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Abstract: Independent component analysis (ICA) has been widely applied to identify intrinsic brain
networks from fMRI data. Group ICA computes group-level components from all data and subse-
quently estimates individual-level components to recapture intersubject variability. However, the best
approach to handle artifacts, which may vary widely among subjects, is not yet clear. In this work, we
study and compare two ICA approaches for artifacts removal. One approach, recommended in recent
work by the Human Connectome Project, first performs ICA on individual subject data to remove arti-
facts, and then applies a group ICA on the cleaned data from all subjects. We refer to this approach as
Individual ICA based artifacts Removal Plus Group ICA (IRPG). A second proposed approach, called
Group Information Guided ICA (GIG-ICA), performs ICA on group data, then removes the group-
level artifact components, and finally performs subject-specific ICAs using the group-level non-artifact
components as spatial references. We used simulations to evaluate the two approaches with respect to
the effects of data quality, data quantity, variable number of sources among subjects, and spatially
unique artifacts. Resting-state test–retest datasets were also employed to investigate the reliability of
functional networks. Results from simulations demonstrate GIG-ICA has greater performance com-
pared with IRPG, even in the case when single-subject artifacts removal is perfect and when individual
subjects have spatially unique artifacts. Experiments using test–retest data suggest that GIG-ICA pro-
vides more reliable functional networks. Based on high estimation accuracy, ease of implementation,
and high reliability of functional networks, we find GIG-ICA to be a promising approach. Hum Brain
Mapp 37:1005–1025, 2016. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Independent component analysis (ICA) has been widely
applied to identify maximally independent sources from a
set of observed data. As a data driven technique, ICA has
some appealing advantages over conventional techniques
for extracting brain functional networks from functional
magnetic resonance imaging (fMRI) data. Different from
the traditional general linear model (GLM) method, there
is no requirement of deciding a hemodynamic response
function or a specific time series while applying ICA. In
addition, ICA does not require users to select prior regions
of interest (ROI), whose selection could be difficult due to
that the resulting networks are sensitive to their shape,
location and intersubject variability [Du et al., 2012].
Therefore, ICA is applicable for complex task-related
experiments [Jarrahi et al., 2015; van de Ven et al., 2008]
and resting-state experiments with no explicit stimuli or
task [Baggio et al., 2015; Du et al., 2015].

There are two ways to apply ICA on fMRI data analy-
sis: spatial ICA [McKeown et al., 1998] and temporal ICA
[Calhoun et al., 2001b]. Among the ICA-based techniques,
spatial ICA (sICA) is by far the most widely used
approach, which decomposes the individual-subject fMRI
data matrix (size: number of time points 3 number of
voxels) as a production of time courses (TCs) matrix (size:
number of time points 3 number of components) and
spatially independent components (ICs) matrix (size:
number of components 3 number of voxels). The mean-
ingful ICs are regarded as brain functional networks, and
the voxels with high z-scores in each functional network
indicate the coherently activated regions. The correspond-
ing TC of one functional network reflects the temporal
fluctuation of the network. The remainder of this article is
focused on sICA, so in the following ICA is used to
denote sICA for simplicity.

Although ICA has been successful in the analysis of
fMRI data, one of the challenges is in labeling ICs, which
include not only meaningful functional networks, but also
various artifacts-related components arising from imaging
and non-neural physiological activity. In addition, the
other shortcoming of ICA is that the number of sources is
unknown. Although the number of sources can be esti-
mated by information theoretic principles, such as a modi-
fied minimum description length (MDL) criteria [Li et al.,
2007], different methods could result in desperate numbers
[Zuo et al., 2010]. It is also known that the order of the ICs
obtained from individual-subject ICA is random, which
makes the ICs of different subjects not directly compara-
ble. Therefore, issues like identifying functional networks,
deciding the number of sources, as well as matching the

estimated ICs across subjects become more challenging
when analyzing multi-subject fMRI data.

In multi-subject applications of ICA to fMRI data, typi-
cally one of two approaches is adopted [Calhoun et al.,
2009]. The first approach applies ICA to each subject’s
data and establishes correspondence of ICs across subjects
using subjective identification [Calhoun, 2001; McKeown
et al., 1998], spatial matching with a predefined template
[Greicius et al., 2004], clustering [Esposito et al., 2005; Mor-
itz et al., 2003], or cross-correlation [Schopf et al., 2010].
However, sometimes it is difficult to effectively establish
correspondence of functional networks across subjects due
to that some identified networks from different subjects
are not similar enough to match. The problem could
become more troublesome in the case where the estimated
numbers of components from different subjects are various
or disparate. An alternative approach, often referred to as
group ICA [Beckmann et al., 2009; Calhoun and Adali,
2012; Calhoun et al., 2001a, 2009], implements a group-
level ICA on all data, and then computes subject-specific
ICs and their associated TCs based on the estimated group
ICs. Group ICA establishes direct correspondence of ICs
across subjects, avoiding the difficulties of matching com-
ponents. Group ICA approaches include spatial concatena-
tion [Svensen et al., 2002], temporal concatenation
[Beckmann et al., 2009; Calhoun et al., 2001a, 2009] and
tensor organization [Beckmann and Smith, 2005; Lee et al.,
2008] methods, and the temporal concatenation methods
are most widely applied. In order to reconstruct the
individual-subject results, typical temporal concatenation
based group ICA approaches utilize either PCA-based
back-reconstruction [Calhoun et al., 2001a; Erhardt et al.,
2011] or regression-based [Beckmann et al., 2009; Erhardt
et al., 2011] method, both of which can capture moderate
degrees of individual variability well [Allen et al., 2012],
but may not be optimal for artifacts that can be completely
unique across subjects.

In this article, we study and compare two approaches
for artifacts removal in applying ICA to multi-subject
fMRI data. One approach, currently recommended in
recent work from the Human Connectome Project [Smith
et al., 2013], first performs ICA on individual-subject data
to remove artifacts, and then applies a dual regression
based group ICA on the cleaned data of all subjects. We
refer to this approach as Individual ICA based artifacts
Removal Plus Group ICA (IRPG). IRPG is well-suited for
extreme intersubject variability in artifacts sources, but the
difficulties of identifying artifacts-related ICs for each indi-
vidual data as well as determining the appropriate num-
ber of ICs to estimate may pose problems in practical
application. This is particularly the case if many subjects
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are involved, although machine learning approaches (e.g.,
training classifiers) can help mitigate the difficulties of arti-
facts identification to a degree. There are several techni-
ques to automatically identify artifacts-related ICs, though
most rely on some variant of supervised learning. Perlbarg
et al. [2007] removed artifacts by matching ICs with
known spatial patterns of physiological noise. De Martino
et al. [2007] represented ICs in a multidimensional space
of descriptive measures, “IC fingerprints,” which were
then used to classify the ICs by feeding the features into a
support vector machine. Tohka et al. [2008] proposed an
improved decision tree method with a richer set of spatial
and temporal features for artifacts removal. [Griffanti
et al., 2014; Salimi-Khorshidi et al., 2014] used a hierarchi-
cal fusion of classifiers to recognize artifacts associated ICs
based on more than 180 features. Sochat et al. [2014]
adopted a sparse logistic regression with elastic net regula-
rization method based on more features to automatically

identify artifacts, and showed a high accuracy of classifica-
tion. In this work, we apply a toolbox released by Sochat
et al. [2014] to identify subject-level artifact ICs in IRPG.

An alternative approach, called Group Information
Guided ICA (GIG-ICA) [Du and Fan, 2013], extracts group
ICs by implementing group-level ICA on all data, and
then uses the estimated non-artifact group ICs as referen-
ces to compute individual functional networks based on a
new one-unit ICA with reference algorithm [Du and Fan,
2011; Du and Fan, 2013]. Compared with IRPG, GIG-ICA
does not require identification of artifacts for each subject.
Instead, GIG-ICA takes advantage of the fact that compo-
nents which show similarity among subjects (e.g., the net-
works of interest) tend to not be corrupted by the unique
artifacts [Calhoun et al., 2001a]. GIG-ICA allows for addi-
tional flexibility in individual subjects by re-optimizing the
independence of subject-specific functional networks,
while still preserving the correspondence of functional

Figure 1.

Frameworks of methods. (A) Framework of Individual ICA

based artifacts Removal Plus Group ICA (IRPG). IRPG involves

individual ICA, identification of subject-specific artifact ICs, cal-

culation of cleaned data for each subject, group-level ICA on the

cleaned data, and computation of individual ICs/TCs using dual

regression. (B) Framework of Group Information Guided ICA

(GIG-ICA). GIG-ICA involves group-level ICA on group data,

identification and removal of artifact group ICs, computation of

individual ICs using the remaining non-artifact group ICs as spa-

tial references, and estimation of individual TCs using regression.

(C) Framework of traditional Group ICA (GICA). GICA

involves group-level ICA on group data and computation of indi-

vidual ICs/TCs using dual regression.
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networks across subjects. GIG-ICA estimates the individ-
ual functional networks using a multiple-objective optimi-
zation framework, which simultaneously optimizes the
independence of individual networks as well as the corre-
spondence between group ICs and individual networks. A
previous study [Du and Fan, 2013] indicated that GIG-ICA
is able to achieve functional networks with higher accuracy
compared with traditional group ICA methods, which
include the PCA-based back-reconstruction algorithms (i.e.,
GICA1, GICA2, and GICA3) [Calhoun et al., 2001a; Erhardt
et al., 2011] as well as the dual regression based approach.
In addition, GIG-ICA has been shown to be successful in
identifying the subtle difference among symptom-related
diseases, such as schizophrenia, bipolar disorder, and schiz-
oaffective disorder [Du et al., 2014b, 2015].

In the following sections, we firstly describe IRPG and
GIG-ICA methods in detail, and then evaluate and com-
pare their performances using both simulations and real
fMRI data. In addition, we also examine the traditional
group ICA (GICA) approach without removing artifacts
for a comparison. Simulations-based experiments assess
the accuracy of ICs/TCs obtained from the three methods
using datasets with different quality and quantity, variable
number of sources among subjects, and unique artifacts.
We also perform those methods on resting-state test-retest
fMRI data to extract functional networks. Since the ground
truth for real data is unknown, reliability measures are
used to evaluate the estimated functional networks, con-
sistent with previous studies [Griffanti et al., 2014; Zuo
et al., 2010]. We predict that GIG-ICA would more accu-
rately and reliably estimate individual functional net-
works, since the method optimizes the independence of
subject-specific networks. Preliminary results of this study
have been reported in a article [Du et al., 2014a].

MATERIALS AND METHODS

In this section, we introduce the frameworks and rele-
vant parameters for IRPG, GIG-ICA and GICA, and then
describe simulations and real fMRI data based
experiments.

Algorithmic Frameworks

IRPG

The framework of IRPG is shown in Figure 1A. It
involves the following steps:
1. Application of ICA with Infomax algorithm [Bell and

Sejnowski, 1995] on each individual-subject dataset.
2. Identification of subject-specific artifact ICs.
3. Calculation of cleaned data for each subject.
4. Group ICA on the cleaned data from all subjects.

In the step (2), for simulations, the artifact ICs are iden-
tified based on the information of ground-truth artifact
ICs; for real fMRI data, the artifact ICs are selected using a

machine learning approach. In the step (3), for real fMRI
data, we regress the artifact ICs related TCs out of the
original data to obtain the cleaned individual data, which
is consistent with the articles from the Human Connec-
tome Project [Griffanti et al., 2014; Salimi-Khorshidi et al.,
2014]. The used equation is: Xnew5Xold-TCArt�
TCArt

1 � Xold

� �
, where TCArt denotes the artifact ICs related

TCs, Xold denotes the original data matrix, Xnew denotes
the cleaned data, and 1 denotes the pseudo-inverse. Since
simulations are generated based on ICA model, we recon-
struct the new individual data based on the non-artifact
ICs using equation: Xnew5TCNonArt � ICNonArt, where
ICNonArt and TCNonArt denote the non-artifact ICs and the
corresponding TCs, respectively. For simulations, we also
investigate the performance of IRPG with regression based
artifacts removal, and report the relevant results in Sup-
porting Information. In the step (4), subject-level PCA on
each subject’s dataset and a second group-level PCA on
the reduced data [Calhoun et al., 2001a] are implemented
first for dimension reduction. And then, a group-level ICA
using Infomax algorithm is performed on the reduced
group data to compute group ICs. Finally, subject-specific
ICs/TCs are calculated using a spatio-temporal (dual)
regression method [Beckmann et al., 2009; Calhoun et al.,
2004; Erhardt et al., 2011; Filippini et al., 2009], which was
also employed in Human Connectome Project articles
[Griffanti et al., 2014; Salimi-Khorshidi et al., 2014]. The
equations are: TCs5Xnew �GICs1, ICs5TCs1�Xnew, where
GICs, ICs, and TCs denote the group ICs, individual ICs,
and individual TCs, respectively. Individual ICs are then
z-scored to facilitate further statistical analysis.

Some important free parameters in the IRPG framework
as displayed in Figure 1A include the number of PCs/ICs
used in the individual ICAs, denoted as I1, the number of
PCs used in the subject-level PCAs, denoted as I2, and the
number of PCs/ICs used in the group-level PCA/ICA,
denoted as I3. It is worth noting that I2 should be bigger
than or equal to I3 to minimize loss of information from
individual data [Erhardt et al., 2011].

GIG-ICA

The framework of GIG-ICA shown in Figure 1B involves
the following steps:

1. Application of group-level ICA to all subjects’
datasets.

2. Identification and removal of artifact group ICs.
3. Computation of individual ICs via a multiple-

objective optimization framework using non-artifact
group ICs as spatial references [Du and Fan, 2011,
2013].

4. Estimation of individual TCs using regression:
TCs5X � ICs1, where X is the individual-subject data,
and ICs denotes the estimated individual ICs matrix.
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In the step (1), subject-level PCA on individual dataset
and group-level PCA on the reduced data are imple-
mented, and then a group-level ICA with Infomax is per-
formed on the reduced data to compute group ICs. In the
step (2), for simulations, artifact group ICs are identified
based on the information of ground-truth artifact ICs; for
real fMRI data, artifact group ICs are selected manually
according to features of ICs and TCs. In the step (3), the
multiple-objective function optimization simultaneously
optimizes the independence of individual ICs as well as
the correspondence between individual ICs and group ICs.
The independence of each individual IC is estimated by its
negentropy, denoted by J5 E G SIð Þ½ �-E G vð Þ½ �f g2, where SI is
one subject-specific IC to estimate, v is a Gaussian variable
with zero mean and unit variance, G �ð Þ is a nonquadratic
function. The correspondence between individual IC and
group IC is estimated by F5E SI � SG½ �, where SG denotes
one group IC that is z-scored to zero mean and unit var-
iance. The multiple-objective function optimization prob-
lem is solved using a linear weighted sum technique, and
a parameter a [Du and Fan, 2011, 2013] as a weight to bal-
ance the two objectives is specified as 0.5. GIG-ICA auto-
matically generates z-scored ICs.

Therefore, relevant free parameters in the GIG-ICA
include the number of PCs denoted as G1 used in the
subject-level PCAs and the number of PCs/ICs denoted as
G2 used in the group-level PCA/ICA. Similar to IRPG, G1
should be bigger than or equal to G2 for minimizing loss
of information. For clarity, we use G3 to denote the
remaining number of group ICs after artifacts removal,
although G3 is not a parameter that needs to be chosen
independently. Note that with the new one-unit ICA with
reference algorithm used at the single-subject ICA stage,
computation of non-artifact individual ICs is not affected
by the presence of artifact group ICs, thus accurate

identification and removal of artifacts are less critical than
that in the IRPG framework.

GIGA

The framework of GICA is shown in Figure 1C. The
processing is similar to the step (4) of IRPG, except that
GICA is performed on the original data and estimates all
individual ICs including artifacts. Individual ICs from
GICA are z-scored for further analysis. Free parameters in
the GICA framework include the number of PCs denoted
as A1 used in the subject-level PCAs and the number of
PCs/ICs denoted as A2 used in the group-level PCA/ICA.
For GICA, A1 and A2 are set to the same values of G1
and G2, respectively, considering that both GIG-ICA and
GICA implement group-level ICA on the original data
rather than the cleaned data.

In this article, the dual regression based GICA method is
applied to simplify comparisons with IRPG, since Human
Connectome Project articles [Griffanti et al., 2014; Salimi-
Khorshidi et al., 2014] used dual regression based method.
However, PCA-based GICA methods [Erhardt et al., 2011],
which have been shown to have a comparable performance
with dual regression in terms of the estimation of individ-
ual ICs/TCs, also deserve to be examined in future work.

Experiments Using Simulations

Multi-subject fMRI-like data were generated using the
SimTB toolbox [Allen et al., 2012; Erhardt et al., 2012]. For
each of M subjects, simulated dataset was generated under a
linear mixture model using C fMRI-like source images
(1483148 pixels) and associated time courses (150 or less time
points in length, see Table I). Rician noise was added to the
linear mixture of sources with a specified contrast-to-noise

TABLE I. Parameters of simulations and methods used in simulations-based experiments

Parameters
Experiment 1
(data quality)

Experiment 1
(data quantity)

Experiment 2 (variable
number of sources)

Experiment 3
(spatially unique artifacts)

C 8 8 8 (i51; � � � ; 5Þ;
7 (i56; � � � ; 10Þ

8

K 7 7 6 7
CNR 0.5–2 1 2 2
No. time points 150 40–120 150 150
I1 8 8 C, 7, and 8

in separate tests
8

I2 7 7 6 7
I3 7 7 6 7
G1 8 8 8 8
G2 8 8 7 and 8 in

separate tests
8

G3 7 7 6 7
A1 8 8 8 8
A2 8 8 7 and 8 in separate

tests
8
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ratio (CNR). Repetition time (TR) was 2 s/sample. M was the
number of simulated subjects, and C denoted the number of
simulated sources for each subject. In the following experi-
ments, M510, C58 or 7. The ratio of the number of pixels in
mask to the number of sources was greater than 2,000, which
was consistent with the real case of nearly 60,000 voxels in
brain mask and 20 to 30 components to be estimated [Abou-
Elseoud et al., 2010]. Among C sources, some were labeled as
non-artifact sources, while others were labeled as artifacts. To
simplify the description, we denoted the jth source of the ith

subject as Si;j i51; � � � ;M; j51; � � � ;Cð Þ. In our work, Si;j was
considered as a non-artifact source when j51; � � � ;K, and was
considered as an artifact source when j5K11; � � � ;C. K was
the number of the simulated non-artifact sources. Parameters
of simulations and three methods in the following experi-
ments for assessing the effect of data quality (CNR), data
quantity (number of time points), variable number of sources,
and spatially unique artifacts are summarized in Table I.

Experiment 1: Effect of data quality and quantity

To evaluate the effect of data quality (i.e., CNR), 16
datasets with different CNRs ranging from 0.5 to 2 with
intervals of 0.1 were generated. The simulated number of
time points was 150 for the 16 datasets. We similarly

explored a loss in data quantity by keeping the CNR in
each data fixed at 1, but varying the number of time points
from 40 to 120 in steps of 20. Figure 2 shows the sources
and their associated time courses for the simulated data of
two subjects, as well as the spatial variability of sources
across subjects. For different subjects, each of the eight
sources was generated through adding subject-specific var-
iability to a common map, so sources were more or less
spatially consistent across subjects. Spatial variability was
generated by assigning random translations (mean of 0
and standard deviation (SD) 5 6 pixels), rotations (mean of
0, SD 5 4 degrees, and spreads (mean 5 2, SD 5 0.03)) to
subject sources. Subject-specific variability also included
temporal variation of TCs. In this simulation, the eighth
source with high frequency TC was chosen as the artifact
source.

To simply show the independence among the simulated
sources of each subject, we computed the absolute values
of Pearson correlation coefficients between all pairs of
sources as well as the normalized mutual information [Du
and Fan, 2013] between all pairs of sources, and then aver-
aged the absolute correlation or the normalized mutual
information values to obtain summarized measures for
this subject. The smaller values of these measures repre-
sent higher independence or lower dependence. Similarly,

Figure 2.

Ground-truth (GT) sources and their associated TCs for the simulated data of two subjects in

Experiment 1. The bottom row shows the spatial variability of sources across subjects in Experi-

ment 1 (spatial variability was similar in other Experiments); each color denotes the source con-

tours of a different subject. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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the independence measures among the simulated time
courses were calculated. Figure S1 in Supporting Informa-
tion shows the independence measures for data with dif-
ferent CNRs and data with different numbers of time
points. While it is not easy to generate sources/time
courses with complete independence, it is seen that the
simulated sources/time courses had relatively low
dependence with each other. Since it is acknowledged that
some brain functional networks can have spatial overlap
to some extent, we think the datasets are acceptable.

As displayed in Table I, for IRPG, I1 was specified as
the real number of sources, C (i.e., 8). Both I2 and I3 were
set to C-1 reflecting the true number of remaining compo-
nents with perfect artifacts removal, since in this experi-
ment a single artifact IC was always identified by finding
the individual IC with the largest absolute value of Pear-
son correlations to the respective artifact template. The
artifact template for the ith subject in IRPG was defined as
the subject-specific ground-truth (GT) artifact source Si;8.
For GIG-ICA, both G1 and G2 were set to C. For artifacts
removal of GIG-ICA, the group-level artifact was accu-
rately identified by finding the group IC with the largest
absolute value of Pearson correlations to a artifact tem-
plate T8, which was generated by averaging the GT artifact
sources across subjects. We defined

Tj5
1

N

XN

i51
Si;j; (1)

where N was the number of subjects that had source Si;j.
For GICA, similarly to GIG-ICA, both A1 and A2 were set
to C. Without removing artifacts, GICA estimated all C ICs
for each subject. For an equivalent comparison, we only
used the matched non-artifact individual ICs for the fol-
lowing evaluation.

To evaluate the spatial/temporal accuracy of each esti-
mated subject-specific non-artifact IC/TC, we computed
the absolute value of Pearson correlation coefficient
between each IC/TC and the corresponding GT source/
TC. The GT sources/TCs that correspond to the estimated
subject-specific ICs/TCs were identified by matching non-
artifact templates and the group ICs using a greedy algo-
rithm. Using Eq. (1), the non-artifact templates were com-
puted as the averaged non-artifact GT sources across
subjects, i.e., Tj j51; � � � ;Kð ). Therefore, we obtained the
spatial/temporal accuracy of each estimated subject-
specific IC/TC. After that, for each of those datasets with
different CNRs or different numbers of time points, a two-
tailed paired t-test was performed to compare the ICs (or
TCs) accuracy of all subjects from GIG-ICA with that from
IRPG. Similarly, the ICs (or TCs) accuracy of all subjects
from IRPG and that from GICA were also compared using
a two-tailed paired t-test. The significance level was
adjusted for P< 0.05. As a summary measure, we also cal-
culated the mean of all ICs (or TCs) accuracy to reflect the
overall IC (or TC) accuracy of one subject. In the following
simulations-based experiments, we used a similar proce-
dure to evaluate the quality of ICs/TCs estimation.

Experiment 2: Effect of variable number of

sources among subjects

Traditional group ICA methods often assume that all
subject datasets have same number of components. How-
ever, the number of sources can vary across subjects, par-
ticularly the number of detectable artifacts. We evaluated
the effect of subject datasets with different numbers of
sources. Five subject datasets were simulated with eight
sources, two of which were labeled as artifacts, while the
other five subject datasets were simulated with seven

Figure 3.

GT sources and their associated TCs of two subjects in Experiment 2. The above dataset has

eight sources, of which the seventh and eighth are regarded as artifacts. The below dataset has

seven sources, of which the seventh is regarded as an artifact. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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sources, one of which was labeled as an artifact. Simulated
data for such two subjects is shown in Figure 3. Figure
S2A,B in Supporting Information show the independence
measures of all subjects for the dataset.

Due to the varied number of individual sources, the
parameters in those methods can have multiple choices,
especially I1 in IRPG, G2 in GIG-ICA and A2 in GICA. For
IRPG, we specified I1 as C (the subject’s true number of
sources), 7, or 8 in separate tests. When I1 was set to C,
the first five subjects data were decomposed to 8 ICs and
the last five subjects were decomposed to 7 ICs at the indi-
vidual ICA step. When I1 was set to 7 or 8, all subjects
data were decomposed to 7 or 8 ICs at the individual ICA
step. Both I2 and I3 were specified as 6 due to that there
were 6 non-artifact sources in the simulated data. For GIG-
ICA, G1 was set to 8, while G2 was specified as 7 or 8 in
separate tests. For traditional GICA, A1 was set to 8, and
A2 was set to 7 or 8 in separate tests. Note that it is not
possible to set the number of group ICs of GIG-ICA or
GICA as C, since group-level ICA requires a single model
order for all subjects.

When identifying the artifact ICs for IRPG and GIG-
ICA, absolute values of Pearson correlation coefficients
were computed between the obtained ICs (individual ICs
from IRPG or group ICs from GIG-ICA) and the related
artifact templates. The artifact templates used for IRPG
were the subject-specific GT artifact sources, thus the first

five subjects had two artifact templates and the last five
subjects had one artifact template. For GIG-ICA, two arti-
fact templates were calculated as T7 and T8 using the Eq.
(1). ICs with absolute values of Pearson correlation coeffi-
cients exceeding a given threshold were considered as arti-
facts. The threshold was set to 0.7, which was empirically
determined to accurately identify the artifacts for IRPG
when I1 was set to C. For GICA, only the six non-artifact
ICs were selected for comparison to the other methods.

Experiment 3: Effect of spatially unique artifacts

In the above experiments, artifact sources of different
subjects were simulated by adding subject-specific spatial
variation to a common map. We know that group ICA
approaches were proposed with the hypothesis that differ-
ent subject datasets have common or similar spatial sour-
ces. However, in real data it is likely that spatially unique
sources exist among subjects, particularly for artifacts. To
investigate the performance of these approaches under
this condition, greatly different artifact sources were gen-
erated for subjects. To be consistent with some types of
artifacts observed in fMRI data [Kundu et al., 2012], these
sources were simulated to have high-frequency TCs. Fig-
ure 4 shows the simulated artifact sources and the related
TCs of all 10 subjects. Figure S2C,D in Supporting

Figure 4.

Simulated GT artifact source (the eighth source) and related TC for each subject in Experiment 3.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Information show independence measures of all subjects
for this dataset.

For IRPG, I1 was specified as the real number of sources,
C (i.e., 8). In addition, I2 and I3 were specified as C-1, since
artifact of each subject was correctly identified in IRPG by
finding the TC with the most high frequency power. In this
experiment, we did not use spatial templates to identify the
artifacts, as different subjects had very different artifact
sources. In contrast, spectral information of TCs, which also
can provide important information for artifacts removal in
real application, was used to identify the artifacts. For GIG-
ICA, both G1 and G2 were specified as C. To identify the
artifact group IC, we also used the spectral information of
individual TCs. Based on all group ICs, preliminary indi-
vidual TCs were computed using regression (in a manner
identical to the GICA framework), then the artifact group
IC was accurately identified as a component that generated
high-frequency individual TC. For GICA, both A1 and A2
were set to C, and only the non-artifact individual ICs were
used for comparative evaluation.

Experiments Using Resting-State fMRI Data

Seventy five resting-state fMRI datasets [Zuo et al., 2010]
comprising 25 healthy participants (11 males; mean age
20.5 6 8.4) with three scans were adopted in the experi-
ment. Those datasets were downloaded from the website
(https://www.nitrc.org/projects/nyu_trt/). Each dataset
consisted of 197 contiguous EPI functional volumes
(TR 5 2,000 ms; TE 5 25 ms; flip angle 5 908, 39 slices,
matrix 5 64 3 64; FOV 5 192 mm; acquisition voxel
size 5 3 3 3 3 3 mm). Data of scan 2 and 3 were collected
with interval of 45 min, 5 to 16 months (mean 11 6 4) after
scan 1. The participants were removed from the scanner
between the scan 2 and the scan 3. The fMRI images were
preprocessed using SPM8 (http://www.fil.ion.ucl.ac.uk/
spm). The first 10 images were discarded, and the remain-
ing 187 images were slice-time corrected and realigned to
the first volume for head-motion correction. Subsequently,
the images were spatially normalized to the Montreal
Neurological Institute (MNI) EPI template and spatially
smoothed with a 6 mm FWHM Gaussian kernel.

Each of the three methods including IRPG, GIG-ICA,
and GICA was applied to the 75 preprocessed datasets
from three scans, resulting in individual networks with
direct correspondence across those 75 datasets. Specifi-
cally, group-level ICA involved in the step (4) of IRPG, the
step (1) of GIG-ICA, as well as the step (1) of GICA was
performed on the 75 datasets rather than the separate 25
datasets from each scan. At the group-level ICA step for
those methods, ICASSO [Himberg et al., 2004] was used
with 20 iterations to find reliable group ICs. To set the
parameters for the three methods, we estimated the num-
ber of components for each of 75 datasets based on MDL,
Akaike Information Criterion (AIC), and Kullback–Leibler
Information Criterion (KIC) rules, respectively. As seen in

Supporting Information Figure S3, the estimated dimen-
sionality obtained from different rules varied. The maxi-
mum and mean dimensionality estimates across all criteria
were 45 and 20, respectively. We set I1 to the maximum,
i.e., 45, since it preserves greater than 99% variance for all
75 datasets. I2 was specified to the minimum value of
remaining dimensions across subjects after artifacts
removal. I3 was tested using different values including 10
and 15, with the condition that I3 < I2. For GIG-ICA, G1
was set to 45, and G2 was set as a number larger than I3
(based on the percentage of the number of identified
individual-subject artifacts in IRPG), due to that GIG-ICA
removes artifacts after group-level ICA. As described in
the following Results section, the percentage of the num-
ber of identified artifact ICs in IRPG was close to 50%, so
we set G2 to 20 and 30 for facilitating the comparisons
between GIG-ICA and IRPG. For GICA, A1 and A2 were
set to the same values with G1 and G2, respectively.

To automatically identify individual-subject artifact ICs
in IRPG, we adopted a sparse logistic regression with elas-
tic net regularization method as recently proposed by
Sochat et al. [2014]. First, five raters independently labeled
individual ICs from scan 1 (45 ICs 3 25 datasets 5 1,125
components) as “good” for networks, “bad” for artifacts,
or “unknown” for components that could not be unambig-
uously identified as good or bad. ICs were evaluated
based on visual inspection of the spatial maps, TCs, and
spectra. Similar to a recent work [Salimi-Khorshidi et al.,
2014], those “unknown” components were treated as
“good” components during classifier training to avoid
removing valid neuronal signal. Based on the five sets of
labels, the final label for each IC was determined by a sim-
ple majority. For automatic identification of artifacts, 249
features were computed form each IC and its related TC.
These features along with the assigned labels were then
used to train classifier and select features. The optimal
parameters alpha and lambda in the model [Salimi-Khor-
shidi et al., 2014] were first determined by grid search via
maximization of 10-fold cross validation accuracy, and
then the classifier and features were obtained through
training all 1,125 ICs. The output of the classifier is a set of
weights corresponding to the contribution of each feature,
and the non-zero weights were used as input to the logis-
tic regression to classify novel components. Using the
model, individual-subject ICs from scan 2 and scan 3 were
automatically classified as “good” components and arti-
facts. For GIG-ICA, we identified the artifact group ICs
manually since expert identification is considered as the
“gold standard”. Each group IC was checked with respect
to the spatial map of IC, mean of individual TCs, and
spectra of mean of individual TCs. Similar to the above
Experiment 3 using simulations, preliminary individual
TCs were computed using regression based on all group
ICs. Subsequently, individual ICA with non-artifact group
ICs as references was applied to estimate the subject-
specific ICs in GIG-ICA. Since traditional GICA estimated

r Artifact Removal in the Context of Group ICA r

r 1013 r

http://https://www.nitrc.org/projects/nyu_trt/
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


all ICs for each subject, the method did not require addi-
tional identification of the artifacts-related ICs.

In order to compare the functional networks obtained
from IRPG, GIG-ICA, and GICA, we matched the func-
tional networks from the three methods in condition of
comparable parameters. Specifically, we matched the
results under setting of I3 5 10, G2 5 20, A2 5 20 and set-
ting of I3 5 15, G2 5 30, A2 5 30, respectively. Firstly, we
matched the results from IRPG and GIG-ICA based on the
correlations between group ICs from the two methods
using a greedy matching rule. Components with correla-
tions larger than 0.5 were considered as the matched ICs.
Secondly, we averaged the corresponding group ICs
obtained from IRPG and GIG-ICA to obtain the mean
group ICs of the two methods. Finally, based on the mean
group ICs of IRPG and GIG-ICA as well as the group ICs
from traditional GICA, we performed the other greedy
matching procedure to match the ICs from IRPG and GIG-
ICA with the ICs from GICA. Thus, the corresponding
functional networks from the three methods were identi-
fied. Note that the following evaluations were performed
only for those matched functional networks. The parame-
ters used in those methods and the numbers of the
matched functional networks can be found in Table II.

Due to that the ground truth in real data is unknown, it
is always difficult to determine optimal measures for eval-
uating methods. Quite often, the reliability of functional
networks obtained from resting-state test-retest data of
healthy subjects is used as an alternative [Griffanti et al.,
2014; Guo et al., 2012; Zuo et al., 2010], assuming that cor-
responding functional networks in such data should be
very similar. Zuo et al. [2010] computed intra class coeffi-
cients (ICCs) in networks between different scans as well
as correlations between individual ICs and group ICs.
Motivated by previous work [Smith et al., 2005], Griffanti
et al. [2014] calculated the similarity of corresponding net-
works between all pairs of subjects.

Similarly, we evaluated the reliability of functional net-
works for IRPG, GIG-ICA, and GICA, respectively. Firstly,
for each network, voxel-wise one-sample t-tests with false
discovery rate (FDR) correction (P< 0.01) were performed
across all 75 datasets to show the network patterns. And
then, we calculated the pair-wise similarity of all estimated
individual ICs from 75 datasets using absolute value of
spatial correlation to reflect the overall relationship of indi-
vidual networks. Given M M575ð Þ datasets, each having
C individual ICs, an absolute value correlation coefficient
matrix P with MC3MC elements was computed. When

grouping components together, the matrix P should dis-
play a pattern with compact blocks along the diagonal,
each of them corresponding to a specific network. Further-
more, ICC measures were computed to investigate the reli-
ability of functional networks. As described above, there is
a short interval between the collection of scan 2 and the
collection of scan 3, but a long interval between the collec-
tion of scan 1 and the collection of scans 2 to 3. Therefore,
for each matched network, we computed the voxel-wise
ICCs [Zuo et al., 2010] between networks from scan 2 and
networks from scan 3 to reflect its short-term reliability. In
order to assess the long-term reliability of each matched
network, we averaged the corresponding networks of the
same subject from scan 2 and scan 3, and then calculated
the voxel-wise ICCs between networks from scan 1 and
the averaged networks of scan 2 and scan 3. To summarize
the overall short-term (or long-term) reliability of each
matched network, the associated ICC values of this net-
work were averaged across voxels within a specific mask,
which included statistically significant voxels for all three
methods based on the one-sample t-tests results after FDR
correction. In our work, voxel-wise ICC was computed
using a model [Zuo et al., 2010] based on one-way
ANOVA, due to that those subjects were scanned using
the same scanner and Zuo et al. analyzed the same data-
sets. The model is also consistent to what was applied in
other work [Guo et al., 2012]. The used equation was:
ICC5

r2
p

r2
p1r2

e
, where r2

p denotes the variance of intersubject
effect and r2

e denotes the variance of measurement error.
Similar to the ICC measure, we also computed the voxel-
wise r2

p between networks from scan 2 and networks from
scan 3 as well as between networks from scan 1 and the
averaged networks of scan 2 and scan 3, and then we
averaged the r2

p measures in significant voxels to obtain
summarized intersubject effect measures for each matched
network.

RESULTS

Experiments Using Simulations

Experiment 1: Effect of data quality and quantity

One subject’s individual ICs/TCs obtained using IRPG,
GIG-ICA and GICA are shown in Figure 5. For this case of
relatively low CNR (0.5), greater ICs/TCs accuracy can be
observed for GIG-ICA, compared with the other methods.
It is also seen that some individual ICs estimated from

TABLE II. Parameters of methods for real fMRI data based experiments and the numbers of matched functional

networks under different model order

Parameters I1 I2 I3 G1 G2 G3 A1 A2 H

Value 45 16 10, 15 45 20, 30 12, 16 45 20, 30 10, 14

H: the number of matched functional networks across different methods.
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IRPG (sources 3, 4, 5, 6, and 7) as well as some individual
ICs estimated from GICA (sources 3 and 4) resemble a
mixture of source 2 and the real source. However, the
individual ICs generated from GIG-ICA appear cleaner
and largely non-overlapping. The overall IC accuracy of a
single subject obtained from IRPG, GIG-ICA, and GICA is
0.75, 0.88, and 0.59, respectively. The overall TC accuracy
of this same subject obtained from IRPG, GIG-ICA, and
GICA is 0.91, 0.94, and 0.90, respectively. Hence, we con-
clude that GIG-ICA results were more consistent with the
ground truth.

Using boxplots, we show the overall IC/TC accuracy of
subjects under varying CNRs in Figure 6A,B, and display
the results under different numbers of time points in Fig-
ure 6C,D. It is clear that the accuracy of the estimated ICs
improved with increasing CNR or number of time points
for all methods. Furthermore, measured by the mean of
the overall IC accuracy across subjects, GIG-ICA outper-
formed the other methods, particularly at low data quality
and quantity. In terms of the accuracy of the obtained
TCs, the increasing trend along the improved quality or
quantity was not very apparent for all these methods,
however, GIG-ICA still showed relatively better results
compared with the other methods.

In addition, for those datasets with different CNRs and
different numbers of time points, the results from two-

tailed paired t-tests demonstrate that the ICs/TCs accuracy
of GIG-ICA was significantly higher than that of IRPG
(mean P value 5 0.0043 and mean T value 5 8.4216 for ICs
accuracy; mean P value 5 0.0034 and mean T val-
ue 5 5.4457 for TCs accuracy), while the ICs/TCs accuracy
of IRPG was significantly better than that of GICA (mean
P value 5 0.0215 and mean T value 5 3.1939 for ICs accu-
racy; mean P value 5 0.0416 and mean T value 5 3.0302 for
TCs accuracy). This is presumably due to the fact that
GIG-ICA performs independence optimization of compo-
nents at the subject level, whereas IRPG and GICA focus
only on group-level independence.

As mentioned in the Materials and Methods section,
we also investigated the performance of IRPG, which
used regression to remove the individual subject arti-
facts. The summarized results of IRPG with regression-
based artifacts removal are included in Figure S4 of Sup-
porting Information. The results of IRPG displayed in
Supporting Information Figure S4 are almost identical to
that presented in Figure 6 under the case of different
CNRs, and are slightly worse than that presented in Fig-
ure 6 with respect to the temporal accuracy under the
case of different numbers of time points. The possible
reason is that ICA model based artifacts removal in
IRPG may work better than regression-based artifacts
removal in simulations-based experiments, due to that

Figure 5.

Individual ICs/TCs of one subject obtained from IRPG, GIG-ICA,

and GICA when the CNR of data was 0.5. Individual ICs

obtained from IRPG, GIG-ICA, and GICA are denoted by IRPG

ICs, GIG-ICA ICs, and GICA ICs, respectively. The value in

parenthesis under each estimated IC is the relevant correlation

coefficient between the IC and the GT source. The GT sources

are also shown for comparison. The bottom row shows related

TCs including the GT TCs denoted by red color, the TCs from

IRPG denoted by blue color, the TCs from GIG-ICA denoted by

purple color, and the TCs from GICA denoted by black color.

The correlation values under TCs from left to right correspond

to IRPG, GIG-ICA and GICA, respectively. Note that only the

non-artifact ICs/TCs are shown. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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the simulations were generated based on typical ICA
model.

Experiment 2: Effect of variable number of sources

among subjects

The experiment investigated the performance of those
methods using data with variable numbers of sources. As
described above, we tested different model order (I1 in
IRPG, G2 in GIG-ICA, and A2 in GICA). Using boxplots,
we show the overall IC/TC accuracy obtained from IRPG,
GIG-ICA, and GICA under different model order in Figure
7. Measured by the mean of overall IC/TC accuracy across

subjects, GIG-ICA showed the best performance, and in
general IRPG had better performance than GICA.

When the model order was set to 7, the results from
paired t-tests demonstrate that the ICs/TCs accuracy of
GIG-ICA was significantly higher than that of IRPG (P val-
ue 5 0.0028 and T value 5 3.1186 for ICs accuracy, P val-
ue 5 0.0017 and T value 5 3.2862 for TCs accuracy), but
accuracy of IRPG had no significant difference with that of
GICA (P value 5 0.2534 and T value 5 21.1535 for ICs
accuracy, P value 5 0.8476 and T value 5 0.1930 for TCs
accuracy). When the model order was specified as 8, the
ICs accuracy of GIG-ICA had significant higher values
than that of IRPG (P value 5 0.0037 and T value 5 3.0254

Figure 6.

The overall IC/TC accuracy of subjects obtained from IRPG,

GIG-ICA, and GICA for datasets with different CNRs (A and

B) or different numbers of time points (C and D). The x-axis in

each plot denotes CNR or number of time points. The y-axis

denotes each subject’s overall spatial/temporal accuracy,

obtained by averaging the correlations between the ground truth

and the estimated ICs/TCs. Note that we only show the results

of CNR 5 0.5 to CNR 5 1 and CNR 5 2 due to the space limi-

tation. For each boxplot, the central line is the median, and the

edges of the box are the 25th and 75th percentiles. The whiskers

extend to 1 inter-quartile range, and the outliers are displayed

with a “*” sign. The mean value is indicated by a square. Subse-

quent boxplots are formatted similarly. [Color figure can be

viewed in the online issue, which is available at wileyonlineli-

brary.com.]

r Du et al. r

r 1016 r

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


for ICs accuracy, P value 5 0.1769 and T value 5 1.3668 for
TCs accuracy), while the ICs accuracy of IRPG was signifi-
cantly greater than that of GICA (P value 5 3.33e-6 and T
value 5 5.1350 for ICs accuracy, P value 50.6764 and T
value 5 0.4194 for TCs accuracy). When I1 was set to C
(the real number of sources in each subject), IRPG
obtained similar results to the case of I1 5 8, since the arti-
fact was accurately identified for each subject. It is worth
noting that when I1 was set to 8, the subject datasets with

seven sources were decomposed into eight components
including six non-artifact ICs, one artifact IC, and one
white-noise-like IC, thus the artifact IC can be identified
correctly. However, when I1 was set to 7, IRPG performed
less well because the artifacts cannot be correctly removed
from the subject datasets with eight sources.

Figure 7 also shows that GIG-ICA had a reliable per-
formance when G2 was set to 7 and 8, indicating that
GIG-ICA still worked well when different subjects had

Figure 7.

The overall IC/TC accuracy of subjects obtained from IRPG,

GIG-ICA, and GICA under different model order for datasets

with different numbers of sources. The model order denotes

parameter I1 in IRPG, G2 in GIG-ICA, and A2 in GICA.

“RealNum” denotes the real number of sources in each subject

(either 7 or 8). The y-axis denotes each subject’s overall spatial/

temporal accuracy, obtained by averaging the correlations

between the ground truth and the estimated ICs/TCs. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 8.

Spatial/temporal accuracy of each estimated IC/TC obtained from IRPG, GIG-ICA, and GICA for

datasets with unique artifacts. The x-axis denotes the individual IC/TC ID with the same order

as the first seven sources in Figure 2. The y-axis denotes the spatial/temporal correlation

between each subject-specific IC/TC and the corresponding GT source/TC. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

r Artifact Removal in the Context of Group ICA r

r 1017 r

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


different numbers of sources and the model order was
slightly inaccurate. From this experiment, we also observe
that GICA was more sensitive to model order than the
other two methods, and the ICs accuracy of GICA was
affected when A2 was set to 8, since five subjects only had
seven sources (a scenario where dual regression is known
to perform poorly). Because the accurate number of com-
ponents is very difficult to estimate correctly in practice,
the relative insensitivity of GIG-ICA to model order may
provide an important benefit. The results relevant to IRPG
with regression-based individual-subject artifacts removal
are shown in Figure S5 of Supporting Information. The
results shown in Supporting Information Figure S5 are
very similar to that presented in Figure 7.

TABLE III. The top 10 selected features and their rela-

tive weights

Feature Weight

Percentage of total voxels in grey matter 0.35
The power of TC between 0.02 and 0.05 Hz 0.23
The number of activated voxels in Frontal_Sup_Medial_R 0.13
Power spectrum density of TC over 0.0671 HZ 0.13
Power spectrum density of TC over 0.0915 HZ 0.12
The number of activated voxels in Putamen_R 0.11
The number of activated voxels in Parietal_Sup_L 0.11
The number of activated voxels in Precuneus_R 0.11
Power spectrum density of TC over 0.0854 HZ 0.11
Power spectrum density of TC over 0.0488 HZ 0.10

Figure 9.

One-sample t-test T value maps for the matched networks in the case of I3 5 15, G2 5 30,

A2 5 30, thresholded at P < 0.01 with FDR correction for IRPG, GIG-ICA, and GICA. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Experiment 3: Effect of spatially unique artifacts

In this experiment, we tested those methods using data-
sets with spatially unique artifact for each subject, and the
artifacts were accurately identified for both IRPG and
GIG-ICA. Accuracy of each individual IC/TC of subjects is
shown in Figure 8. The results show that even when sub-
jects had spatially unique artifacts, GIG-ICA had better
performance for ICs (mean of ICs accuracy for IRPG and
GIG-ICA were 0.95 and 0.97, respectively) and a compara-
ble performance for TCs compared with IRPG (mean of
TCs accuracy for IRPG and GIG-ICA were 0.9552 and
0.9554, respectively). Furthermore, both methods had bet-
ter performance over traditional GICA without artifacts
removal (mean of ICs and TCs accuracy for GICA were
0.85 and 0.94, respectively). Paired t-tests results demon-
strate that compared with IRPG, GIG-ICA performed sig-
nificantly better in ICs (P value 5 0.0060 and T

value 5 2.8375 for ICs accuracy, P value 5 0.9639 and T

value 5 0.0453 for TCs accuracy). Compared with GICA,
the ICs/TCs accuracy of IRPG was significantly improved
due to artifacts removal (P value 5 5.82e-5 and T val-
ue 5 4.2845 for ICs accuracy; P value 5 0.0001 and T val-
ue 5 4.099 for TCs accuracy). In addition, the results of
IRPG with regression-based individual-subject artifacts
removal are shown in Figure S6 of Supporting Informa-
tion, which are similar to that displayed in Figure 8.

Experiments Using Resting-State fMRI Data

Using test-retest fMRI data, we compared the perform-
ance of IRPG, GIG-ICA, and GICA. As described in the
Experiments Using Resting-State fMRI Data section, a
classifier was trained to automatically identify individual-

subject artifacts in IRPG based on IC features. Training
was performed with 1,125 individual ICs from scan 1,
each with 249 features describing spatial, temporal, and
spectral properties. Approximately half (49.1%) of these
individual ICs were manually identified as artifacts. The
optimal alpha and lambda parameters in the model
[Sochat et al., 2014] were determined to be 0.13 and
0.0625, respectively, based on a maximum mean accuracy
of 0.89 as achieved with 10-fold cross validation. Given
these parameters, the set of 249 possible features
was reduced to 140 relevant features via sparsity con-
straints [Sochat et al., 2014], and the top 10 of which are
listed in Table III. The classifier was successful in distin-
guishing artifacts in training data (accuracy 5 0.91,
sensitivity 5 0.91, specificity 5 0.90) as well as unseen data
(accuracy 5 0.92, sensitivity 5 0.95, specificity 5 0.89) based
on 270 individual ICs (45 ICs 3 6 datasets) from scans 2
and scan 3 that were additionally labeled by the five
raters. Using the trained classifier, 534 ICs (47.5%) and
515 ICs (45.8%) were identified as artifacts for scan 2 and
scan 3, respectively. Within each subject, the number of
non-artifact individual ICs (out of 45) ranged from 16 to
32 (mean 5 24, SD 5 4).

In the following, we describe the performance of IRPG,
GIG-ICA, and GICA under the case of I3515, G2 5 30,
A2 5 30 in detail, and then summarize the performance of
these methods under different parameters.

Given G2 5 30, 16 meaningful (non-artifact) functional
networks were found using GIG-ICA. For IRPG and
GICA, 15 and 30 components were obtained, respectively.
Fourteen matched networks were finally identified across
the three methods. One-sample t-tests (P < 0.01, FDR cor-
rected) results of the 14 matched networks are displayed
in Figure 9, which shows that the networks from those

Figure 10.

The correlation matrix between the matched individual networks from all 75 datasets for IRPG

with I3 5 15, GIG-ICA with G2 5 30, and GICA with A2 5 30, respectively. Warmer color in

blocks along the diagonal indicates spatial similarity between corresponding individual ICs. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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three methods are in general very similar. However, it
seems that the T values for networks are larger in GIG-
ICA than that in the other two methods.

We show the correlation matrices of all individual ICs
from IRPG, GIG-ICA, and GICA in Figure 10. Each ICs con-
sistency across the 75 datasets (25 participants with three
scans) can be determined from a diagonal sub-matrix (size:
75375). It can be observed from Figure 10 that the spatial

correlations among corresponding subject-specific ICs esti-
mated by GIG-ICA were relatively larger than those
obtained with IRPG and GICA. Furthermore, many off-
diagonal lines parallel to the diagonal appeared in the cor-
relation matrix for IRPG and GICA, indicating spatial corre-
lations (or dependence) between different ICs from the
same dataset. In addition, since GIG-ICA explicitly opti-
mizes the correspondence between individual networks and

Figure 11.

Reliability measurements of the matched networks obtained

from IRPG with I3 5 15, GIG-ICA with G2 5 30, and GICA

with A2 5 30. The x-axis denotes the ID of the matched net-

works. (A) Short-term reliability of networks. Each network’s

short-term reliability was measured by mean of ICC values

within significant voxels between networks from scan 2 and net-

works from scan 3. (B) Long-term reliability of networks. Each

network’s long-term reliability was measured by mean of ICC

values within significant voxels between networks from scan 1

and the averaged networks of scan 2 and scan 3. (C) Mean of

the variances of intersubject effect across significant voxels

between networks from scan 2 and networks from scan 3. (D)

Mean of the variances of intersubject effect across significant

voxels between networks from scan 1 and the averaged net-

works of scan 2 and scan 3. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

r Du et al. r

r 1020 r

http://wileyonlinelibrary.com


group ICs, it is not unexpected that it would perform better
on this measure. However, based on the simulations above,
we have found that GIG-ICA does adapt to individual sub-
ject properties and this is also consistent with our initial
publications [Du and Fan, 2011; Du and Fan, 2013]. We also
observed some spatial correlations between components in
GIG-ICA. This appears to be due to the partial spatial over-

lap of components, reflecting the hierarchical division of a
larger network into sub-networks, as discussed in a previ-
ous study [Ma et al., 2011].

As described above, for each matched network, we com-
puted ICCs between the networks from scan 2 and the net-
works from scan 3, and then used the mean of ICC values
in significant voxels (for all three methods) to reflect the

Figure 12.

Reliability measurements of the matched networks obtained

from IRPG, GIG-ICA, and GICA under different model order.

The x-axis denotes I3, G2, or A2. The y-axis denotes each

matched network’s short-term or long-term reliability. (A)

Short-term reliability of networks. Each network’s short-term

reliability was measured by mean of ICC values within significant

voxels between networks from scan 2 and networks from scan

3. (B) Long-term reliability of networks. Each network’s long-

term reliability was measured by mean of ICC values within sig-

nificant voxels between networks from scan 1 and the averaged

networks of scan 2 and scan 3. (C) Mean of the variances of

intersubject effect across significant voxels between networks

from scan 2 and networks from scan 3. (D) Mean of the varian-

ces of intersubject effect across significant voxels between net-

works from scan 1 and the averaged networks of scan 2 and

scan 3. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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short-term reliability of this network. Similarly, the long-
term reliability of each matched network was computed
based on ICCs between the networks from scan 1 and the
averaged networks of scan 2 and scan 3. Figure 11A,B
illustrate the short-term and the long-term reliability of
each matched network obtained from the three methods.
The results suggest that in general networks computed
using GIG-ICA were more reliable than those estimated
with IRPG, and IRPG had improvement than traditional
GICA in terms of some networks. Figure 11C,D show the
intersubject effect variance between networks from scan 2
and networks from scan 3 as well as between networks
from scan 1 and the averaged networks of scan 2 and scan
3. In terms of the intersubject effect variance, GIG-ICA had
greater values than IRPG, while IRPG showed higher val-
ues than GICA for most of networks.

We also varied I3, G2, and A2 to examine the influence
of those parameters. As shown in Figure 12A,B, we com-
pared the performances of those methods under different
model order with respect to the short-term and long-term
reliability of networks. Measured by the mean of ICC
measures across networks, the reliability measures of GIG-
ICA were always higher than that of IRPG regardless of
the used model order, and IRPG showed slight improve-
ment than traditional GICA in our data. Figure 12C,D
illustrate that measured by the mean of the intersubject
effect variance measures across networks, GIG-ICA had
greater values than IRPG, while IRPG showed increased
values than GICA. In addition, it seems like that the meas-
ures computed from traditional GICA were more sensitive
to the used model order, compared with that estimated
from the other two methods.

DISCUSSIONS AND CONCLUSION

In this article, we study and compare two approaches
for artifacts removal in applying ICA on multi-subjects’
fMRI data. One approach, recommended by the Human
Connectome Project, which we call IRPG, is to remove
artifact ICs from individual ICA results, and subsequently
implement a traditional group ICA on cleaned data from
all subjects. A second approach, named GIG-ICA, identi-
fies and removes group-level artifacts after an ICA on all
subjects’ datasets, and then estimates subject-specific ICs
with non-artifact group ICs as spatial references. For com-
parison, we also assess traditional GICA to evaluate per-
formance in the absence of artifacts removal. Using
simulations, we evaluated those approaches with respect
to the effects of data quality (CNR), data quantity (number
of time points), variable source numbers across subjects,
and presence of spatially unique artifacts. Furthermore, we
investigated the performances of those methods using
resting-state test-retest fMRI data with respect to the reli-
ability of functional networks.

Simulations-based experiments demonstrate that GIG-
ICA shows overall better performance than IRPG under

the cases of different data quality and quantity, variable
number of sources, and unique artifacts. Even when
single-subject artifacts removal is perfect for IRPG (as in
Experiment 1, Experiment 3, and Experiment 2 when the
model order was set to C) and subjects have spatially
unique artifacts (as in Experiment 3), IRPG has a slightly
worse performance, especially for estimation of ICs. Con-
sistent with the conclusion reported in the Human Con-
nectome Project, IRPG has improvement compared with
traditional GICA, particularly in the cases of variable num-
ber of sources and unique artifacts, demonstrating the
potential benefits of artifacts removal methods. The superi-
ority of GIG-ICA likely stems from identifying and remov-
ing artifacts at group level, which may be more robust
than single-subject decompositions, as well as the optimi-
zation of independence at the single-subject level, which
improves estimation accuracy of individual ICs. The rea-
sonable performance of GIG-ICA in conditions of low data
quantity (Experiment 1) suggests that it may be an option
for real-time fMRI [Soldati et al., 2013]. The robustness of
GIG-ICA to the used model order and the variability of
sources among subjects makes it a good option for large
fMRI studies, which are likely to have heterogeneous
datasets.

Evaluations using test-retest fMRI data support our
simulations-based findings and suggest that GIG-ICA can
achieve functional networks with relatively higher reliabil-
ity. In one sense this is expected, since GIG-ICA explicitly
optimizes the similarity of the individual subjects to the
group reference components, however based on the simu-
lations where GIG-ICA also better matched the ground
truth individual ICs, we think this is a desirable result that
reflects more accurate estimation. In real application, arti-
fact detection is often difficult because of the broad range
of types of artifacts, the unknown pattern of artifacts, and
the substantial intersubject variation. Furthermore, the
uncertainty of sources number in real data can affect iden-
tification and removal of artifacts. In this article, we
applied a supervised learning approach [Sochat et al.,
2014] to identify artifacts, and achieved reasonably high
accuracy. In recent work from the Human Connectome
Project, a hierarchical fusion of classifiers was applied to
identify the individual-subject artifact ICs based on more
than 180 features. The machine learning methods used
here and elsewhere [Salimi-Khorshidi et al., 2014; Smith
et al., 2013] can mitigate the difficulties of single-subject
artifact detection in IRPG to a degree, however, manual
identification for training data is still time consuming.
Based on our simulations, even if this process were per-
fect, IRPG would not outperform GIG-ICA.

The results presented in this article are subject to a num-
ber of limitations. (1) The simulations are relatively simple.
Only one or two artifacts of eight sources were simulated,
while the proportion of artifacts in fMRI data is certainly
greater. Additionally, the spatial variability of simulated
sources across subjects is relatively small. Since all of the
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group ICA methods evaluated assume similarity in the
networks of interest, most sources were simulated by add-
ing moderate subject-specific variation to common tem-
plates. In real data, the variability across subjects could be
much larger. We did simulate one case where each artifact
was spatially unique across subjects (and thus highly vari-
able) and results were consistent with our other simula-
tions. However, we have not tested cases where the
networks of interest are also extremely variable. It is
important to note that all the evaluated group ICA meth-
ods assume similarity in the networks of interest, so the
case where the functional networks are highly variable
across subjects was not our main focus in this work. In
addition, our recent work [Du et al., 2014b, 2015] also
showed that GIG-ICA can effectively investigate the group
difference among similar diseases, such as schizophrenia,
bipolar disorder, and schizoaffective disorder. (2) The
number of sources in real data is unknown, therefore, we
do not know the best dimensionality for artifact detection
or ICA decompositions in general. Furthermore, we do not
know the appropriate model order at which to compare
these three methods in real data. We compared the three
methods under different parameters, and found similar
results for different values of I3, G2, and A2, but it is pos-
sible that other model order would yield different per-
formance for the methods. (3) The networks reliability
measures used to assess performance in real data may be
sensitive to (and favor) spatial similarity between ICs.
While such measures could not be optimal, the use of net-
works reliability as proxies for assessing estimation quality
is warranted in scenarios where the ground truth is
unknown. The networks reliability are commonly used to
evaluate ICA methods [Griffanti et al., 2014; Zuo et al.,
2010]. (4) The detection and removal for artifacts was
imperfect for real data, with �10% of ICs being mislabeled
in this study, thus may unfairly reduce the performance of
IRPG. However, our simulations-based experiments illus-
trate that GIG-ICA still had better performance than IRPG
even when single-subject artifacts removal in IRPG was
perfect. The superiority of GIG-ICA is likely due to the
independence optimization of individual ICs.

The assumptions and biases of different group ICA
approaches also need to be addressed. The IRPG approach
cleans the data for each individual subject such that it
hopefully coincides with the group ICA model. This is a
reasonable approach, although the subject-level artifacts
removal can be time consuming and misclassification of
individual artifacts can lead to additional error. In con-
trast, GIG-ICA estimates subject-level functional networks
based on non-artifact group ICs, while ignoring the vari-
ability of artifact sources. GIG-ICA is slightly more flexible
than IRPG in capturing individual subject maps due to the
independence optimization of individual ICs. Both GIG-
ICA and IRPG appear to work better than not addressing
the artifacts. Any of these approaches should be used with
caution when applying to data with great variability, such

as lesion or stroke data. The main advantage of group ICA
is that it provides a group model to automatically link
components across subjects. Single-subject ICAs do not
have this benefit and instead require a post-hoc sorting
approach. There are several alternative methods that have
been proposed to perform functional network analysis of
multiple subjects. Kim et al. [2012] incorporated sparsity
into a dual regression method using a iterative algorithm.
Schultz et al. [2014] proposed a template based rotation
(TBR) method. Ma et al. [2013] proposed an independent
vector analysis (IVA) based method. All these methods
may provide potential benefits going forward.

In conclusion, we have evaluated three group ICA
approaches including traditional GICA and two
approaches with additional artifacts removal. Results
show that both IRPG and GIG-ICA show benefits over
GICA, and GIG-ICA shows additional improvements over
IRPG in performance and implementation.
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