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Abstract

In the past decade, numerous advances in the study of the human brain were fostered by successful 

applications of blind source separation (BSS) methods to a wide range of imaging modalities. The 

main focus has been on extracting “networks” represented as the underlying latent sources. While 

the broad success in learning latent representations from multiple datasets has promoted the wide 

presence of BSS in modern neuroscience, it also introduced a wide variety of objective functions, 

underlying graphical structures, and parameter constraints for each method. Such diversity, 

combined with a host of datatype-specific know-how, can cause a sense of disorder and confusion, 

hampering a practitioner’s judgment and impeding further development.

We organize the diverse landscape of BSS models by exposing its key features and combining 

them to establish a novel unifying view of the area. In the process, we unveil important 

connections among models according to their properties and subspace structures. Consequently, a 

high-level descriptive structure is exposed, ultimately helping practitioners select the right model 
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for their applications. Equipped with that knowledge, we review the current state of BSS 

applications to neuroimaging.

The gained insight into model connections elicits a broader sense of generalization, highlighting 

several directions for model development. In light of that, we discuss emerging multi-dataset 

multidimensional (MDM) models and summarize their benefits for the study of the healthy brain 

and disease-related changes.

Index Terms

BSS; neuroimaging; unimodal; multimodality; multiset data analysis; overview; subspace; unify; 
modeling

I. Introduction

Blind source separation (BSS) methods [1] have been widely used in the study of the brain. 

They can be adapted and made compatible with a number of brain imaging, genetics, and 

non-imaging modalities, fueling applications to neurophysiological measurements such as 

magnetic resonance imaging (MRI)—both structural (sMRI) [2] and functional (fMRI) [3], 

[4]—magnetoencephalography (MEG) [5], electroencephalography (EEG) [6], diffusion 

weighted MRI (DWI) [7], copy-number variation (CNV) [8], single nucleotide 

polymorphism (SNP) [9], methylation [10], [11], metabolomics [12], and questionaires [13], 

[14] among others. Continued technological advancements in brain structure and function 

assessment [15]–[18] have fostered the development of a growing collection of BSS 

methods and tools. Their applications range from the study of human brain deficits 

associated with certain mental disorders to the neurophysiological associations with 

cognitive and behavioral measures.

Despite such wide application range, selecting the right BSS tool for a given problem—or 

developing a new one—can quickly turn into a daunting task if an understanding of the 

underlying structure of the area is missing. Our work addresses this issue. It highlights 

fundamental connections among BSS models and offers a novel, intuitive taxonomy, 

organizing BSS problems into specialized subproblems. Also, our investigation of various 

assumptions embedded within BSS models refines this structure, revealing hidden 

connections and differences.

To achieve that, we let BSS refer to any method for simultaneous model (or system) 

inversion of one or multiple datasets that uses only the observed measurements (or outputs). 

Then, we put a number of methods originating from different areas in perspective, focusing 

on three key properties: the number of datasets allowed, the grouping of sources within a 

dataset, and the use of second-, higher-, or all-order statistics. As a result, unanticipated 

connections and differences among seemingly unrelated methods are revealed, culminating 

in a new unified framework for BSS model selection and development. A hierarchy of 

increasing model complexity ensues, providing a sensible guide to practitioners in their 

domain-specific contexts. Model weaknesses and strengths, as well as key differences and 

shared features, stand out, exposing a high-level descriptive structure useful for researchers 
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either interested in pursuing new, unexplored directions, or simply trying to identify 

candidate models for an application. These properties are finally summarized in a set of 

systematic, yet simple, modeling choices, exposing new insight into future directions for the 

area and advancing a novel unifying view.

Our unifying framework describes a new, largely under-investigated class of problems, 

paving a way for development of new models. These models are anticipated to be highly 

flexible, combining and expanding key features and subspace structures from existing 

models. We expect that these models will play a key role in neuroimaging research and 

improve how we understand the intricacies of the human brain, laying out a promising new 

path for future research developments that could easily extend beyond neuroimaging 

applications.

We introduce the unifying framework in section II. We then describe how the unifying 

framework specializes to different models and methods in section III. We discuss future 

directions in section IV and provide concluding remarks in section V.

II. A Unified Framework for Subspace Modeling and Development

The wide range of applications utilizing BSS methods to capture and analyze brain networks 

requires a fairly broad understanding of the area by the average researcher. The terminology 

and notation from different fields where methods have originally been developed makes it an 

even harder task. Not surprisingly, the use of a BSS tool for a certain application is often 

unintentionally limited to what has already been applied to a certain datatype or disease. Our 

belief is that users and developers of BSS tools can largely benefit from a clear and intuitive 

description of the underlying structure among BSS methods. This is our guiding motivation 

throughout.

A. The Structure of BSS Problems

The BSS problem is broadly defined as “recovering unobservable source signals s from 

measurements x (i.e., data), with no knowledge of the parameters θ of the generative system 

x = f (s, θ).” It can be organized into subproblems depending on whether x contains either 

single or multiple datasets, and whether or not subsets of s (within the same dataset) group 

together to form one or more multidimensional sources. We propose a novel taxonomy to 

define four general BSS subproblems, as follows:

1. Single dataset unidimensional (SDU): x consists of a single dataset whose 

sources are not grouped, e.g., independent component analysis (ICA) [19]–[21] 

and second order blind identification (SOBI) [22], [23], as in section III-A1;

2. Multiple dataset unidimensional (MDU): x consists of one or more datasets but 

no multidimensional sources occur within any of the datasets, although 

multidimensional sources containing a single source from each dataset may 

occur, e.g., canonical correlation analysis (CCA) [24], partial least squares (PLS) 

[25], and independent vector analysis (IVA) [26], [27], discussed in III-A2;
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3. Single dataset multidimensional (SDM): x consists of a single dataset with one 

or more multidimensional sources, e.g., multidimensional independent 

component analysis (MICA) [28], [29] and independent subspace analysis (ISA) 

[30], [31], discussed in III-A3;

4. Multiple dataset multidimensional (MDM): x contains one or more datasets, each 

containing one or more multidimensional sources that may group further with 

single or multidimensional sources from the remaining datasets, e.g., 

multidataset independent subspace analysis (MISA) [32], [33] and joint 

independent subspace analysis (JISA) [34], discussed in III-A4.

Under these definitions, subproblems are contained within each other, as described in Fig. 1, 

revealing a natural hierarchical structure among them. Accordingly, the generative models 

describing data generation from sources should follow the same hierarchy. Problem 

specification, therefore, contributes to the description of f (·) itself and some properties of its 

parameters (θ) and inputs (s) in generative models. This provides a new perspective about 

basic connections among models following from problem specification.

In the presence of noise, x = f (s, θ) + e, where the sensor noise e is typically Gaussian. 

Noisy system inversion has been well studied, especially in linear systems, with results such 

as the Wiener filter, which defines a system inversion ŝ = g(s, θ, x) that minimizes 

for known s and θ Source estimation strategies for noisy cases are different (see section II-

D) and largely tailored to SDU problems. Still, noise-free BSS models are often fairly robust 

to noise.

B. Assumptions that Drive Model Hierarchy

A generative BSS model is completely defined only when the parameters (θ) and source 

signals (s) are fully described according to three sets of assumptions. The leading 

assumption is the presence of latent source signals in the data. Additional assumptions act to 

counter ill-conditions, allowing sources to be identified from data. These assumptions, 

combined with the problem hierarchy, induce a set of basic modeling choices, as described 

below and summarized in Table I.

Presence of sources—Given N observations of M ≥ 1 datasets, we wish to identify an 

unobservable latent source random vector (r.v.)  that 

relates to the observed r.v.  via a vector function f (s, 

θ). Learning both s and f (·, θ) blindly—without prior knowledge of either of them—

requires choosing the number of sources Cm in each dataset, with compound 

and .

Mixture function—The assumptions imposed on the vector function f (·, θ) are 

characterized by the following properties:
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1. Mapping. Mixture functions are mappings of either a linear or non-linear type. 

A linear function is any linear transformation by square or rectangular matrices 

(A) with , and . For quadratic 

functions, , , .

2. Layout. The layout is a cross-dataset indication of which elements of s generate 

which elements of x. It is fully-connected if s in all datasets contribute to all x. 

Otherwise, it is structured, such as in separable models where f() is either shared 

(e.g., same A) or dataset-specific (e.g., block-diagonal A). Tensor models, such 

as parallel factors (PARAFAC), offer further structured layout subtypes [35].

Statistical relationship among sources—This assumption regards which sources are 

(un)related, and how. Only stochastic relationships are considered since all deterministic 

relationships can be absorbed in f(·). Sources can also be related to themselves through 

sample dependence (e.g., autocorrelation).

1. Subsets. This choice determines which sources are related to each other and 

which are not. It leads to the notion of source groups (sk, k = 1,…, K), i.e., 

related sources that go together to form one of K groups, which are broadly 

referred to as subspaces1. The number of subspaces (K) and their compositions 

are key choices in S/MDM problems.

2. Interactions. This specifies directed (possibly causal) and/or undirected 

relationships among sources. Many graphical structures [36] are possible, 

including “self-loops” to represent sample dependence. For brevity, this work 

emphasizes either undirected non-causal instantaneous relations, or those based 

on sample dependence.

3. Type of statistics. When random variables are statistically related they are said 

to be dependent. There are two types of statistical dependence to choose from: 

linear dependence (captured by second-order statistics), and higher-order 
dependence (captured by higher-order statistics). Unrelated variables, however, 

are statistically independent, meaning their joint distribution is a product of the 

marginal distributions, e.g., . Independence implies no 

grouping and, thus, sources do not interact. Consequently, both second- and 

higher-order dependencies are absent in that case.

Second-order statistics (SOS): This kind of statistics refers to so-called second 

moments. The second moment of a zero-mean random variable is E[X2], where 

E[ ] is the expected value operator. It captures the “scale” (or variability) of X in 

the form of variance or standard deviation. For pairs of variables, however, 

second moments become cross-moments E[X1, X2], which capture the level of 

linear relation between random variables in the form of a correlation coefficient 

1The subspace terminology stems from the linear mixture function case [28] in which the columns of A corresponding to sk form a 
linear (sub)space.
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(ρ). In simple terms, SOS measures how well a straight line explains the joint 

statistical relationship between two random variables. Independence implies all 

SOS cross-moments are zero for zero-mean sources and, therefore, 

uncorrelation.

Higher-order statistics (HOS): This kind of statistics refers to higher-order 

moments. A higher-order moment of a zero-mean random variable is the 

expected-value of its p-th power, E[Xp], for p > 2. It captures other properties of 

the distribution of X, like skewness (p = 3) and kurtosis (p = 4). For tuples of C 
variables, however, higher-order moments become higher-order cross-moments 

,  C ≤ p; Ep[·] is a p-order expectation. Put simply, 

HOS measures joint relationships among multiple random variables beyond 

those explained by a single straight line. Independence implies all HOS cross-

moments are zero for zero-mean sources.

SOS and HOS are at the core of statistical source relationship modeling, broadly 

compartmentalizing the landscape of models into those capturing only one or both types of 

statistics. The latter case is considered more general, as depicted in Fig. 2. Often, all-order 

statistical information (i.e., both SOS and HOS) can be achieved by simply choosing an 

effective joint probability density model for the sources/subspaces.

C. Terminology and Indeterminacies

We intentionally generalize the definition of BSS to include cases of simultaneous system 

inversion, which attempt to leverage information from multiple systems (via their outputs) to 

jointly infer their mixture functions and sources. Utilizing multiple datasets to infer each 

system may lead one to interpret the methods not as “blind” as a single-dataset BSS. 

However, our view is that, together, all these systems/datasets form a single larger system 

that needs to be identified only by the outputs provided by each of its parts. This view aligns 

with prior work coined as joint BSS [37], and even more so with multimodal brain data 

analysis.

Like seminal works from the SDU literature [38], certain restrictions apply with respect to 

the identifiability of SDM, SDU, and MDM models. In general, this is a result of how well 

the modeling choices (see Table I) match the true generative process. For example, the 

typical scale, sign, and permutation ambiguities from the linear independence-based SDU 

models [1] generalize to arbitrary invertible linear transformations of the subspaces in SDM 

models [28]. In linear second-order independence-based MDU models, identifiability is not 

attainable in cases were two or more subspaces share an identical block correlation structure 

[39], [40]. Recent initial work [41] developed for linear second-order independence-based 

MDM models suggests a combination of conditions from SDM and MDU. In the non-linear 

case, however, independence-based SDU models are unidentifiable if independence is the 

only assumption [1, Ch.14]. Additional constraints are required and Bayesian approaches 

offer a nice framework for that. A complete study of the identifiability conditions for each 

combination of modeling choices, especially in the case of MDM models, is valuable but 

exceeds the scope of this work. Note, however, that for noisy linear models optimizing for 

minimal error in s implies WA ≠ I, i.e., W is not identifiable. Conversely, identifiability of 
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W does not guarantee identifiability of s in noisy models [1, Ch.4]. Finally, the number of 

components C can be estimated by model order selection approaches based on information-

theoretic criteria (IC) such as Akaike’s IC (AIC) [42], Bayesian IC (BIC) [43], Kullback-

Leibler IC (KIC) [44], Draper’s IC [45], or minimum description length (MDL) [46]. 

However, we are unaware of methods for direct estimation of the number of subspaces K 
and their compositions, except for post-hoc approaches using clustering [47] and non-linear 

correlations [31]. Also, these approaches do not generalize trivially to multiple datasets.

D. Turning Models into Algorithms

After characterizing the model based on the choices outlined above, three additional steps 

are typically required to translate it into an algorithm (Fig. 3): (i) define an inverse model for 

s ≈ y = g (x; ϕ) based on the modeling choices made for f(·), s and θ, where ϕ denotes a 

system inversion parameter, (ii) select a cost function J(ϕ) that is sensitive to the properties 

of s, and (iii) choose an optimization procedure to estimate ϕ by minimizing/maximizing 

J(ϕ).

The inverse model results directly from the choices in the generative model. In noise-free 

linear BSS models, the inverse model must also be linear, in which case ϕ is also a matrix, 

denoted W, and y = Wx. The cost function is typically one that reflects the desired 

properties of s, i.e., it attains a minimum or a maximum when such properties are met (e.g. 

the likelihood function). It also changes with the structure of A. Thus, a numerical 

optimization strategy [48] is selected to identify the optimal W that approximately attains 

such minimum/maximum from data. Typical unconstrained optimization algorithms include 

line search methods, using regular, stochastic, relative [49], or natural [50] gradient descent, 

Newton or quasi-Newton descent [48], as well as trust-region methods [48]. Some variations 

allow for constraints on θ, ϕ and/or s (Table I), such as regularized optimization, null-space 

methods [51], interior point [48], and multiobjective [52] optimization. For example, 

sparsity constraints on θ = A reduce the number of sources contributing to a sensor, while 

low total variation of s has a smoothing and denoising effect.

Numerical optimization is key for Bayesian estimation [1, Ch.12] as well. Using priors, 

Bayesian methods infer the posterior distribution from the likelihood function. This offers a 

nice, principled strategy to incorporate constraints as prior knowledge. Then, maximization 

of the posterior (MAP) jointly estimates s and θ from x. Alternatively, maximization after 

marginalizing s out of the posterior is thought to prevent overfitting by avoiding arbitrary 

peaks of the joint posterior, leading to a better estimate of the posterior mass concentration. 

Variational Bayes (VB) approaches, such as ensemble learning [53], [54], carry out 

marginalization while approximating the joint posterior by a product of factors, each 

corresponding to a subset of the model (and noise) parameters θ. Marginalization can also 

simplify to the likelihood function when a “constant” prior is used for θ. When no analytical 

approximation is imposed on this likelihood, a general expectation-maximization (EM) 

approach emerges [55]: conditional expectations of s are computed in the E-step and used to 

update θ in the M-step (maximizing the likelihood). This was shown [56] to be particularly 

useful in the case of noisy models, using the Wiener filter in the E-step. Marginalization of θ 
following marginalization of s requires MCMC approaches for approximate integration.
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E. Unified Framework

Building on the broad, general view of modeling and development in BSS problems 

presented above, we propose a unified framework for description of BSS models based on 

charting the modeling choices made for each of the three sets of assumptions outlined in II-

B and the type of problem being addressed. In the following section, we illustrate the scope 

of this unifying framework by characterizing and reviewing a number of BSS models 

popular for brain data analysis.

III. Review of BSS Models for Brain Data

Following the proposed framework, in this section we review BSS models and algorithms 

frequently employed in brain data analysis. Throughout the description, models become 

progressively stronger by adopting more lenient choices, enabling simultaneous analysis of 

multiple datasets, allowing multidimensional sources, and exploiting both second- and 

higher-order statistics. High-level differences and relationships among these models become 

evident, as shown below. Applications to various brain data modalities are presented last.

A. BSS Models

Here, both classical algorithms and recent models are reviewed through the framework we 

propose. Following Table I, we first focus our attention on linear mixture models (x = As) 

with undirected source relationships within subspaces and/or sample dependence, and no 

optional constraints. In all cases, we assume that sources are zero-mean. The sections are 

organized by problem, following the structure in Fig. 1.

1) Single Dataset Unidimensional (SDU) Problem—The linear models for the SDU 

problem assume a single dataset (M = 1) generated by an invertible linear, fully-connected 

mixture (see Fig. 4). The classical model in this case is principal component analysis (PCA) 

[57]–[60], which assumes the sources s are uncorrelated, implying a diagonal source 

covariance matrix Σs. Thus, SOS dependence among estimated sources y = Wx should be 

zero. Eigenvalue decomposition (EVD) of Σx or singular value decomposition (SVD) of the 

observed V × N dataset X identify such diagonalizing W, assigning sources to each of the 

principal axes of the data, i.e., the (orthogonal) directions of maximal variability. The PCA 

solution is unique only up to sign ambiguities. Also, sources with equal variance are 

unrecoverable if A is a rotation matrix, since x would then be already uncorrelated. Its focus 

on the top C sources with largest variability makes it prone to error when the sources of 

interest have low variance.

A very successful model for brain data in this category is independent component analysis 

(ICA) [3], [7]–[9], [61]–[70]. The ICA model assumes statistical independence among the 

sources in s and, thus, all HOS and SOS dependence among estimated sources should be 

zero. Cost functions for dependence assessment are abundant [1], [71]–[73], including 

negentropy [19] (as in FastICA [21], [74]) and information divergence [75], [76], of which 

mutual information [26], [77], [78] is an important special case and a natural, general 

choice:
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(1)

where h(s) = −E[log p(s)] is the joint differential entropy, and p(s) and p(si) are the joint 

probability density function (pdf) of all sources and the marginal pdf, respectively. When u 
≈ γ(y) = γ(Wx), where γ(·) is an element-wise non-linear transformation representing a 

fixed cumulative distribution function (cdf), and p(ui) is the Uniform distribution in the [0, 

1] domain, h(ui) is zero. In this case, minimizing I(u) is equivalent to maximizing h(u), 

which is the popular Infomax approach [20] when the sigmoid function is chosen as the cdf.

Another successful method, particularly in the field of EEG-based brain-computer interface 

(BCI), is called second-order blind identification (SOBI) [22], [79]. SOBI considers the case 

of independent non-white stochastic source processes si(t), in which sample dependence 

occurs within each source si through autocorrelation  (e.g., lag-correlation , τ ∈ [0, 

T ]) but not highly among different sources (e.g., , i ≠ j, ∀τ ∈ [0, T ]). This 

translates to high SOS of a source with itself and low SOS with other sources, i.e, Rs(τ) ≈ I 
for all τ. Finding W that simultaneously diagonalizes Rx(τ) for all τ is known as joint 

diagonalization (JD). This principle is shared by many other techniques, such as the 

algorithm for multiple unknown signals extraction (AMUSE) [80], which pursues exact2 JD 

between Rx(0) and Rx(τ), for fixed τ ≠ 0, and the time-delays based separation (TDSEP) 

[81], which uses exact JD on two weighted averages of multiple Rx(τ). Weights-adjusted 

SOBI (WASOBI) [23] is a variant implementation of the SOBI model that attains better 

performance by optimally weighting each Rx(τ) and performing approximate JD via 

weighted least-squares.

Seeking to combine the ICA and SOBI models, COMBI [82] proposes a “wrapper” 

algorithm that runs both efficient FastICA (EFICA) [83] and WASOBI, selecting the “best” 

components from each [84]. Recent developments utilizing mutual information rate to 

combine ICA and SOBI principles have inspired unique algorithms like entropy rate bound 

minimization (ERBM) [85] and entropy rate minimization using an autoregressive (AR) 

source model driven by generalized Gaussian distribution (ERM-ARG) [86]. The use of both 

sample correlation and HOS of sources provides significantly better performance [26], 

although these have not yet been applied in BCI.

The last model we consider in this category is a simple but effective one, called group ICA 

(GICA) [4], [87]. GICA is a popular approach for group analysis of resting-state fMRI data 

[88] that implements “spatial ICA.” An actively growing research area called dynamic 

resting-state functional network connectivity (rs-FNC) [89]–[92] analysis has been built on 

top of results produced with this approach. GICA models several datasets as if they were one 

(by temporal concatenation), assuming the same single set of sources s (the “aggregate” 

spatial maps) for all M datasets (the subjects): xm = Amsm, s1 = ⋯ = sM = s. Dataset- or 

2Exact JD is only attained in the case of two symmetric matrices.
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subject-specific variations in s are then captured by a process called back-reconstruction 

[93]. While effective, this assumption is also somewhat restrictive and recent work suggests 

that MDU-type models may capture subject-specific source variability better than GICA 

when sm are highly distinct [26], [94] across datasets.

The class of SDU models includes those that extend beyond noise-free linear unconstraint 

approaches. We go over some of them. Factor analysis (FA) assumes Gaussian sources with 

uncorrelated sensor noise [95]. Probabilistic ICA (PICA) [96] is a FastICA approach that 

utilizes a preprocessing step (namely, standardize each observation xn to zero mean and unit 

variance) to condition the data prior to PCA reduction. This is based on an extended FA [38] 

to select the number of components, assuming sensor noise is very low. Expanding Bayesian 

methods for linear ICA [97]–[99], non-linear FA (NFA) and non-linear independent FA 

(NIFA) approaches [100], [101] have been proposed under a Bayesian framework too.

In tensor ICA (TICA) [102], the PARAFAC tensor model xm = ADms, m = 1M, where Dm is 

a diagonal matrix, is used to achieve a variation of GICA. Identically to GICA on M 
datasets, shared sources s are recovered using PICA. However, Am = ADm is obtained in a 

post-processing step of the concatenated mixing matrices. Thus, the columns of Am are 

perfectly correlated across datasets (subjects). While this can be useful for task-elicited 

activation in which the task stimulus timing is identical, in the case of spontaneous activity, 

such as resting fMRI, a model that does not assume perfectly correlated timecourses across 

datasets (subjects) is preferred.

The use of tensor representations is also common in cumulant-based SDU methods [103], 

but does not relate to modeling datasets as tensors. Instead, they seek to diagonalize second- 

and fourth-order cumulant tensors by applying the same transformation matrix W to all 

dimensions of the tensor, effectively achieving second- and fourth-order independence by 

driving cross-moments toward zero. As for constraints, ICA-R [104]–[106] was proposed to 

allow references to be incorporated and help extract certain specific patterns from data while 

pursuing independence. The reference “guides” the decomposition, potentially overcoming 

high noise issues.

2) Multiple Dataset Unidimensional Problem—MDU-type linear models assume M ≥ 
1 datasets generated by a linear, structured mixture. As such, the combined mixing matrix A 
has a block-diagonal structure that confines sources to their respective datasets: xm = Amsm, 
m = 1 … M. The number of sources is typically the same for all datasets (Cm = C). Although 

no multidimensional (grouped) sources occur within any single dataset, sources are allowed 

to group across datasets (see Fig. 4). The properties of these K = C cross-dataset M-

dimensional source groupings (or subspaces, sk) mark the major differences among models 

in this category, particularly their choice of SOS, HOS, or both to describe (un)relatedness.

SOS-only models underly classical algorithms such as canonical correlation analysis (CCA) 

[24] and partial least squares (PLS) [25], [107], as well as more recent models such as 

multiset CCA (mCCA) [108] and second-order independent vector analysis (IVA) [26], [27]. 

Thus, in these models, unrelated sources are linearly independent (uncorrelated) and related 

sources are linearly dependent (correlated). In the case of CCA and PLS, exactly M = 2 
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datasets are considered, meaning only corresponding sources from each dataset form related 

pairs. CCA seeks a particular solution that maximizes the correlation between related source 

pairs sk=i = [s1i, s2i]T, s1i = W1ix1 and s2i = W2ix2, i = 1 … C, where Wmi is the i-th row of 

Wm, while PLS maximizes their covariance instead. For i = 1, CCA solves the following 

constrained optimization [109],

(2)

where  is the (cross-) covariance matrix between datasets xm and xl, while PLS solves a 

different constraint [109],

(3)

In either case, by Lagrange multipliers, the constrained optimizations reduce to generalized 

eigenvalue (GEV) problems Evi = λFvi, where

for CCA3, and FPLS = I for PLS, both solvable by the power method (PM) of numerical 

linear algebra. The structure of FPLS implies W11 and W21 are the left and right singular 

vectors of the largest singular value of , respectively [109]. It also enables a popular 

variant of PM called non-linear iteration partial least squares (NIPALS) [111], which 

converges in a single step when either x1 or x2 is univariate (Vm = 1).

For i > 1, CCA requires additional constraints to enforce diagonal structure on source 

covariances , , and 

meaning all non-corresponding source pairs are uncorrelated. While sequential estimation in 

CCA simply yields the remaining eigenvectors of the GEV problem [112], the same is not 

always the case in PLS [109]. This is because different deflation strategies can be employed 

between iterations i and i+1, giving rise to a wide range of PLS variants [109], [110], [113], 

[114]:

Name Deflation

3CCA is sometimes referred to as PLS Mode B [110].
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PLS-SVD

PLS Mode A

PLS1/PLS2

, 

where ,  is the m-th Vm × N data matrix, 

containing N observations of the measurement vector xm at the i-th iteration, and . 

Alternating the PLS-SVD deflation with the basic PLS optimization in (3), for i > 1, is 

equivalent to sequential rank-one deflations of  [109], or to additional orthogonal 

constraints , ∀m ∈ {1, 2}, all simply yielding the remaining 

eigenvectors of the initial GEV problem. As a result, non-corresponding source pairs are 

uncorrelated in PLS-SVD (as in CCA). This is generally not the case in PLS Mode A, 

although sources are uncorrelated to each other within the same dataset [110] (since the 

residual  is orthogonal to ). The deflation in PLS Mode A is inspired by least 

squares [115], seeking to remove the variability in  explained by  (the m-

th 1 × N vector containing N observations of the source smi) at the i-th iteration. PLS-SVD 

and PLS Mode A are exploratory approaches recommended for modeling unobservable 

relationships between datasets. PLS1 and PLS2, however, are intended for regression, 

univariate (V2 = 1) and multivariate (V2 > 1), respectively [113], with X2 acting as the 

response variable and using the information contained in X1 to make predictions about X2. 

To that end, s1i is assumed to be a good surrogate for s2i [113], thus replacing it in the 

deflation of . After C deflations, a “global” multiple regression equation is derived which 

can be used for prediction of X2 from new observations of X1 [109], [112]:

where P1 and P2 are matrices whose columns are the projections  and , 

respectively, 1 ≤ i ≤ C, and W1 contains W1i at the i-th row.

Overall, for sources s estimated with a known inverse model g(·), [116] suggests that the 

generative model f() conveying optimal interpretation is the one which minimizes the data 

reconstruction error ‖(s) − x‖. When the L2-norm is selected, the least squares solution 

ensues. For separable linear models, , 

and, thus, . This is quite similar in nature to the PLS Mode A 

deflation, except that all sources sm contribute simultaneously to the estimation of Am. This 

idea was explored in source power comodulation (SPoC) [117], which pursued a CCA-type 

analysis between windowed variance profiles of s1 (in dataset m = 1) and a single known 

fixed reference source s21 (in dataset m = 2), canonical SPoC (cSPoC) [118], which pursued 

CCA between “envelope” transformations of sm, and multimodal SPoC (mSPoC) [119], 
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which pursued CCA between s1 and temporally filtered windowed variance profiles of s2. 

The key differences between CCA and SPoC-type approaches are that s1 and s2 can have 

different number of observations and at least one set of sources undergoes a non-linear 

transformation.

Since covariance is , where  is correlation between s1i and s2i, and 

  are their standard deviations, respectively, maximizing covariance will not necessarily 

maximize correlation4. Thus, covariance might not detect sources with high linear 

dependence (high correlation) if either of their standard deviations is low (possibly the case 

in genetic data [120]). Because PLS does not prioritize correlation over scale, we consider it 

“deficient” from an optimization perspective as it will always be biased by the scale of the 

data. Nevertheless, it may still be advantageous to rely on this property, depending on the 

importance of scale for a given application, such as regression, where larger scale translates 

into larger explained variability.

Multiset CCA (mCCA) [108] extends CCA to M ≥ 2 datasets. In this case, sources are 

organized into K = C subspaces, each one spanning over M datasets, forming K tuples made 

of one corresponding source from each dataset. The M sources contained in each subspace 

(sk, k = i) share an M × M correlation matrix . The solution sought in mCCA maximizes 

the entire correlation structure of each . This is typically achieved by either minimizing 

its determinant  or maximizing some norm . Consequently, sources in the 

same subspace sk are (potentially) highly linearly related to each other and, therefore, 

statistically dependent. Typical cost functions for mCCA include sum of squares of all 

entries of the correlation matrix (SSQCOR) and the generalized variance (GENVAR). For i 
= 1, SSQCOR mCCA solves the following constrained optimization [37], [108], [121], with 

, when the constraints are enforced, and k = i:

(4)

where, tr(·) is the trace operator,  is the cross-covariance among the i-th source from all 

datasets, Σx is the crosscovariance matrix among all datasets, and W·i is a , 

 block-diagonal matrix whose m-th block contains the row vector Wmi. 

GENVAR mCCA, on the other hand, solves [108]:

(5)

4The constraint in CCA enforces . Likewise for mCCA.
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which is a function of the product of eigenvalues of Ri. For i > 1, mCCA also requires 

additional constraints:

meaning all non-corresponding source pairs are uncorrelated. Multi-block PLS approaches 

exist [122] but are not common in brain data analysis.

IVA is a model that seeks to minimize the mutual information between subspaces sk [26], 

[27], similarly to (1):

(6)

where K = C, h(s) = −E[log p(s)], and p(s) and p(sk) are the joint probability density 

function (pdf) of all sources and the marginal subspace pdf, respectively. The choice of 

distribution for p(sk) distinguishes between different IVA algorithms. In second-order IVA 

(IVA-G) [123], p(sk) is modeled as multivariate Gaussian, simplifying (6) to:

(7)

where λmi are the M eigenvalues of the source covariance matrices , k=i, and e is 

Napier’s constant. When Wm is constrained to be orthogonal, IVA-G is equivalent to 

GENVAR mCCA [123].

IVA assumes all sources are independent within each dataset, such that , 

m = 1 … M. This implies that second- and higher-order cross-moments between non-

corresponding sources are driven to zero and, likewise, become potentially non-zero for 

sources in the same subspace. For IVA-G, only SOS is considered so that independence 

translates to uncorrelation. Thus, IVA-G shares the same base model as CCA, PLS-SVD, 

and mCCA, except the latter three seek particular solutions that explicitly maximize some 

measure of correlation inside each subspace sk. The relationship with IVA becomes clearer 

when we consider that the cost functions in these algorithms assume zero-correlation among 

sources in different subspaces. From an optimization theory perspective, this can be 

achieved, for example, by null-space methods [51], which first project into a space that 

satisfies the constraints (i.e., uncorrelates non-corresponding sources) and then find a 

solution within that space. It should be clear that the constraints in CCA, PLS-SVD, and 

mCCA correspond exactly to IVA-G and that maximization of correlation/covariance gives a 

particular solution within that space.
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IVA-L [27], on the other hand, uses the multivariate Laplace distribution to model HOS 

dependence within subspaces. Due to its HOS nature, it leads to independence, in addition to 

uncorrelation, among subspaces. Uncorrelation is imposed within subspaces, however, due 

to the assumed identity dispersion matrix [107]:

(8)

with k = i, , smi = Wmixm, and Γ(·) is the Gamma function. IVA 

can explicitly pursue independence in each dataset while retaining dependence across 

corresponding sources. Estimating dataset-specific Wm and dependent, rather than identical, 

sources sm enables greater flexibility to capture dataset-specific variability. Under similar 

motivation, GIG-ICA [124] uses the source estimates s from GICA as reference for dataset-

specific estimation of Wm and sm via ICA-R, effectively using two SDU approaches to 

attain an MDU result.

Next, we consider the joint ICA (jICA) model [125], commonly utilized in multimodal data 

fusion [121], [126] and “temporal ICA” of temporally concatenated fMRI [127], [128]. 

Originally proposed for (but not limited to) exactly two datasets, jICA’s hallmark 

assumption is that the same mixing matrix A generates both datasets. It also assumes none 

of the sources are statistically related, i.e., , and that p(·) is the 

same for all sources. Comparing to the IVA model, this is equivalent to constraining the 

block-diagonal structure to Am = A, m = 1 … M, and modeling subspaces with 

. The key difference between such a variant of IVA and JICA is that the 

first uses an M-dimensional independent joint pdf for sk while the second combines 

corresponding sources into a single one-dimensional pdf. Thus, JICA conveniently follows 

optimization of (1).

In a similar fashion, the approach of common spatial patterns (CSP) [129], [130] assumes 

the same generative system for two different datasets (typically from the same subject in 

different conditions). Like exact JD approaches for SDU models, it uses SOS from two 

covariance matrices,  and , to form a generalized eigenvalue 

problem , , and identify uncorrelated sources s1 and s2 

with maximum variance contrast between corresponding sources. That is, for C sources, s11 

has maximal variance (eigenvalue) and the corresponding s21 has minimal variance; 

likewise, s1C has minimal variance and s2C has maximal variance. The motivation for 

stems from classification: maximizing variance contrast between corresponding sources 

helps enhance source-based classification of different conditions. Equivalently, 

maximization of the Jensen-Shannon divergence (or symmetric Kullback-Leibler (KL) 

divergence) leads to the same CSP solution when the sources are assumed to be uncorrelated 
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Gaussian [131]. Extensions of CSP focus on regularizing the problem with additional 

constraints [132], [133], leading to GEV problems of the form 

, , where Kp is a positive definite penalty 

term representing any undesired properties detected in the data (typically, non-stationarity 

due to multiple subjects, sessions, or artifacts). A general regularization framework based on 

divergence measures is also possible, with Beta divergence offering additional robustness 

against outliers [131]. The benefits of regularization come at a cost: Wmi is different for 

each dataset and, thus, requires dataset-specific optimization. Consequently, this implies a 

different generative system per dataset, which places CSP closer to CCA (and mCCA) but 

not quite since each dataset is optimized separately rather than jointly.

Expanding on the jICA model, linked ICA (LICA) [134] applies Bayesian ICA to a “joint” 

TICA model, establishing a more flexible structure on the shared A. Specifically, TICA is 

applied to D groups of Md datasets of equal spatial resolution. For each d = 1..D, xdm = 

ADdmsd, m = 1..Md. Like jICA, sources sd are assumed independent across the D groups of 

datasets but, like GICA, they are identical for the Md datasets in the same group, i.e., 

. Thus, sources are modeled as , finally 

combining the corresponding sources sk, k = i, into a single one-dimensional pdf that is a 

weighted average of each source’s pdf: , k = i, where αd is 

determined by the number of observations in each sd. As a result of the PARAFAC model, 

the mixing matrices from each dataset share a common structure but are not identical, unlike 

jICA. However, their columns are perfectly correlated, which may or may not be a benefit 

depending on the problem. Finally, the Bayesian strategy provides a nice framework to 

handle noise and employ re-estimation of the source distribution parameters, which is 

selected as a mixture of Gaussian (MOG) for each sk.

To conclude, a nice example of generalization are the wide class of models contained in the 

IVA-Kotz family [107] (and a version that includes HOS and sample dependence [135]), 

which cleverly use the Kotz distribution to capture both SOS and HOS simultaneously.

3) Single Dataset Multidimensional (SDM) Problem—The linear models for the 

SDM problem assume a single dataset generated by an invertible linear, fully-connected 

mixture with multidimensional (grouped) sources occurring within the dataset (see Fig. 4), 

forming K ≤ C subspaces sk. The most common model in this category was originally 

introduced as multidimensional ICA (MICA) [28] and later investigated under the 

independent subspace analysis (ISA) [30], [31], [136] nomenclature. In this model, sources 

in the same subspace sk are related and, thus, statistically dependent. Sources in different 

subspaces are assumed independent. The simplest ISA approach post-processes ICA results 

to form subspaces post-hoc as in [28], [31], [47].

A more principled approach is to minimize (6), redefining sk according to user-defined 

source groupings. Applying this approach, Hyvärinen et al. [136] assume W is orthogonal, 

using a Laplacian-like multivariate distribution for independence among subspaces and 

HOS-only dependence within subspaces, enforcing uncorrelation both within and among 
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subspaces. Similarly, Silva et al. [33] use a scale-adjusted multivariate Laplace distribution 

and introduces reconstruction error constraints to bypass the typical PCA reduction step. 

Focusing only on SOS among subspaces, Lahat et al. [29] use a multivariate Gaussian 

distribution to model subspace dependences. Likewise, Silva et al. [137] improve on [33] by 

not enforcing uncorrelation within subspaces.

Stationary subspace analysis (SSA) is a model designed to find one group of sources whose 

mean and SOS remain unchanged over time, hence the name. KL-SSA [138] uses an AJD of 

Σs(τ), accounting for different μs(τ), to identify stationary sources based on KL divergence, 

very similar to Pham’s AJD criterion [139]. It models each window as a Gaussian source 

, and the collection of all windows as . Then the sum of 

divergences between each window and the “aggregate” source is minimized. By definition, 

K = 2, though only the group of stationary sources is retrieved. Analytic SSA (ASSA) [140] 

approximates the KL divergence with a “variance of covariance” function, simplifying the 

optimization to a generalized eigenvalue problem. Like other SDM models, sources within 

the retrieved subspace are still unmixed. Consequently, SSA is only intended to act as a 

filtering tool, removing non-stationarities from the data.

4) Multiple Dataset Multidimensional Problem—MDM models were developed only 

recently. In linear MDM, M ≥ 1, datasets are generated by a linear, structured mixture where 

the combined mixing matrix A has a block-diagonal structure: xm = Amsm, m = 1 … M. The 

number of sources Cm is typically not the same for all datasets. Multidimensional (grouped) 

sources occur within any single dataset and are allowed to group (or not) across datasets (see 

Fig. 5), forming K dk-dimensional subspaces sk.

Sources in the same subspace sk are considered statistically dependent, and independent 

otherwise. Thus, , and minimization of (6) with user-defined source 

groupings for sk follows. Variations include models that either exploit a) only SOS, like joint 

independent subspace analysis (JISA) [34], b) only HOS, like multidataset independent 

subspace analysis (MISA) [32], [33] (emphasizing uncorrelation within subspaces), or c) 

both, like MISA with SOS [137].

B. Applications and Data Modalities

The “blind” property of BSS models makes them a powerful tool in applications lacking a 

precise model of the measured system and with data confounded by noise of unknown 

characteristics. Brain imaging is an area where these properties are especially emphasized. 

We now briefly review some applications of BSS models to brain imaging data. The first 

case focuses on data from a single imaging modality (unimodal) while the other considers 

current attempts to identify common motifs from two or more imaging modalities 

(multimodal).

1) Unimodal—First we consider the analysis of a single dataset. If it contains data from a 

single subject, the model captures subject-specific information. If instead it contains subject-

specific summaries from a certain population, then the model characterizes underlying group 

patterns. Both cases resort to SDU models. The second example regards the processing of 
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two or more datasets simultaneously. When each dataset contains information from a single 

subject, shared or similar patterns across subjects are identified and group trends derived. 

Although group trends offer useful conclusions about population differences, preserving 

subject-specific information is crucial for clinical diagnosis and personalized treatment. 

Both SDU and MDU models have been used to capture inter-subject, and sometimes inter-

trial, variability.

a) SDU Problem: ICA has been successfully utilized in a number of exciting applications, 

especially those that have proven challenging with the standard regression-type approaches 

[141], [142]. For fMRI [4], [143] and EEG [6], [144]–[146], ICA reveals dynamics for 

which a temporal model is not available [147], finding largely non-overlapping, temporally 

coherent brain regions without constraining the shape of the temporal response. The 

Infomax algorithm with a sparse prior is particularly well suited for spatial analysis [148]. 

Besides fMRI, the brain grey [2], [149] and white matter [149], as well as functional near-

infrared spectroscopy (fNIRS) [69] have also been analyzed by ICA to study the diseased 

brain. In addition to its wide use for recovering spatial networks as independent components

—in diffusion tensor imaging (DTI) [7], positron emission tomography (PET) [67], and even 

MEG [150]—ICA is also promising for temporal [128], [151] and spectral (e.g., MR 

spectroscopic imaging (MRSI) [70]) domains of brain imaging.

ICA was shown to be useful in modalities such as EEG and MEG. It has also been 

successfully applied to multi-neuronal recordings [68]. Mostly, it is used for artifact 

reduction [61], [152] or for real-time control in BCI applications [65]. However, for artifact 

reduction in MEG, SOBI was shown to be superior to other BSS methods available at the 

time [5] (also see [153], [154] for another comparative study).

GICA [4] of fMRI [3] is one of the most successful BSS tools for neuroimaging analysis, 

providing a means to handle multi-subject datasets. It enables network identification under 

task and rest regimes [89]. The connection patterns between these networks is very 

interesting and useful for differentiation [90], [155]–[157] and neurodiagnostic discovery 

[87].

b) MDU Problem: Both CCA and mCCA have been successfully utilized in applications 

ranging from single- [158] and multi-subject analysis of fMRI [159], [160], as well as BCI 

[161], [162]. PLS, on the other hand, has also been successfully applied to 

neuropsychological and MRI relationships [163], while temporal ICA was investigated in 

[127], [128], [151]. Finally, IVA has found great value in leveraging the success of 

independence-based methods while better characterizing inter-subject variability [94], [164], 

[165].

2) Multimodal—Multimodal analyses are intended to leverage information contained in 

multiple data streams by modeling the relationship among modalities. Convergent evidence 

suggests that combining functional and structural information is useful in clinical research 

[166]–[168]. Moreover, multi-modal studies often demonstrate some congruent effects 

across modalities and different brain pathologies [169]–[173]. Any remaining 

complementary information typically contributes to increased differentiation power among 
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diseases. Unlike multimodal approaches that use one modality to constrain or filter the other, 

multimodal data fusion seeks hidden shared information underlying the signals from both 

modalities simultaneously. Multimodal data fusion applications are by and large viewed as 

MDU-type problems [174], [175]. However, for the most part, current neuroimaging 

multimodal fusion schemes have focused on pairs of modalities.

IV. Future Directions

A. Emerging Modalities

Improvements in imaging instrumentation and signal acquisition continue to provide 

researchers with novel and higher quality information about the physiology of the brain. 

Naturally, the use and combination of such emerging modalities has great potential for 

producing new findings and applications.

We begin with a summary of promising, emerging modalities. First, high-resolution 

quantitative MR imaging of tissue-specific parameters such as longitudinal relaxation (T1) 

provides good indication of cortical myelination [176], with the benefit of allowing direct 

comparison of images across scanners and sites, as well as longitudinally, for most cortical 

brain areas [177]. Also, a measure of local variation in grey matter called voxel-based 

cortical thickness (VBCT) provides higher grey matter sensitivity than typical voxel-based 

morphometry (VBM) [178]. Following recent breakthroughs in DWI [179], [180], crossing 

white matter fibers can now be resolved and tracked, providing thrilling details about the 

orientation and structural connectivity of fiber bundles. Similar improvements have led to 

ultra-fast fMRI sequences [16] at higher spatial resolution, simplifying the filtering of 

certain physiological noise sources, such as breathing and cardiac pulsation.

We also highlight the emergence of new devices that combine different imaging modalities. 

Simultaneous PET/MR devices offer multiple opportunities for multimodal research. 

Particularly, with the advent of functional PET (fPET) by constant infusion of 2-[(18)F]-

fluorodeoxyglucose (FDG), functional changes in glucose utilization by the brain can be 

observed with better time resolution than traditional PET [181]. Consequently, simultaneous 

functional imaging using fPET and fMRI (by arterial spin labeling (ASL) and blood oxygen 

level dependent (BOLD) contrasts) enables the study of neurovascular coupling [182], 

especially in the study of drug challenges. Also, sMRI scans interleaved with PET 

acquisition can enable improved PET resolution and SNR following MRI-guided attenuation 

and partial-volume corrections, motion compensation, and reconstruction [183].

Similarly, recent advances in cap and probe design allow for high-density simultaneous 

fNIRS and EEG experiments with reduced motion artifacts and for extended periods of time 

[184], [185]. These could be combined with PET/MR systems, offering a huge opportunity 

for neurodiscovery, and indicating an impending need for multiple-dataset methods oriented 

to multimodal fusion.

B. Emerging Applications

The past decade has witnessed a growing interest in multimodal analyses, especially N-way 

multimodal fusion [33], [186], for their potential to leverage hidden multimodal interactions 
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(i.e., cross-dataset dependence) and construct a more complete view of brain function and 

structure. More modalities typically means increased confidence in statements about the 

neural determinants of healthy [187] and disease states. Moreover, multiple-dataset BSS has 

demonstrated potential to identify endophenotypes from brain imaging data for genetic 

association studies, eliciting candidate biomarkers for several mental illnesses [188], [189].

While multiple-dataset BSS provides a pristine opportunity for neurodiscovery in 

multimodal studies of mental disorders [190], the benefits for unimodal studies involving 

longitudinal or multi-site data can be more immediate, as they may identify recurrent 

features across time and study location.

Structure-function connectivity analyses [171], [191]–[193] are also expected to largely 

benefit from continued research in multiple-dataset BSS. For example, graph-oriented BSS 

may elicit the underlying breakdown of networks into modules and meta-states [194], 

offering a fresh new look at connectivity.

C. Emerging Techniques

Typically, linear BSS on a V ×N dataset X = AS captures information along the dimension 

of N. In order to leverage information contained along the other dimension, some 

approaches have been exploiting the data transpose XT as well. Utilizing a two-step 

approach, mCCA+jICA [190] computes mCCA among  to find  with high correlation 

among corresponding rows, followed by jICA on Sm; conversely, [151] uses temporal ICA 

on the temporally concatenated AT that results from GICA. On the other hand, approaches 

like non-negative matrix factorization (NMF) [195] alternate between X and XT at every 

step of the alternating least-squares (ALS) [196], [197] optimization. This approach 

generalizes well to the tensor case [198], [199]. Parallel ICA [9], however, alternates 

between ICA (on X1 and X2, separately) and CCA (between  and ) at every step. Such 

techniques are likely to play an important role in the development of new methods for linear 

MDM problems.

V. Conclusion

We have presented a unifying view of BSS, providing new insight into the connections 

among many traditional and modern BSS models. The new perspective leads to a broader 

sense of generalization, highlighting several directions for further development. Particularly, 

MDM models emerge as an organic confluence of three major trends: simultaneous multi-

dataset analysis, grouping of sources within a dataset, and use of all-order statistics. 

Therefore, they capture all key features and subspace structures common to their 

predecessors. Their benefit is in the flexibility to simultaneously model dataset-specific as 

well as cross-dataset subspace associations.

The demands from advances in multimodal brain imaging technology are likely to propel the 

development of BSS methods strongly into the direction of N-way multimodal fusion. 

However, a better and more general solution becomes possible. The availability of such 

advanced BSS approaches will provide novel ways to investigate inter-subject covariation 

across multiple populations, sites, and longitudinal inquiries.
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Fig. 1. Venn diagram of the structure of BSS subproblems
Single dataset unidimensional (SDU) problems are special cases of multiple dataset 

unidimensional (MDU), single dataset multidimensional (SDM), and multiple dataset 

multidimensional (MDM) problems, while MDU and SDM problems are special cases of 

MDM problems.
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Fig. 2. Hierarchy of linear BSS models
Historically, BSS models have been made more general by: A) increasing the number of 

datasets which can be jointly analyzed [see Layout and Subsets]; B) moving from isolated 
sources to groups of sources in the same dataset [see Subsets]; C) exploiting SOS, HOS, or 

both [see Type of Statistics]. The arrows indicate the directions of increasing difficulty, 

model complexity, and generality. Highly general models can address MDM problems by 

incorporating lenient modeling choices.
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Fig. 3. Steps involved in moving from a model to an algorithm
The properties of s and θ, selected during the modeling step, impose requirements on the 

inverse model and cost function. The parameters ϕ of the inverse model are the inputs to the 

cost function and change according to the selected optimization strategy.
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Fig. 4. General inverse models for linear SDU, MDU, and SDM problems
The models are presented as graphical structures where the lower layer corresponds to one 1 

× V observation of the input data x. The middle layer represents the C sources s obtained by 

linear transformation of x through the unmixing matrix W. The top layer establishes the type 

of interaction between sources as described in Section II-B, forming K subspaces sk. The 

problems are described in Section II-A.
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Fig. 5. General inverse model for the linear MDM problem
The lower layer corresponds to one Vm × 1 observation of each input data stream xm, 

reflecting the different intrinsic dimensionality (Vm) of each dataset. The middle layer 

represents the Cm sources. The top layer establishes the K subspaces sk, which may be 

dataset-specific (k = K in the figure) or span through many datasets, illustrating the different 

compositions permitted.
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TABLE I

Typical choices in BSS modeling. Choices relevant to this work are color-coded to match Fig. 2.

Model Property Choice to Make Options

Sources Model order C ∈ ℕ (per dataset)

Mixture Mapping linear or non-linear

Layout fully-connected or structured

(optional) Parameter constraints Orthogonality, sparsity, match a template, min. total variation

Statistical Relationship
 (which)  and K ≤ C

Interactions (how) graph (directed or not, acyclic/cyclic, tree/hierarchy), and/or sample dependence

Type of Stats. (how)
, , or 

(optional) Source constraints Sparsity, match a template, min. total variation
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