 2005). After segmentation, the images 

of GMD were smoothed to a full-width half maximum (FWHM) Gaussian kernel of 8 mm 

(White et al. 2001) and resliced to a matrix of 53 × 63 × 46 voxels. The preprocessed GMD 

served as the feature of sMRI for the following multimodal fusion analysis.

Functional Network Connectivity—Group ICA was performed on the preprocessed 

fMRI data using GIFT software (http://mialab.mrn.org/software/gift) (Calhoun and Adali 

2012), resulting in 75 group independent components (ICs). Forty-eight ICs were 

characterized as intrinsic connectivity networks (ICNs) after removing ICs with artifacts 

following (Allen et al. 2011). The time courses (TCs) of 48 ICNs across whole brain were 

post-processed by detrending, regressing out head motion, despiking and low-pass filtering 

(<0.15 Hz). Then, the FNC for each subject was calculated as the absolute Pearson’s 

correlation between TCs of each pair of ICs. The magnitude (absolute value) of functional 

network connectivity strength was used as the fMRI data feature to input into the 

multimodal fusion analysis. For more details of FNC feature generation, please refer to our 

previous publication (He et al. 2016).

mCCA+jICA Fusion Framework

The overall procedure of multimodal fusion on functional and structural imaging modalities 

is illustrated in Figure 1. In mCCA+jICA framework, we assume an n -modal (n = 2 in our 

case) set Xk as a linear mixture of M sources given by Sk, with a non-singular mixing matrix 

Ak for each modality k, that is:

(1)

In this study, the component number M was set to be 8 estimated using a modified MDL 

method (Li et al. 2007).
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Typically, the number of data points per subject Lk in Xk is much larger than subject number 

N. For each modality k, Xk is a N × Lk feature matrix, and Sk is a M × Lk matrix. The 

underlying sources Sk are distinct within each dataset. The columns of Ai and Aj have higher 

correlation only on their corresponding indices, with modality i,j ∈{1,2, …, n}, i ≠j.

In this study, we utilized the FNC map as feature X1 for functional MRI, and non-zero 

values in GMD as feature X2 for structural MRI. The multi-set Canonical Correlation 

Analysis (mCCA)(Li et al. 2009) was first applied to the input dataset, generating two linked 

canonical variates (CVs) Dk by maximizing the inter-subject covariation across two sets of 

features. The resulting CVs Dk were sorted by correlation to match to the potential 

correlated mixing profiles between components of each modality, as shown in Figure 1. 

However, the sources of associated maps Ck (in M × Lk) may not be completely separated 

and reconstructed. Joint ICA (jICA) were then adopted on the concatenated maps [C1, C2] to 

obtain the final maximally independent source Sk and corresponding whitening matrix W. 

The final mixing profiles Ak can be achieved by multiplying the mixing matrices of each 

step, Ak = DkW−1.

Statistical testing on group abnormalities

To reduce the age and gender effects, we regressed out the subjects’ age and gender as 

covariates from mixing profiles Ak, and performed statistical tests on residuals Ak′. Analysis 

of variance (ANOVA) and two-sample t–tests were performed on mixing coefficients Ak′ of 

each IC for each modality k, to reveal the components that have significant group difference 

among subjects. Any component of the same index that showed significant group difference 

in both modalities was considered a modality-common (or joint) group-discriminative IC. In 

contrast, any group difference of one component that occurred in a single modality was 

considered a modality-specific group-discriminative IC. These ICs were termed joint or 

distinct abnormalities respectively. The false discovery rate (FDR) correction (Benjamini 

and Hochberg 1995) for multiple testing was applied to the p-values obtained from the 

statistical tests.

Identifying Community Structures and Hubs

ICs of FNC correspond to the connectivity weights of multiple edge-sharing sub-networks 

within the brain (Park et al. 2014). To better capture the characteristics of the sub-networks 

that showed a group difference, those FNC components were further analyzed using graph 

theory. Modular community structure has been repeatedly demonstrated in resting state 

functional brain connectivity networks. The brain regions that are functionally associated 

and subserve similar roles may be divided into a same module during the modular analysis. 

In particular, the brain nodes that are highly connected with other regions in the same 

module are called hubs (Rubinov and Sporns 2010).

To assess the modular community structures and hubs, the connectivity weights of FNC 

subnetworks were first rescaled into [−1, 1]. A fine-tuned Louvain algorithm (Reichardt and 

Bornholdt 2006; Ronhovde and Nussinov 2009) from the brain connectivity toolbox was 

adopted to discover the optimal community structure of the FNC subnetworks, which divide 
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the graph into non-overlapping groups of nodes (modules) in a way that maximizes the 

number of within-group edges, and minimizes the number of between-group edges.

Highly connected node within a module q could be identified by measuring of intra-module 

connectivity. Intra-module connectivity of node i,  is given by the sum of connectivity 

strengths Sik with all other nodes in module q:

(2)

The z-score (Guimera and Amaral 2005)of node i is defined as

(3)

where k̄q and σq are the mean and standard deviation of  for all nodes in module q. Nodes 

with higher z-scores are more strongly connected to the other nodes in the same module. In 

this study, we define a node with zi > 1.0 as a hub (Yu et al. 2011). The BrainNet Viewer 

toolbox (http://www.nitrc.org/projects/bnv/) was used for visualizing FNC subnetworks (Xia 

et al. 2013).

Classifications Based on the Features Selected

For the identified group-discriminative components, we further tested their potential use for 

disease classification (Figure 2). For each modality, we normalized (subtracted by mean then 

divided by standard deviation) each IC with significant group difference into z-values, which 

then were thresholded (FNC at |z| > 2.0, and GMD at |z| > 3.0) to generate a mask from each 

modality. The masks of the same modality then were combined and applied to the raw input 

data of each modality, which served as the input used to further classify 3 BD, MDD, and 

HC based on uni-modal and multi-modal features.

For comparison, we evaluated classifiers based on the features from the individual modality 

(FNC or GMD only), as well as combined features from both modalities (FNC+GMD). 

Classifiers were built and tested on the Weka 3.6 platform (http://www.cs.waikato.ac.nz/ml/

weka/)(Witten et al. 2011). In order to balance the sample numbers in each group, the 

instances of BD group were resampled using a Synthetic Minority Oversampling TEchnique 

(SMOTE) (Chawla et al. 2002) to generate 39 BD samples. Each sample was assigned a 

class label based on its corresponding diagnostic group (BD, MDD or HC). We then trained 

four different classifiers: 1) Sequential Minimal Optimization for Support Vector Machine 

(SMO) (Keerthi et al. 2001), 2) Naïve Bayes (John 1995), 3) Random Forest (Breiman 

2001), and 4) K-nearest neighbors (kNN) (Aha et al. 1991) where k = 5. To ensure stable 

performance of each classifier, stratified ten-fold cross validation was repeated 1000 times, 

yielding 10000 testing accuracy rates. For every ten-fold cross validation run, the samples 

were assigned into 10 groups randomly. In Iteration (Fold) (k =1,2, …, 10), group k was left 

out as testing cases towards the classifier model that was trained on other nine groups. Since 
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distinguishing BD and MDD is a major clinical challenge, the classification process was 

applied to distinguish all 3 groups as well as the BD and MDD groups only.

Results

Group Difference on Mixing Profiles

One joint group-discriminative IC (IC5) and one modality-specific group-discriminative IC 

(GMD-IC2) were detected, as shown in Figure 3, based on the statistical tests of the mixing 

coefficients derived from mCCA+jICA.

ANOVA on IC5 revealed significant group difference in both FNC (p = 0.011, FDR 

corrected) and GMD (p = 0.006, FDR corrected). In FNC-IC5, the subnetwork comprised of 

reduced functional connectivity magnitude (less correlated BOLD activity) in the superior 

parietal lobe (SPL), precentral gyrus (PreCG), postcentral gyrus(PoCG), middle temporal 

gyrus(MTG) and middle occipital gyrus(MOG) and cerebellum, but increased connectivity 

magnitude within regions associated with the superior frontal gyrus (SFG), precuneus, 

middle frontal gyrus (MFG), inferior parietal lobe (IPL), and limbic subcortical networks. 

GMD-IC5 corresponds to gray matter density in the SPL and MOG. A significant group 

difference was also found in GMD-IC5 between BD and HC in t-test (p < 0.001, FDR 

corrected, BD < HC). At the same time, pair-wise t-test indicated difference in FNC-IC5 

between BD and HC (p = 0.027, uncorrected, BD < HC) and in GMD-IC5 between BD and 

MDD (p = 0.014, uncorrected, BD < MDD). However, these two p-values did not remain 

significant after correction for multiple testing (FDR). The correlation of mixing profiles 

between FNC and GMD was r = 0.23 (p = 0.032, uncorrected), indicating the changes within 

this component found in FNC and GMD are related across patients with BD.

IC2 showed a significant group difference in GMD only (p = 0.004, FDR corrected), which 

included cerebellum, amygdala and hippocampus. Both MDD and BD showed lower GMD 

than HC in this component, as shown in Figure 3 (MDD-HC: p = 0.023, FDR corrected; 

BD-HC: p = 0.037, uncorrected).

Community Structures and Hubs of FNC Component

In the FNC component that showed significant group difference (IC5), three non-

overlapping modules were identified by fine-tuned Louvain algorithm, including two major 

community modules with nodes that are strongly interconnected together and a module that 

include nodes relatively isolated to others, as shown in Figure 4. Specifically, Module 1 

contains 20 nodes intensively connected within default-mode (SFG and precuneus), 

cognitive control (MFG and IPL), and limbic subcortical networks. Module 2 comprised of 

18 nodes, mostly in somatomotor networks (SPL, PreCG and PoCG), cerebellum, and visual 

networks (MTG and MOG). The remaining 10 nodes that are less closely connected were 

separated into Module 3.

It noteworthy that the connectivity weight of the subnetwork in Modules 1 and 2 were 

opposite in valence (orange for positive and cyan for negative weights in Figure 4), 

indicating subjects with higher connectivity strength magnitudes in one module have lower 

FC magnitudes in the other. Moreover, the mixing profile of FNC-IC5 in the BD group was 
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lower than in the HC group, which suggested that the BD group manifest a more densely 

interconnected Module 1 but less interconnected Module 2 comparing to HC in this 

subnetwork. Interestingly, this dual modular parcellation corresponded to two major areas 

organized from a recent resting-state FC study (Stoddard et al. 2016), which was based on a 

different approach of clustering voxel-wise connectivity.

Seven hubs were identified in the modular structure of FNC-IC5, including two hubs (MFG 

and SFG) in Module 1, four hubs (MTG, SPL, right PoCG, and left MOG) in Module 2, and 

one hub (SFG) in Module 3. These seven hubs are highlighted as larger nodes in Figure 4, 

indicating these brain regions play important roles in the altered FNC structure, and link to 

the abnormal GMD in BD.

Classifications

The average and standard deviation of 1000 accuracy rates of both 3-group and BD-MDD 

classification are shown in Figure 5. SMO performed best among 4 algorithms tested: 

averaged accuracy reached 91.3±8.1% for 3-group classification and 99.5±2.9% for 

distinguishing between BD and MDD using features from both modalities. For each of 4 

algorithms, we also compared results of classifier trained using either unimodal or 

multimodal features. Overall, training with multimodal features achieved best or close to 

best accuracy with all algorithms.

Discussion

In this study, we conducted fusion analysis on functional and structural MRI data by 

applying mCCA+jICA framework to whole brain FNC and GMD. We aimed to identify 

abnormalities spanning across multiple imaging modalities and to evaluate the feasibility 

accuracy of these biomarkers to distinguish BD and MDD. Both modal-specific and modal-

common components were identified. Further analysis on the group-discriminating FNC 

component revealed community structure and hubs, which conceivably may be associated 

with the mechanisms that are distinct to each disorder.

Functional and Structural Co-alterations in BD

IC5 showed significant group differences in both FNC and GMD, and t-tests found 

abnormalities are mostly in BD. From the spatial maps, IC5 in both modalities highlighted 

parietal and occipital lobes. Generally, the parietal lobe is commonly considered to be 

involved in processing tactile and proprioceptive information, language comprehension, 

speech, writing, and aspects of spatial orientation and perception. At the same time, the 

occipital lobe includes regions that are involved in visual perception and processing (Nolte 

2009). Several sMRI studies showed significant reductions gray matter density and volume 

in BD subjects versus controls in the parietal lobe (Doris et al. 2004; Frazier et al. 2005; 

Lyoo et al. 2004; Lyoo et al. 2006) and the occipital lobe (Doris et al. 2004; Lochhead et al. 

2004; Lyoo et al. 2006). Our results of GMD-IC5 thus appear consistent with these findings.

Earlier studies proposed the cortical thinning in sensory association cortices may be related 

to impairments in visual spatial neuropsychological function within BD subjects (Ferrier et 

al. 2004; Sweeney et al. 2000). As a joint-discriminative IC in our study, IC5 confirmed that 
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the reduced GMD in the parietal and occipital cortices were related with the alterations in 

cerebral function in the BD group. According to graph theory, the hub nodes of a module 

interact actively with other brain components, facilitate functional integration, and 

participate in module organization (Rubinov and Sporns 2010). The four hubs of Module 2, 

including two hubs in the parietal lobe, one in the temporal lobe, and one in the occipital 

lobe, were spatially distribute across different somatomotor and visual areas, indicating the 

abnormalities may have widespread effects in the function of sensory association cortices. 

Based on analysis of FNC-IC5, the parietal, occipital, temporal, and cerebellar fusiform 

areas were categorized into Module 2 with reduced connectivity in BD, demonstrating the 

direct correspondence of structural and functional deficits in this disorder.

In Module 1, the two hubs along with majority of implicated nodes were located within the 

prefrontal cortex. The prefrontal regions, including the orbitofrontal cortex (OFC), the 

anterior cingulate cortex (ACC), and the dorsomedial (DMPFC), dorsolateral (DLPFC) and 

ventrolateral (VLPFC) areas of the prefrontal cortex have been consistently implicated in 

cognitive control processes (Sui et al. 2015), including decision-making and emotion 

regulation (Kupfer et al. 2012; Phillips et al. 2008). In mood disorders, these prefrontal 

cortical areas form part of the limbic–cortical–striatal–pallidal–thalamic circuits that are 

hypothesized to be dysfunctional in MDD and BD based on neuroimaging studies (Drevets 

2000; Price and Drevets 2012). A number of previous studies of resting-state FC in BD 

samples found increased resting-state FC in the prefrontal cortices, particularly within 

ventral prefrontal cortex in BD (Chepenik et al. 2010). Another ICA-defined FNC analysis 

reported that BD subjects showed increased FC in emotion evaluation regions such as the 

bilateral medial prefrontal cortex, and in “affective working memory network” including the 

DLPFC and VLPFC, during an affective working memory task (Passarotti et al. 2012). 

Abnormal medial prefrontal cortex connectivity between ICA components were also found 

during the resting-state in the BD group in multiple previous studies (Calhoun et al. 2011; 

Ongur et al. 2010). Our findings with stronger FC in BD subjects within the prefrontal 

cortical areas highlighted in Module 1 not only replicated our recent results on the same 

dataset with different analysis approaches (He et al. 2016), but also are in line with prior 

resting-state FC studies.

Another interesting finding was that two subcortical regions (Figure 4), the putamen and 

thalamus, were grouped together into Module 1, potentially consistent with the anatomical 

circuits formed between the prefrontal cortex, the striatum and the thalamus, as well as with 

previous evidence that dysfunction within these circuits plays a major role in the 

pathophysiology of BD (Strakowski et al. 2005). Fronto-limbic abnormalities in BD also 

have been supported from the view of FC by a number of task-based fMRI studies (de 

Almeida et al. 2009; Versace et al. 2010), but may be complex and difficult to be detected 

during resting-date (Stoddard et al. 2016; Vargas et al. 2013). A few FC studies that probe 

limbic regions directly found abnormal prefrontal-limbic connectivity in resting BD subjects 

(Anticevic et al. 2013; Chepenik et al. 2010; Torrisi et al. 2013). No significant group 

difference in fronto-limbic FC was observed in our previous FNC study on the same data set. 

Our results from the modular analysis performed herein on the FNC component thus may 

provide a more sensitive method for detecting prefrontal-limbic dysfunction in BD patients 

during rest.
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GMD Abnormality in MDD

Beside the joint group-discriminative IC5, GMD-IC2 was identified as modality-specific 

group-discriminative IC, where group difference was only found in GMD. In our study, both 

BD and MDD exhibited higher mixing weights associated with GMD-IC2 compared to HC, 

but no statistical difference was detected between the patients in two disorders. The 

amygdale and anterior hippocampus form central structures of the limbic system and play 

major roles in emotion regulation, episodic memory, and responses to stressors, threats and 

appetitive stimuli (Aggleton 1992; Burgess et al. 2002). Consistent with their functional 

roles, deficits of amygdala related to mood disorders such as BD and MDD are widely 

supported from a variety of neuroimaging approaches (Price and Drevets 2012; Videbech 

2000).

Although many structural studies on the BD group demonstrated reduced amygdala volume 

compared to healthy subjects (Blumberg et al. 2003; Foland-Ross et al. 2012; Phillips and 

Swartz 2014), other studies reported amygdala in BD were either enlarged (Haldane et al. 

2008) or unchanged (Almeida et al. 2009). (Drevets 2003; Savitz et al. 2010) provided 

evidence that speculate the disagreement at least partly be explained by the putative 

neurotrophic / neuroprotective effects of some mood stabilizer treatments in BD. With 

medication effects controlled, Savitz et al. found amygdala volumes declined in unmedicated 

BD in contrast to HC (Savitz et al. 2010). Instead of selecting ROI a priori, our analysis 

approach was data-driven. The IC of gray matter density demonstrated similar trend of 

amygdala reduction in unmedicated BD compared to HC. However, the group difference did 

not reach statistical significance after FDR correction, potentially reflecting the biological 

heterogeneity within these phenotypes (Savitz et al. 2015a; Savitz et al. 2015b).

On the other hand, the reduction in amygdala volume in MDD appears generally consistent 

with a variety of recent analyses (Bora et al. 2012; Sacher et al. 2012; Tang et al. 2007; Zou 

et al. 2010), and our results that GMD-IC2 of MDD exhibits significant change compared to 

HC is in accordance with them. In addition to the amygdala abnormality, GMD-IC2 includes 

part of culmen and declive regions of the cerebellum as well. Simultaneous cerebellar and 

amygdala reduction in MDD was also reported in prior gray matter density studies (Lee et 

al. 2011; Peng et al. 2011). Recent studies have shown that the cerebellum plays a role in 

emotion regulation and cognition (Baldacara et al. 2008; Bugalho et al. 2006; Phillips et al. 

2015), and also have implicated the cerebellum in MDD based on findings of altered 

structure (Yucel et al. 2013; Zhao et al. 2016) and function (Liu et al. 2012; Ma et al. 2013).

Classifications based on selected ICs

As an exploration, the group discriminative features extracted from multimodal analysis 

were evaluated using classification. Classifiers yielded highly accurate and reliable 

performance with cross-validation. Even though no significant difference was found 

between BD and MDD during statistical test on mixing profiles of individual ICs, classifiers 

still distinguished the two disorders with relatively high accuracy by combining the high-

dimensional features from two modalities, indicating classification methods provide a 

mechanism for evaluating predictive power of the results which null hypothesis testing does 

not (Craddock et al. 2009). The classifiers trained with the combination of both modalities 
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performed better and more stable than those trained on a single modality, suggesting that 

information gained through multimodal fusion can improve the potential diagnostic 

prediction, in accordance with (Sui et al. 2009; Yang et al. 2010). These data merit 

replication in future studies to determine their potential utility as diagnostic biomarkers in 

mood disorders (Sui et al. 2013).

Limitations

Several methodological issues limit the conclusions that can be drawn from the current 

study. The major issue is the small number of subjects, especially in the BD group. In order 

to avoid the potential confound of medication, our study was limited to subjects who were 

treatment-naive or unmedicated for at least three weeks. However, this strict requirement 

constrained the sample size of this study. Nevertheless, most recent neuroimaging studies 

comparing BD and MDD reviewed in (de Almeida and Phillips 2013) also included sample 

sizes ranging from 10 to 30 subjects per patient group. During the evaluation of biomarkers 

with classification, we adopted an upsampling approach on the BD samples, in order to 

reduce the impact of the unbalanced group sizes on the classifiers. It would be helpful to 

increase statistical power by including more subjects in future studies. In addition, to utilize 

as much information as possible, the features were derived from all subjects. Although the 

classification models were tested with 10-fold cross validation, more solid conclusions can 

be drawn by examining the performance of biomarkers on new subjects which were 

excluded from the feature extraction process (Du et al. 2015; Meng et al. 2016).

Conclusion

In conclusion, we conducted fusion analysis on the functional network connectivity and gray 

matter density in mood disordered and healthy control samples, providing a novel 

perspective to neuroimaging abnormalities in mood disorders by combining both structural 

and functional MRI. Both multimodal and modality-specific discriminative components 

were detected. Comparing to HC, BD exhibited reduced GMD in the parietal and occipital 

cortices, which correlated with attenuated functional connectivity within sensory and motor 

networks as well as hyper-connectivity in regions that are putatively engaged in cognitive 

control. In addition, altered GMD features were found in MDD in the amygdala and 

cerebellum. High accuracy in discriminating across groups was achieved by trained 

classification models, implying that features extracted from our fusion analysis hold the 

potential to ultimately serve as diagnostic biomarkers in BD and MDD research.
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Figure 1. 
The overall procedure of mCCA+jICA multimodal fusion on FNC and GMD
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Figure 2. 
Flowchart of disease classification with components derived from multimodal fusion.
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Figure 3. 
IC5 demonstrated significant group differences in both FNC (top left) and GMD (top right). 

IC2 showed a significant group difference in GMD only (bottom). In FNC-IC5, the nodes 

correspond to intrinsic connectivity networks (ICNs), and the links are edges of the 

subnetwork between node-pairs. Thickness of links represent to connectivity weights of the 

subnetwork. Only the top 10% weighted links are displayed for clearer visualization. Orange 

links indicate the weights are positively correlated with the mixing profile of FNC-IC5, 

while green links indicate the weights are negatively correlated with mixing profile of FNC-

IC5.
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Figure 4. 
Forty-eight ICNs in the subnetwork FNC-IC5 can be divided into three modules. Hubs 

nodes in each module are enlarged and labeled. There were two hubs in Module 1, four hubs 

in Module 2, and one hub in Module 3. Only top 10% weighted links are displayed for better 

visualizing purposes. Orange links indicate the weights are positively correlated with the 

mixing profile of FNC-IC5, while green links indicate the weight are negatively correlated 

with mixing profile of FNC-IC5.
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Figure 5. 
Performance of classification algorithms that discriminated the 3 groups (left) and BD vs. 

MDD (right), depicted as mean and standard deviation of the accuracy from each of four 

classifiers trained with features extracted from fusion analysis.
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Table 1

Demographic and clinical characteristics of the subject samples

BD MDD HC p-value

N (Females) 13 (11) 40 (33) 33 (22) 0.22 (chi-square)

Ages 35.15 ± 10.29 35.20 ± 9.31 33.70 ± 10.15 0.84 (ANOVA)

YMRS 6.15 ± 6.11 3.59 ± 2.33 0.16 ± 0.51 <0.001 (ANOVA)

MADRS 24.92 ± 10.31 30.90 ± 6.31 0.73 ± 1.72 <0.001 (ANOVA) 0.0151 (t-test, BD-MDD)

BD: bipolar disorder group; MDD: major depressive disorder group; HC: healthy controls group. YMRS: Young Mania Rating Scale; MADRS: 
Montgomery-Åsberg Depression Rating Scale.
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