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Abstract

Alcohol dependence (AD) is suggested to have polygenic risk factors and also exhibits 

neurological complications, strongly encouraging a translational study to explore the associations 

between aggregates of genetic variants and brain function alterations related to alcohol use. In this 

study, we used a semiblind multivariate approach, parallel independent component analysis with 

multiple references (pICA-MR) to investigate relationships of genome-wide single nucleotide 

polymorphisms (SNPs) with alcohol cue elicited brain activations in 326 healthy drinkers. The 

genetic component derived from the CREB-BDNF pathway reference was significantly associated 

(r = −0.36, p = 2.98×10−11) with an imaging component reflecting hyperactivation in precuneus, 

superior parietal lobule, and posterior cingulate for drinkers with more severe AD scores. The 

highlighted brain regions participate in many cognitive processes and have been robustly 

implicated in craving-related studies. The genetic factor highlighted the CREB and BDNF 
references, as well as other genes including GRM5, GRM7, GRID1, GRIN2A, PRKCA and 

PRKCB. Ingenuity Pathway Analysis indicated that the genetic component was enriched in 

synaptic plasticity, GABA and protein kinase A signaling. In summary, our findings suggest 

genetic variations in various neural plasticity and signaling pathways partially explain the variance 

of precuneus reactivity to alcohol cue which appears to be associated with AD severity.

Introduction

Alcohol dependence (AD) presents a substantial health and economic issue, with an 

estimated lifetime prevalence of 3.8% to 13.3% (Hasin et al., 2007). Genetic factors have 

been shown to affect liability to AD, with the heritability estimated to be 40–60 % while the 

remainder variances might be majorly attributable to environmental factors (Uhl, 2004). 

Great efforts have been made towards unraveling the genetic etiology of AD. Candidate gene 

and unbiased genome-wide association studies (GWAS) provided evidences for a number of 

susceptibility variants, highlighting genes involved in various neural signaling pathways, 
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including dopaminergic (Conner et al., 2005), glutamatergic (Schumann et al., 2008) and 

GABAergic (Bierut et al., 2010) systems. Genes encoding alcohol dehydrogenase (ADH) 

enzymes playing a key role in alcohol metabolism are also implicated in the vulnerability 

(Luo et al., 2007).

Despite the growing knowledge on susceptibility loci contributing to the individual 

differences in drinking behavior, the genetic findings in general suffer modest effect sizes. 

For instance, in a large GWAS of AD where thousands of subjects were included for 

investigations, no single nucleotide polymorphism (SNP) could pass the genome-wide 

significance threshold of 5.00×10−8 (Stranger et al., 2011). Instead the highlighted 15 SNPs 

yielded suggestive associations with p < 10−5 (Bierut et al., 2010), yet none of them could be 

replicated in two independent studies with nominal threshold of 0.05, and nor did they 

replicate findings of a previous GWAS (Treutlein et al., 2010). This is essentially a common 

challenge in complex trait mapping. Indeed, like many other complex disorders, AD is 

suggested to have polygenic risk factors (Johnson et al., 2006), such that the underlying 

genetic architecture involves many loci with modest individual effect sizes, which may 

function together to confer the liability. Understanding the mechanism of genetic effects 

becomes even more complicated due to phenotypic heterogeneity where genetic variants can 

exert influences on various phenotypes through different biological mechanisms (Wong and 

Schumann, 2008).

In this work, we employed a semiblind multivariate approach, parallel independent 

component analysis with multiple references (pICA-MR) (Chen et al., 2014), to investigate 

genetic basis underlying brain function related to AD. Specifically, functional magnetic 

resonance imaging (fMRI) data were collected from subjects exposed to a well-established 

alcohol cue paradigm (Claus et al., 2011; Filbey et al., 2008). The method, pICA-MR is an 

extension of pICA (Liu et al., 2009; Meda et al., 2010) and pICA-R (single reference) (Chen 

et al., 2013), which have been implemented by many studies for various data modalities. 

pICA-MR extracts independent components from the imaging and genetic modalities 

separately to assess aggregate effects of multiple variables, posing a promising model for 

polygenicity and pleiotropy. It also enhances inter-modality associations, providing a 

translational framework for exploring genetic underpinnings of neuronal functions, which 

might ultimately lead to clinical manifestations of the disorder. In addition, genetic 

references (i.e. multiple sets of SNPs) are incorporated to help extract genetic components of 

particular attribute. This method has proven to be very helpful in pinpointing mechanisms of 

interest in high-dimensional complex data (Chen et al., 2014).

Materials and Methods

Participants

A total of 326 subjects participated in the study to investigate genetic and neurobiological 

traits related to heavy drinking (Claus et al., 2011). The University of New Mexico Human 

Research Review Committee approved the study. All the participants were recruited from 

the greater Albuquerque metropolitan region and provided written informed consent. The 

inclusion criterion was based on alcohol consumption, requiring participants to drink at least 

five times in the past month with at least 5 (for men) or 4 (for women) drinks per drinking 
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occasion. The exclusion criteria included a history of severe alcohol withdrawal, brain-

related medical problems, or symptoms of psychosis. In addition, participants were required 

to be sober during the data collection, with a breath alcohol concentration of 0.00. After 

preprocessing, 315 participants were admitted into the analysis, for which good quality 

fMRI and SNP data were collected. Table 1 provides the demographic information.

Data Collection and Preprocessing

Behavioral assessment—The assessment was administered through a variety of 

questionnaires, including the Alcohol Dependence Scale (ADS) (Skinner and Horn, 1984), 

the Alcohol Use Disorder Identification Test (AUDIT) (Babor et al., 2001) and the Impaired 

Control Scale (ICS) for alcohol (Heather et al., 1998). We excluded relatively incomplete 

measures where data were missing for more than 25 subjects. Finally a total of 23 behavioral 

measures were investigated for associations with identified imaging and genetic 

components, as listed in Table 2. The missing ratio was no greater than 4/315. It should be 

noted that most of these behavioral measures showed significant associations with age, 

except for AgeFirstDrink, EStress-tot and Stress-tot.

Functional MRI—Brain activation data were collected during an alcohol craving task as 

described in (Claus et al., 2011; Filbey et al., 2008). Participants were exposed to small 

amounts of alcoholic (individual preferred) or juice (litchi) beverages pseudorandomly 

presented during the MRI scans. Each taste cue trial sequentially consisted of a 2s “Ready” 

prompt, a 24s taste cue presentation and a 16s washout period. During the cue presentation, 

participants tasted the presented beverage (second 1–10 and 12–22) and then swallowed 

(second 10–12 and 22–24). No stimuli were presented during the washout and participants 

viewed the word “Rest”. Two 9min runs were conducted for each participant, with a single 

run spanning 12 trials, 6 for each tastant. A 3T Siemens Trio was used for the data 

collection. The echo-planar gradient-echo pulse sequence was configured as follows: TR = 

2s, TE = 29ms, flip angle = 75°, voxel size = 3.75mm × 3.75mm × 4.55mm. The collected 

fMRI data were preprocessed with Statistical Parametric Mapping 5 (SPM5, http://

www.fil.ion.ucl.ac.uk/spm). Standard motion correction was performed and images were 

normalized to the Montreal Neurological Institute (MNI) template (Jenkinson et al., 2002) 

and resliced to 3×3×3 mm3. An 8mm full-width half-maximum Gaussian kernel was used 

for spatial smoothing. Finally alcohol versus juice contrast images spanning a total of 54,937 

voxels were extracted for subsequent association analyses.

SNP data—Saliva samples were collected from participants for DNA extraction. 

Genotyping for all participants was performed at the Mind Research Network using the 

Illumina Infinium Human 1M-Duo assay spanning 1,199,187 SNP loci. BeadStudio was 

used to make the final genotype calls. A series of standard quality control procedures were 

then performed with PLINK (Purcell et al., 2007). Specifically, SNPs and participants were 

first examined for a genotyping rate threshold of 95%; SNPs were excluded if they deviated 

from Hardy-Weinberg Equilibrium with a threshold of 10−6 or failed to be missing at 

random with a threshold of 10−10; 2 participants were excluded due to high heterozygosity 

(3-SD greater than the mean); Another 2 participants were excluded due to relatedness with 

identity-by-descent values greater than 0.1875; Minor allele frequency threshold was set to 
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0.05. After the quality control, discrete numbers were assigned to the categorical genotypes: 

0 for no minor allele, 1 for one minor allele and 2 for two minor alleles. Subsequently, we 

replaced the missing genotypes using high linkage disequilibrium (LD) loci if available 

(correlation > 0.80), excluded 18,809 SNPs with a missing ratio greater than 1%, and 

replaced the rest missing genotypes with the major alleles of individual loci. The resulting 

717,129 autosomal SNPs were then used for population stratification by principal 

component analysis (PCA), and three principal components (PC1, 2, and 4) differed 

significantly among ethnic groups (p = 9.85×10−79, 3.23×10−86 and 3.21×10−55, 

respectively) while exhibiting no significant associations with drinking behavior measures. 

These three components were then eliminated from the original data. Afterwards, a Q-Q plot 

for p-values of SNP association with the AUDIT-tot score tested against a uniform 

distribution showed no clear indication of population structure (Figure S1).

Association Analysis

The fMRI contrast images were analyzed in conjunction with the SNP data using pICA-MR 

(Chen et al., 2014), which extends the pICA (Liu et al., 2009) and pICA-R (Chen et al., 

2013) approach to accommodate multiple references. Figure 1 shows the flowchart of pICA-

MR. As a multivariate approach, pICA-MR first decomposes the two datasets, X1 and X2, 

into linear combinations of underlying components separately and in parallel. S, A and W 
denote the component, mixing and unmixing matrices, respectively. The subscript d runs 

from 1 to 2, denoting two data modalities.

Modality 1 (imaging data) is decomposed by infomax ICA (Bell and Sejnowski, 1995) to 

organize independent sets of co-varying variables into different components through 

maximizing entropy. For modality 2 (genetic data), the decomposition is based on 

constrained infomax so that components are not only independent but closely resemble the 

reference matrix r (Chen et al., 2014). Each row of r represents a reference vector, which is 

of the same dimension as the SNP data with non-zeroes representing a group of reference 

loci likely contributing in a coordinated manner. pICA-MR then calculates the Euclidean 

distances between each reference vector and all the components only using non-zero 

reference loci to determine the closest one as the corresponding constrained component, 

whose distance is further minimized. This design enables a semiblind decomposition to 

partially constrain the reference loci in the resulting components while still allowing the 

remaining loci to show their own importance driven by the data. Meanwhile, different 

reference vectors can constrain the same component, indicating functional convergence in a 

data-driven manner. Finally, as inherited from pICA (Liu et al., 2009), the inter-modality 

associations are optimized through maximizing the correlations computed over the columns 

of the loading matrices A1 and A2. A detailed description of the mathematical model is 

provided in the supplementary information. Simulations suggest that pICA-MR effectively 

identifies similarity among multiple references and the detection power is comparable to 

pICA-R and hence significantly improved compared to blind methods (Chen et al., 2014).

In this work, the number of fMRI components was estimated by minimum description length 

(MDL) (Rissanen, 1978) on uncorrelated voxels. The number of SNP components was 

estimated based on component consistency (Chen et al., 2012). Six sets of genes were 
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selected based on previously reported association with alcohol dependence, as shown in 

Table 3 (see supplementary information for a full description and list of references). Each set 

including multiple genes was used as one independent reference set and tested separately.

Following the design of pICA-MR, a reference matrix was generated with each row 

representing a group of SNP loci hosted by a single gene. Most of the selected reference 

genes spanned tens of SNPs forming a single LD block in our data, which were directly used 

to generate the reference matrix. One exception was CREB5 hosting 228 SNPs, for which 

multiple LD blocks (r2 > 0.2, (Ripke et al., 2011)) were identified and represented in 

multiple reference matrices. It should be noted that we only examined six sets of genes in 

this work. Many other genes of great importance such as those from dopaminergic and 

glutamatergic systems are left for future investigations.

To assess the fidelity of the identified association, we applied 10-fold validation. Ten runs, 

each with 90% of the subjects, were conducted to evaluate the reproducibility of the full set 

SNP-fMRI association in subsets of the data. More informatively, we performed a 1000-run 

permutation test to assess the validity of our finding, that is, to investigate the possibility of 

the identified SNP-fMRI association occurring in randomly rearranged subjects. Based on 

the top associated component pair of each run, we calculated the tail probability to evaluate 

the significance level of the identified SNP-fMRI association.

To understand the functional influences, the identified SNP and fMRI components were 

further investigated for associations with all the behavioral measures listed in Table 2. 

Multiple regression analysis was conducted to control for sex and race. False discovery rate 

(FDR) was applied to account for multiple tests given the moderate to high correlations 

among most of the behavioral measures.

Results

The fMRI (54,937 voxels) and SNP (717,129 loci) data were analyzed with pICA-MR. The 

number of components was estimated to be 15 (fMRI) and 11 (SNP), respectively. Among 

the tested gene sets, CREB-BDNF elicited a significant SNP-fMRI correlation (r = −0.38, p 

= 3.98×10−12, passing Bonferroni correction of 0.05/15/11), where the three genes BDNF, 

CREB1 and CREB5 were identified to constrain the same SNP component. Table S1 

summarizes the recruited reference loci, which consisted of all the genotyped loci in BDNF 
(15 SNPs) and CREB1 (20 SNPs), and an LD block spanning 20 SNPs in CREB5. After 

regressing out controlling variables (age, sex, race), the SNP-fMRI association remained 

significant, exhibiting a correlation of −0.36 (p = 2.98×10−11), as shown in Figure 2a. The 

identified SNP-fMRI pair exhibited stable correlations in the 10-fold validation, ranging 

from 0.23 to 0.33 with a median of 0.27. More importantly, in the 1000-run permutation 

only one permuted sample exhibited a SNP-fMRI association stronger than that observed in 

the original data, yielding a significant p-value of 0.001 for our finding.

The identified fMRI component, with FDR control, was found significantly associated with 

a number of behavioral measures, including CD-count, ICS-fc, ICS-total and PD-count. The 

most significant association was observed from CD-count, exhibiting a correlation of 0.25 (p 
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= 7.04×10−06) after regressing out sex and race, as shown in Figure 2b. In addition, the 

correlation remained significant (r = 0.19, p = 6.45×10−04) after age was further regressed 

out, suggesting that the variance in activation might reflect more current dependence 

symptoms than cumulative alcohol use. The fMRI loadings also showed significant 

associations with ICS-fc, ICS-total and PD-count (correlations of 0.24, 0.23 and 0.21, 

respectively), all of which highly correlated with CD-count (correlations of 0.68, 0.72 and 

0.82 respectively). Due to this collinearity, the individual effect could not be disentangled 

and we chose to focus on the most significantly associated symptom CD-count in the 

following discussion. Figure 3 shows the spatial map of the identified fMRI component 

thresholded at |Z| > 2. Table 4 summarizes the Talairach atlas labels (Lancaster et al., 2000) 

of the mapped brain network, including precuneus, superior and inferior parietal lobules, as 

well as posterior cingulate cortex (PCC).

The identified SNP component did not exhibit any significant association with the 

behavioral measures. Figure 4 shows a Manhattan plot of weights of loci for the identified 

SNP component, where the z-score threshold of 3.13 is marked to present the selection of 

top SNPs (for details, see Figure S2). 1,019 out of the top contributing 2,020 SNPs were 

mapped to 457 unique genes and used for pathway analyses. Table S2 provides a summary 

of all the selected top contributing SNPs, including SNP position, hosting gene and z-scored 

component weight. Ingenuity Pathway Analysis (IPA: Ingenuity® Systems, http://

www.ingenuity.com) revealed a number of enriched canonical pathways, including synaptic 

long term depression (LTD, 1.70×10−5) and potentiation (LTP, 5.89×10−3), CREB Signaling 

in Neurons (6.31×10−4), protein kinase A (PKA) signaling (1.26×10−2), as well as GABA 

receptor signaling (2.24×10−2), as summarized in Table 5. IPA also indicated a significant 

enrichment of neurological diseases in our finding, including bipolar disorder (7.56×10−4), 

schizophrenia (5.50×10−3) and major depression (4.37×10−2). The identified genes were 

also significantly overrepresented in neuritogenesis (2.81×10−4) and other developmental 

functions (see Table S3 for a complete summary of pathway analyses). While different 

thresholds can be used to select top contributing SNPs, we also tested top 1,000 to 5,000 

SNPs and similar pathway analyses results were obtained (Table S4). We chose to present 

the results from 2,020 SNPs since animal models suggested that thousands of genes are 

involved in the pathology of AD (Mulligan et al., 2006).

To further confirm the genetic influence on brain function alterations, we performed a 

regression analysis between the fMRI and SNP loadings while controlling for age, sex, race 

as well as associated behavioral measures of CD-count, ICS-fc, ICS-total and PD-count. The 

SNP component still showed a significant regression effect (p = 1.39×10−10) on the fMRI 

component.

Discussion

The fMRI loadings exhibited a positive correlation with CD-count, together with positive 

activations of the component, indicating that subjects experiencing more severe AD 

symptoms had higher regional activations when exposed to the taste of alcohol. The 

hyperactivated brain network comprised precuneus, superior and inferior parietal lobules and 

PCC, as shown in Figure 3 and listed in Table 4. The brain network covered the midline, 
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which might be attributable to spatial smoothing using an 8mm Gaussian kernel. Precuneus 

belongs to associative cortices and is known to be involved in a wide range of highly 

integrated tasks, including episodic memory retrieval, self-referential processes and 

consciousness (Cavanna and Trimble, 2006). Its involvement in a variety of processes builds 

upon its anatomical wide-spread connections with both adjacent areas such as superior 

parietal lobule and PCC, and frontal lobes including prefrontal cortex and anterior cingulate 

cortex (Cavanna and Trimble, 2006). Although not generally targeted for addiction studies, 

precuneus and parietal regions have been robustly implicated in craving studies, where 

hyperactivation elicited by drug-related cues has been found associated with severity of 

dependence (Claus et al., 2011; Liu et al., 2013; Park et al., 2007; Tapert et al., 2004). The 

drug-cue-elicited activation in precuneus is possibly a reflection of its recruitment in 

episodic memory retrieval, as the triggering of craving can be considered as a conditioned 

response where the recollection of past experience as episodic memories serves as a 

conditioned cue (Robbins et al., 2008). PCC is a key player in the saline network 

(Sutherland et al., 2012) and frequently implicated in the processing of drug-related stimuli 

(Tapert et al., 2004; Wrase et al., 2007). Its functional alteration has proven to underlie the 

concurrent use of alcohol and tobacco (Liu et al., 2014). Of particular interest, as shown in a 

meta-analysis on fMRI studies of alcohol cue reactivity, brain activation in precuneus and 

PCC, instead of the mesolimbic system, most effectively differentiates cases from controls in 

terms of alcohol use severity (Schacht et al., 2013). Overall, the identified brain network 

echoes considerable similar findings and deserves more attention to elucidate the 

neuropathology of addiction.

The associated genetic component elicited by the three genes, BDNF, CREB1 and CREB5, 

negatively correlated with the fMRI component, indicating that subjects carrying lower 

loadings on the SNP component presented higher brain activation in the identified precuneus 

and parietal regions. Pathway analyses delineated a complex genetic architecture 

emphasizing neural plasticity and signaling pathways based on the 457 genes highlighted in 

the component. A meta-analysis of mouse models identified 3,800 genes differentially 

expressed between models of high and low amounts of alcohol consumption (Mulligan et 

al., 2006), suggesting that thousands of genes are involved in the pathology of AD. Our 

findings appeared to be in line with the animal study and further suggested that the CREB-

BDNF pathway likely serves as a hub of the polygenetic effect related to AD, as illustrated 

below in several associated canonical pathways.

cAMP-response element-binding protein (CREB) functions as a transcription factor and is 

well known for its role in neural plasticity and long-term memory (Carlezon et al., 2005). 

Brain derived neurotrophic factor (BDNF) is a CREB regulated gene and active in synaptic 

plasticity (Bramham and Messaoudi, 2005). Together with several glutamatergic genes 

(GRM5, GRM7, GRID1 and GRIN2A) and protein kinase C genes (PRKCA and PRKCB), 

they signify the CREB signaling, synaptic LTD, and synaptic LTP pathways. Synaptic LTP 

and LTD are two forms of synaptic plasticity which enhances or weakens, respectively, the 

synchronized stimulations between neurons, thus allowing the refinement of neuronal 

circuits underlying learning and memory (Malenka and Bear, 2004). It’s commonly 

recognized that synaptic plasticity plays an important role in the development of addiction, 

through which use of drug progresses from impulsive to compulsive behavior (Kauer and 
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Malenka, 2007). A meta-analysis further indicated that a genetic component might affect 

AD through regulating synaptic plasticity (Li et al., 2008), where LTD and LTP are among 

the top enriched pathways for the 396 addiction-related genes implicated in two or more 

independent studies. Particularly, one SNP in BDNF (rs6265_A or Val66Met, ‘A’ represents 

the minor allele) has been identified as predicting relapse in AD patients, where minor allele 

carriers showed decreased vulnerability to relapse (Wojnar et al., 2009). This is consistent 

with our finding where the same SNP exhibited a positive weight, indicating that minor 

allele carriers presented lower brain activation which was associated with less severe AD. 

The SNP in GRIN2A (rs4628972_G) and three SNPs in PRKCA (rs17688881_C, 

rs721429_A and rs7217618_C) presented negative weights, indicating that the subjects 

carrying more minor alleles showed higher brain activations and more severe AD. The 

opposite was observed for the rest (rs1000061_G in GRM5, rs1353832_C in GRM7, 

rs1863824_C in GRID1, rs8077110_T in PRKCA and rs880824_A in PRKCB) which all 

presented positive weights.

As a major inhibitory neurotransmitter in the central nervous system, GABAergic signaling 

has been implicated in addiction in numerous studies, as reviewed above. It has been 

reported that chronic cocaine uses decrease GABAergic synapse function, such that LTP 

induction is not effectively suppressed at excitatory synapses (Liu et al., 2005). 

Polymorphisms in GABA receptor genes are consistently identified as susceptibility loci to 

addiction (Bierut et al., 2010), including a number of SNPs in GABRG3 shown to be 

associated with AD (Dick et al., 2004). In our finding, all the three identified SNPs in 

GABRG3 (rs12439549_G, rs4438262_G and rs3922613_G) and two SNPs (rs1874864_G 

and rs7638369_T) in GABRR3 contributed with positive weights, while the rest 

(rs1844934_T, rs1688378_A and rs1492054_C) exhibited negative weights. Another 

pathway, cAMP-PKA pathway, is noteworthy here, which is a primary signaling cascade 

modulating numerous cellular events in neurons, including synaptic plasticity (Waltereit and 

Weller, 2003). It is documented that activation of the cAMP-PKA signaling leads to 

increased activity of CREB (Ron and Jurd, 2005), and genetic mutation reducing cAMP-

PKA signaling results in increased sensitivity to the sedative effects of ethanol (Wand et al., 

2001). The detail of how each SNP in this pathway contributes to the genetic component can 

be found in Table S2.

It should be noted that the identified genetic component was not specific to alcohol use 

disorders. The canonical pathways aforementioned and neurodevelopmental functions such 

as neuritogenesis and axonal guidance (Table S3) are part of much broad neural processes. 

IPA also implicated that the associated genes were overrepresented in other neuropsychiatric 

diseases, including bipolar disorder, schizophrenia and major depression. This suggests a 

genetic basis for the comorbidity among these disorders, for which accumulated evidence 

has been provided (Johnson et al., 2009; Lee et al., 2013). Overall, the genetic component 

delineates a relatively general substrate whose disruptions may interact with other factors to 

trigger various diseases, which is in accord with the fact that the identified brain network 

also participates in various tasks not specific to those related to AD.

In summary, using a novel semiblind multivariate approach we demonstrate gene 

interactions within the polygenic model of AD selected by the CREB-BDNF gene set. The 
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extracted SNP component exhibits enrichment in neural plasticity and signaling pathways. 

The captured brain network, highlighting the precuneus, superior parietal and PCC regions, 

is related to alcohol dependence scores. The significant SNP-fMRI association indicates that 

the genetic factor affecting neural plasticity may influence precuneus, superior parietal, and 

PCC responses to alcohol cues. We speculate one likely mechanism is through learning and 

memory function executed in these brain regions that is implicated in addiction (Courtney et 

al., 2014; Robbins et al., 2008), and modulated by neural plasticity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A flowchart of pICA-MR.
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Figure 2. 
Scatter plots of: (a) the fMRI and SNP loadings; (b) the fMRI loading and CD-count.
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Figure 3. 
Spatial map of brain network for the identified fMRI component (|Z| > 2).
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Figure 4. 
Manhattan plot for the identified SNP component. The black line represents the z-score 

threshold of 3.13.
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Table 1

Demographic information of participants.

Number of participants Male (220) Female (95)

Race Caucasian 99 43

African American 4 2

Asian 2 0

Latino 54 28

Native American 13 3

Mixed 47 19

Unreported 1 0

Age Mean ± SD 31.74 ± 9.43 32.52 ± 10.58

Range 21 – 56 21 – 55
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Table 2

Alcohol dependence assessment.

Assessment Sub-category Description

ADS ADS-con Loss of behavior control

ADS-obs Obsessive drinking style

ADS-per Psychoperceptual withdrawal

ADS-phy Psychophysical withdrawal

ADS-tot Total ADS

AUDIT-tot Total AUDIT score

AUDIT-consump Alcohol consumption total (sum of AUDIT-1, -2, and -3)

AUDIT-dep AD total (sum of AUDIT-4, -5, and -6)

AUDIT-probs Alcohol problems total (sum of AUDIT-7, -8, -9 and -10)

ICS ICS-total Total ICS

ICS-ac Attempted control

ICS-fc Failed control

ICS-pc Perceived control

Alcohol symptom count PA-count Past alcohol abuse symptom count

CA-count Current alcohol abuse symptom count

PD-count Past AD symptom count

CD-count Current AD symptom count

Drinking history NewAgeDrink Probable age that regular drinking first occurred

NewYearsDrink Probable number of years of regular drinking

AgeFirstDrink Probable age of first drink

Stress EStress-tot Total early stress for ages before 19 (0–18 years old)

Stress-tot Early Stress total (all ages reported)

BDI-tot Total Beck Depression Inventory
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Table 3

Tested genetic references.

Reference Genes References

15q24-25 CHRNA3, CHRNA5, CHRNB4 Bierut, 2010; Caporaso et al., 2009; Wang et al., 2009

4p12 GABRA4, GABRA2, GABRG1, GABRB1 Bierut et al., 2010; Enoch et al., 2009

5q34 GABRB2, GABRA6, GABRA1, GABRG2 Radel et al., 2005

4q23 ADH1A, ADH1B, ADH1C Edenberg et al., 2006; Luo et al., 2007

Opioid system OPRM1, OPRK1, OPRD1 Filbey et al., 2008; Zhang et al., 2008

CREB-BDNF CREB1, CREB5, BDNF Carlezon et al., 2005; Crews et al., 2007; Pandey, 2003
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Table 4

Talairach labels of identified brain regions (|Z| > 2).

Brain region Brodmann area L/R volume (cm3) L/R random effects, max Z (x,y,z)

Precuneus 7, 19, 39, 31 16.8/14.1 9.18(0,−58,61)/9.41(3,−58,64)

Superior Parietal Lobule 7, 5 8.9/7.6 8.55(−3,−67,56)/8.72(6,−64,58)

Postcentral Gyrus 7, 5, 3, 2, 40, 1 5.3/4.5 8.06(0,−46,66)/9.03(3,−52,66)

Inferior Parietal Lobule 40, 7, 39 3.5/3.5 4.28(−39,−49,61)/5.11(39,−52,58)

Cuneus 19, 18, 7, 30 2.7/3.7 4.53(0,−82,40)/4.59(27,−83,37)

Paracentral Lobule 5, 4, 6, 7 2.9/1.8 7.28(0,−46,63)/5.71(3,−37,68)

Posterior Cingulate 29, 30, 23 1.6/1.0 3.25(−6,−41,5)/2.99(6,−41,5)
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Table 5

Pathway analyses.

IPA canonical pathway Genes P-value

Synaptic Long Term 
Depression

GNA14,ITPR1,GRM5,GRM7,GNAI3,GRID1,PLB1, RYR3,LYN,GNAT2,PPP2R1B,PRKCB,PRKCA 1.70E-05

CREB Signaling in 
Neurons

GRM5,GRM7,GNAI3,GRIN2A,GRID1,GNAT2, PIK3CD,GNA14,ITPR1,CREB5,PRKCA,PRKCB 6.31E-04

Axonal Guidance Signaling LRRC4C,ITSN1,KALRN,RAC1,GNA14,ROBO1, ADAMTS2,GNAI3,SRGAP3,NTRK3,DCC,ADAM19,RTN4, ADAM23,GNAT2,PIK3CD,WNT5B,PRKCA,PRKCB 5.13E-03

Synaptic Long Term 
Potentiation

GRM5,GRM7,GRIN2A,GNA14,ITPR1,CREB5,PRKCA, PRKCB 5.89E-03

Protein Kinase A Signaling PTPN7,PTPRD,PTPN3,ITPR1,NFKB1,CREB5,PDE1C, GNAI3,HHAT,ADD3,RYR3,DCC,PTPRS,PDE8B, PRKCB,PRKCA 1.26E-02

GABA Receptor Signaling GABRG3,GABRR3,AP2M1,AP1B1 2.24E-02
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