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Abstract—Multimodal fusion is an effective approach to better 

understand brain disease. To date, most current fusion 
approaches are unsupervised; there is need for a multivariate 
method that can adopt prior information to guide multimodal 
fusion. Here we proposed a novel supervised fusion model, 
called “MCCAR+jICA”, which enables both identification of 
multimodal co-alterations and linking the covarying brain 
regions with a specific reference signal, e.g., cognitive scores. 
The proposed method has been validated on both simulated and 
real human brain data. Features from 3 modalities (fMRI, 
sMRI, dMRI) obtained from 147 schizophrenia patients and 147 
age-matched healthy controls were included as fusion input, 
who participated in the Function Biomedical Informatics 
Research Network (FBIRN) Phase III study. Our aim was to 
investigate the group co-alterations seen in three types of MRI 
data that are also correlated with working memory 
performance. One joint IC was found both significantly 
group-discriminating (p=7.4E-06, 0.001, 7.0E-09) and highly 
correlated with working memory scores(r=0.296, 0.241, 0.301) 
and PANSS negative scores (r=-0.229, -0.276, -0.240) for fMRI, 
dMRI and sMRI, respectively. Given the simulation and FBIRN 
results, MCCAR+jICA is shown to be an effective multivariate 
approach to extract accurate and stable multimodal components 
associated with a particular measure of interest, and promises a 
wide application in identifying potential neuromarkers for 
mental disorders.  

I. INTRODUCTION 

In neuropsychological studies, evidence has been 
accumulated that schizophrenia (SZ) is associated with 
significant impairment in cognitive functioning,  in which 
working memory (WM)  is the cognitive domain showing the 
most pronounced deficits, and has been most severely 
affected in schizophrenia[1]. While most existing studies 
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about WM deficits are based on unimodal analysis, 
multi-modal fusion has been a natural option to provide more 
clues by exploiting the relationship between rich multimodal 
brain imaging data with cognitive and behavior information 
for individual subjects, rather than performing analysis within 
each modality alone.  

Existing multivariate multimodal fusion methods have 
different advantages and limitations. Specifically, multi-set 
CCA (MCCA) and sparse CCA maximize the inter-modality 
covariation across multiple types of features, but their 
associated source maps may not be sufficiently unique. Joint 
ICA (jICA), and linked ICA perform well in spatial 
decomposition, but all modalities share a common profile. 
Combining the advantages of MCCA and jICA, we already 
successfully developed unsupervised multimodal fusion 
algorithm “MCCA+jICA” [2, 3], which captures both 
interactions among n modalities and the source independence 
of interest and applied it to multiple cases. Other data fusion 
approaches like IVA [4] generalizes ICA to multiple data sets 
using mutual information rate that achieves a similar 
performance to MCCA+jICA. Parallel ICA (pICA) [5, 6] 
uses a similar idea, maximizing not only the inter-modality 
correlation but also the independence of sources under ICA 
framework, to specially deal with genetic data. However, all 
the above mentioned fusion approaches are unsupervised 
machine learning methods as summarized in[7] [8]. By 
contrast, supervised fusion of brain imaging data is more 
goal-directed, since it is trying to further take advantage of a 
prior knowledge to guide the analysis and pinpoint a 
particular component of interest embedded in a large complex 
dataset. For example, Chen proposed pICA-R (pICA with 
references) which used candidate genes as spatial priori to 
investigate the relationships between hidden factors of a 
particular attribute.  

Besides capturing shared and unique brain regions of 
interest (ROIs) as well as their interactions among n 
modalities, investigators may also be interested in 
discovering multimodal associations with a specific reference 
signal, e.g., the cognitive scores or psychotic symptoms. 
While currently utilizing neuroimaging data to identify 
cognitive biomarkers has been a hot topic, linking a specific 
cognitive domain (e.g. WM) with neuroimaging data and 
simultaneously mining multimodal co-alterations with mental 
disorders remains unexplored. Therefore, if we can use WM 
performance as a constraint to guide the multimodal fusion, 
we may even be able to extract joint components specifically 
associated with WM domain that can help further elucidate 
the mechanism of WM deficits in mental disorders as well as 
its impairment in disease. All the above motivate our 
supervised multimodal fusion model, “MCCAR+jICA” 
(multi-set CCA with reference + joint ICA, as shown in 
Figure 1), which simultaneously maximize inter-modality 
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associations and optimize specific correlations under the 
guidance of a reference. As a result, MCCAR+jICA enables 
detection of a joint multimodal component(s) that has robust 
correlations with both reference signal and among themselves 
(inter-modality correlations), which may not be detected by a 
blind (unsupervised) N-way multimodal fusion approach.  

The remaining of this paper is organized as follows: 
section II presents the development of MCCAR+jICA 
algorithm. In section III, the simulated data is used to evaluate 
the proposed method with its alternatives. In section 4 and 5, 
the application results using FBIRN data are introduced and 
discussed, as well as the future work. To the best of our 
knowledge, this is the first attempt to propose a supervised 
fusion model to combine three modalities of brain imaging 
data with a cognitive domain together, focusing on mining 
joint neuromarkers particularly correlated with working 
memory deficits in schizophrenia.  

II. METHODS 

A. MCCAR 

Assume that there are n multimodal datasets 𝑿𝑘 , 
𝑘 = 1,2, … , 𝑛 , each is a linear mixture of components 𝑪𝑘   
with a nonsingular mixing matrix 𝑨𝑘, 𝑘 denotes modality. 

𝑿𝑘 = 𝑨𝑘𝑪𝑘    𝑘 = 1,2, … , 𝑛                     (1) 
where 𝑿𝑘  is a subjects-by-voxels feature matrix, 𝑨𝑘 is in 
dimension of subjects by number of components M. MCCA 
with reference (MCCAR) imposes an additional constraint 
upon the MCCA framework to maximize not only the 
covariations among mixing matrices of each modality, but 
also the top column-wise correlations between 𝑨𝑘  and the 
reference signal, as shown in Figure1(c).  
 

 
Figure 1 Flowchart of supervised 3-way fusion strategy of MCCAR+jICA. 

 

The basic strategy of MCCAR is as follows: consider 
that there are 𝑁  subjects, dimension reduction is first 
performed on 𝑿𝑘  ,thus the signal subspace given by 𝒀𝑘 =
𝑿𝑘𝑬𝑘  are determined. MCCAR is thus performed on 𝒀𝑘 , 
generating the canonical variants 𝑨𝑘 by maximizing the sum 
of squared correlations (SSQCOR) among canonical variants 
(CVs) as well as the SSQCOR between each CVs and the 
reference signal. We can summarize the optimization 
procedure of MCCAR as below. Consider the CVs 𝑨𝑘  given 
by 𝑨𝑘 = 𝒀𝑘𝒘𝑘 were jointly decomposed into 𝑀 components, 
then the canonical coefficient vectors 𝒘𝑘 are updated by two 
stages: 
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is the correlation between the 𝑖th 

column of 𝑨𝑘  and the reference signal, which has the same 
length of subject numbers. 𝜆 is the regularization parameter 
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Particularly, MCCAR+jICA degenerates to MCCA+jICA 
when 𝜆 = 0 . Based on the above optimization, we can 
obtain𝑨1, 𝑨2, 𝑨3 simultaneously, which satisfies 

𝑬{𝑨𝑘
T𝑨𝑘} = 𝑰, 𝑬{𝑨𝑘

T𝑨𝑘} ≈ diag(𝑟𝑘,𝑗
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), 𝑘 ≠

𝑗, 𝑘, 𝑗 ∈ {1,2,3}                        (4) 
As shown in Figure1, in our case, 𝑛=3; 𝑘 ≠ 𝑗; 𝑘, 𝑗 = 1,2,3, 
we shown an example when 𝑀 = 5, including the source 
separation (Fig 1c) and inter-modality covariations (Fig 1d). 
In addition, one or more joint components will have 
significant correlations with the reference, as the 3

rd
 

component in Fig 1(c), which may be higher or equivalent in 
values than using MCCA only or using unimodal voxel-wise 
correlations (resulting in correlated ROI), as shown in 
Fig1(e).  

B. jICA 

Although MCCAR may provide a useful decomposition 
in many cases, the associated maps 𝑪𝑘 may still not be unique 
in some cases. In order to maximize their spatial 
independence and ensure the available mixing references 
derived from MCCAR, we further apply jICA on the 
concatenated maps [𝑪1, 𝑪2, … , 𝑪𝑛]  to obtain the final 
independent sources 𝐒𝑘 , and the final mixing matrices for 
each modality: 

𝑨𝑘 ∙ 𝑾−1 
𝑾[𝑪1, 𝑪2, ⋯ , 𝑪𝑛] = [𝑺1, 𝑺2, ⋯ , 𝑺𝑛]                  (5) 

𝑿𝑘 = (𝑨𝑘 ∙ 𝑾−1) ∙ 𝑺𝑘                              (6) 

III. SIMULATION 

We next simulated multimodal MRI data to compare the 
proposed method with its alternatives for its capability to 
extract accurate spatial maps and correspondence between 
multiple modalities and with the reference.  8 brain networks 
were simulated using the simTB [9] for fMRI and sMRI. 
DMRI was generated using the JHU white matter atlas in 
which we selected 8 typical fiber bundles, as shown in 

4022



  

Figure2 (A) (red boxed components are designed to correlate 
with reference). Loading matrices for each modality, 𝑨1, 𝑨2, 
𝑨3  were constructed in size of 300 × 8 , resulting in 300 
samples with 21025, 40000 and 65536 voxels for  fMRI, 
dMRI and sMRI feature matrices respectively by linear 
combination. 16 noise levels were also simulated with peak 
signal-to-noise ratio (PSNR) ranges from 1 dB to 34dB. 
Typical PSNR value for the acceptable image quality is about 
30 dB; the lower the value, the more degraded the image [10]. 
Here, we used a real cognitive score of 300 subjects as a 
reference and carefully designed one component for each 
modality (in different order) to be significantly correlated 
with the reference. The accuracy used here is defined as the 
correlation between the true source(s)/mixing matrix and the 
estimated component(s)/mixing matrix. 

 
(A)   FMRI                        DMRI                        SMRI 

 

 
 
Figure 2 The simulated 8 components of 3 modalities and the 
comparison of estimation accuracy under 16 level noises. 
 

We compared MCCAR+jICA with MCCA (including 
maxvar, ssqcor), MCCAR, MCCA+jICA and separate ICA 
(3ICA) on the simulated data, separately. Figure2 (B) and (C) 
compares the accuracy performance of sources and mixing 
matrix for different noise levels (averaged across 16 noise 
levels). It is evident that MCCAR+jICA is quite robust to 
noise and its source separation performance is consistently 
the best in all noise conditions. MCCA+jICA is the second 
best in source and mixing matrix estimation. Finally, the 

performance of MCCAR is not as good as MCCAR+jICA, 
which demonstrates the necessity of applying jICA. 

 

 
 
Figure 3 Comparison of different approaches in a simulated 3-way 
fusion.  

 
Figure3 (A) shows the ability for different fusion 

methods in getting priority-set reference signals as one joint 
independent component (IC) under the noise condition 
(PSNR=7). It is clear that only supervised method MCCAR 
(blue) and MCCAR+jICA (pink) could obtain one joint 
component with right correspondence (same IC order, 
showing that they are all correlated with ref). But blind fusion 
algorithms may lose detection of the reference target as an 
integrative IC in noisy conditions. Figure3 (B) displays the 
modality-specific correlations of sources and mixing matrix 
between the identified targeted ICs (significantly correlated 
with reference) and their ground truth under 16 noise levels. It 
is evident that MCCAR+jICA (pink) exhibit better estimation 
accuracy than others on both source and mixing matrix for 3 
modalities. Figure3 (C) compares the estimation of 
column-wise correlation and the absolute error of 
column-wise correlation of the identified joint component by 
different methods. Comparing separate ICA in each modality, 
MCCAR+jICA achieves best modal-connection estimation 
with minimum absolute error with ground truth, validating 
the advantages of the supervised, goal-directed multimodal 
fusion. In order to determine the optimal value of 𝜆 , we 
perform a 5-fold cross validation on 300 simulated data and 
found that the best 𝜆 for simulation is 0.8. 
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IV. HUMAN BRAIN DATA 

In this study, all subjects were collected from seven sites. We 
recruited 147 SZs (age: 39.5 ± 11.7, gender: 35F/112M) and 
147 HCs (age: 37.4 ± 11, gender: 44F/103M) who  were 
matched for age, gender, handedness, ethnicity, and have all 3 
types of MRI data. The Computerized Multiphasic Interactive 
Neuro-cognitive System (CMINDS, launched by the National 
Institute of Mental Health) scores were calculated by [11], in 
which the WM domain scores was used as a reference to 
guide the investigation of multimodal co-alterations. This 
WM domain score was obtained from testing Letter Number 
Sequencing task in the CMINDS, which is also corrected with 
PANSS negative score r=0.59, p=9.4×10

-7
. Written informed 

consent was obtained from all study participants under 
protocols approved by the Institutional Review Boards at 
each study site. 

A. Preprocessing 

FMRI data were preprocessed using the MRN 
automated analysis pipeline, whose steps are conducted in 
SPM 5 as follows: Motion correction; slice timing; and 
normalization to MNI space, including reslicing to 3 × 3 × 3 
mm voxels. We further regressed out six motion parameters, 
white matter, and cerebrospinal fluid in denoising. The 
fractional amplitude of low frequency fluctuations (fALFF) 
was extracted to generate a map for each subject. Data were 
then spatially smoothed with an 8 mm full width half max 
(FWHM) Gaussian filter.  
    DMRI data were preprocessed by FMRIB Software 
Library and consisted of the following steps: 1) quality check 
with any gradient directions with excessive motion or 
vibration artifacts identified and removed; 2) motion and 
eddy current correction; 3) correction of gradient directions 
for any image rotation done during the previous motion 
correction step; and 4) calculation of diffusion tensor and 
scalar measures such as fractional anisotropy (FA), which 
were then smoothed using 8 mm FWHM Gaussian filter. 

Using the unified segmentation method in SPM, sMRI 
were normalized to MNI space, resliced to 3 × 3 × 3 mm, and 
segmented into grey matter (GM), white matter, and cerebral 
spinal fluid. Then, the GM images were smoothed with a 
FWHM of 8 mm Gaussian filter. Outliers were then visually 
checked, corrected, and re-segmented where possible, and 
removed in cases where correction was not possible.  

After preprocessing, the three-dimensional brain images 
of each subject were reshaped into a one-dimensional vector 
and stacked, forming a matrix (𝑵subj × 𝑵voxel) for each of the 

three modalities. These three matrices were then normalized 
to have the same average sum of squares to ensure all 
modalities had the same ranges. Multivariate analysis of 
covariance (MANCOVA) was performed on the normalized 
matrix (𝑵subj × 𝑵voxel ) of fALFF, FA, GM respectively. 

According to MANCOVA results, we then regressed out age, 
age by site for fALFF; site, age, gender and age by site for 
GM; site, age and gender for FA, respectively.  

B. Joint group co-alterations related to WM 

When components of the same index show group 
differences in more than one modality, they are called joint 
group-discriminative ICs. We aim to discover the joint 
group-discriminative ICs that also significantly correlate with 
CMINDS WM scores. 20 components were estimated for 

each feature according to an improved MDL criterion. We 
performed two-sample t-tests on mixing coefficients of each 
IC for each modality.  

Among the 20 derived ICs, the 6
th

 IC was found to be the 
component of interest. It is not only significantly 
group-discriminating (p=7.4E-06, 0.001, 7.0E-09 FDR 
corrected), but also correlate with WM scores (r=0.296, 
0.241, 0.301) for fMRI, dMRI and sMRI, respectively. Its 
spatial maps were transformed into Z scores, visualized at 
|𝐙| > 2 in Figure4 (A) and adjusted as HC > SZ for all 
modalities on the mean of loading parameters, as the box plot 
shows in Figure4 (B), so that the positive Z-values (red 
regions) indicate higher contribution in HC than SZ and the 
negative Z-values (blue regions) indicate higher contribution 
in SZ than HC. The identified regions in IC6 are summarized 
in Table 1 for fALFF and GM components as well as FA 
(WM tracts, from John Hopkins Atlas). Figure3 (C) indicates 
the positive correlation between loadings of IC6 and the WM 
scores in three modalities (HC: red dots, SZ: blue dots); the 
higher loadings correspond to better memory performance. 
Additionally, the identified IC6 also correlates with PANSS 
negative scores (r=-0.229, -0.276, -0.240) for fMRI, dMRI 
and sMRI, respectively. No significant correlation was found 
with PANSS positive scores. 

 

 
Figure 4 Joint ICs that is significantly group-discriminating and 
correlating with WM.  
 

Commonly in fMRI_IC6 and sMRI_IC6, SZ showed 
lower values in thalamus, which is believed to be the mediator 
of attention under the notable contextual and leading 
influence of the neocortex [12] . Thalamus  has dense 
reciprocal projections with cerebral neocortex and with 
limbic structures, and forms a key part of the pathway for 
transmission of sensory information to cortex [13]. The 
thalamus and the basal ganglia are key structures linked to the 
prefrontal cortex and are known to be involved in WM [14] 
and it  also participate in the thalamic–cortical–striatal 
circuitry subserving WM [15]. An alternative account of the 
present findings, which emphasizes the fractional similarity 
network analysis results, posits the DLPFC/ACC/thalamus 
triad as a core deficit, with the dysfunction elsewhere in the 
network as a downstream functional consequence of WM 
disturbance [16]. The dorsolateral prefrontal cortex (DLPFC) 
abnormalities were both detected in fMRI_IC6 and 
sMRI_IC6, where patients indicated higher fALFF values but 
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lower GM volume. There is very consistent evidence that SZ 
have difficulty with processes attributed to the central 
executive component of WM. Two meta-analyses on 
WM-related brain activation in schizophrenia provide 
consistent evidence for altered activity in DLPFC [1, 16, 17]. 
Several lines of evidence suggest WM and the DLPFC 
component in particular, as a critical domain of dysfunction in 
the pathophysiology of schizophrenia. In sMRI studies, the 
DLPFC is a key cortical region in which gray matter is 
reduced in volume in schizophrenia, changes that are 
correlated with negative symptom severity in patients. 
Overall, our results suggest that higher fALFF but lower GM 
volume in DLPFC relates to worse cognition especially WM 
in schizophrenia [18]. 

 

 
 

For fMRI only, patients indicated higher fALFF values 
in superior frontal gyrus (SFG), medial frontal gyrus (MFG), 
middle temporal gyrus (MTG), and inferior parietal lobule 
(IPL). Both fronto-temporal and front-parietal circuits’ 
abnormalities were observed in fALFF. Fronto-temporal 
dysconnectivity has been proposed as a mechanism leading to 
the psychotic symptoms, especially auditory hallucinations, 
in schizophrenia. Disrupted fronto-parietal circuit may 
account for the impaired executive function and cognitive 
control in schizophrenia, especially the working memory 
deficit [19].  

For GM only, patients have lower GM volume in insular, 
caudate, amygdala, hippocampus, and superior temporal 
gyrus (STG). Insular is a cortical structure with extensive 
connections to many areas of the cortex and limbic system. It 
integrates external sensory input with the limbic system and is 
integral to the awareness of the body’s state (interoception) 
[20]. Many deficits observed in schizophrenia involve these 

functions and may relate to insula pathology. We successfully 
replicated the previous studies that a relatively greater degree 
of reduction in frontal and temporal cortical volumes in 
schizophrenia has been extracted.  

For dMRI, the co-occurring FA values in superior 
longitudinal fasciculus (SLF), inferior longitudinal fasciculus 
(ILF), forceps minor (FMIN) and forceps major (FMAJ) were 
lower in SZ. The FMAJ linking DLPFC region is traversed by 
tracts interconnecting the frontal lobe, providing evidence for 
disrupted anatomical connections in the fronto-limbic 
circuitry, even at the early stages of schizophrenia [21]. FA 
changes in the SLF, the major white matter connection 
between prefrontal and parietal cortices, relate to verbal WM 
performance [22]. The integrity of this physiological 
connection predicted performance on a verbal WM task, 
indicating that this structural change may have important 
functional implications. It is also worth noting that the SLF is 
a late-maturating tract [21]. According to the macrocircuit 
theory, specific white matter tracts are disrupted either as a 
cause or a consequence of a disorder in the gray matter 
regions they connect. Consistent with previous reports, the 
current study also found moderate correlations between the 
severity of negative symptom and diffusion measurements of 
certain tracts, including FMAJ, FMIN, SLF, and ILF [21].  

C. Future directions 

Overall, our studies offer a new strategy to link cognition 
and multimodal neuroimaging data. Other cognitive domains 
beyond WM could also be studied using our method, e.g. 
attention [23]. In addition, the choice of cognitive measure is 
flexible. In addition to the CMINDS cognitive assessment, 
there are other assessment tools that we can use to provide 
prior guidance for fusion, for instance, the Cambridge 
Neuropsychological Test Automated Battery (CANTAB) 
[24] used in Parkinson's Disease; MCCB [25]; and symptom 
severity scores to search for a relationship between 
neuroimaging and symptomatology. Furthermore, 
MCCAR+jICA can be applied to study other brain diseases 
(such as psychotic major depression disorder (MDD), or 
non-psychotic bipolar disorder (BP)). Finally, apart from the 
above mentioned cognitive measures, genetic data could also 
be used as reference, e.g. a single gene locus, or a micro RNA, 
to explore genetic variants associated with brain structure and 
function, presenting a new means of mapping genetic 
influences on mental disorders. We plan to pursue this 
possibility in our future work.  

D. Conclusion 

In summary, we proposed a novel supervised 
multivariate data-driven approach, MCCAR+jICA, which is 
designed to extract interested components correlating with a 
specific prior reference. This study also provides 
proof-of-concept for the application of the proposed method 
in brain imaging data. Simulations indicate that 
MCCAR+jICA is proved to be able to extract the targeted 
components with improved accuracy. In a real-world fusion 
application, we successfully identified a joint 
group-discriminating component that is also correlated with 
CMINDS WM scores. Furthermore, the identified spatial 
maps replicated previous findings on the abnormal brain 
regions related to WM dysfunction in schizophrenia. This 
means in real human brain imaging applications, we could 
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simultaneously exploring goal-directed multimodal 
co-alterations and associations with specific clinical 
measures, which promise a widely use in the future 
neuroimaging community. 
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