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Abstract With the increase of availability and scope of

complex networks, structure learning for networks has

received an enormous amount of interest in many fields,

including physics, computer and information sciences,

biology and the social sciences. To extract compact and

flexible representations for weighted networks, we propose

a new Bayesian nonparametric model to learn from both

the existence and weight of interactions between nodes.

Our model adopts Dirichlet process prior to automatically

infer the partition over nodes in weighted networks without

specifying the number of clusters. This is vital for structure

discovery in complex networks, especially for novel

domains where we have little prior knowledge. We develop

a mean-field variational algorithm to efficiently approxi-

mate the model’s posterior distribution over infinite latent

clusters. Conducting extensive experiments on synthetic

data set and four popular data sets, we demonstrate that our

model can effectively capture the latent structure for

complex weighted networks.

Keywords Structure learning � Clustering � Probabilistic
graph models � Bayesian nonparametric models �
Variational inference

1 Introduction

Statistical analysis of complex networks has been an active

area of research for decades, and is becoming an increas-

ingly important challenge in pattern recognition and

machine learning [12, 30]. Consisting of pairwise mea-

surements, such as existence or absence of links between

pairs of objects, networks have been used to analyze

interpersonal social relationships [30], communication

networks [31], academic paper co-authorships and citations

[33], protein interactions [25], gene regulatory patterns

[17], and much more [12]. Unlike traditional attribute data

collected from individual objects, the observations in net-

works are no longer independent or exchangeable because

objects are pairwise related. Independence or exchange-

ability is a key assumption made in machine learning and

statistics for traditional attribute data [3, 6]. This intrinsic

difference in structure requires special treatments for net-

work data.

A central problem in the network literature is to uncover

the latent structure based on the observed pairwise inter-

actions between objects [11, 12]. Among all the statistical

models proposed for this end, Stochastic Block Model

(SBM) [15, 31, 41] is an elegant probabilistic graph model

of block structure in unweighted networks. Probabilistic

graph models [39] are perfect integration of probability

theory and graph theory. They provide a natural tool for

dealing with uncertainty that occurs throughout applied

mathematics and engineering. Apart from probabilistic

graph models, a variety of different approaches exist to

process uncertainty; see, for example, [40, 42–44].

SBM assumes that there are a number of clusters such

that each object in the network belongs to a single cluster.

Objects in the same cluster are structurally equivalent,

which means that their connectivity with other objects is
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similar. Under this assumption, the link probability

between two objects depends only on their cluster assign-

ments. It is notable that the partition of objects induced by

SBM is based on the similarity of interactions between

objects, and this similarity can be viewed as a generaliza-

tion of similar measure defined for traditional attribute data

[6, 47]. With further assumptions on inter-block and intra-

block connectivity, SBM has been successfully used for

modeling assortative network structure [28], disassortative

structure [30] and bipartite structure [23]. And SBM also

has been generalized for count-valued data, degree cor-

rection [19] and categorical values [13]. The Mixed

Membership Stochastic Block Model [2] further increases

the expressiveness of SBM by allowing mixed member-

ship, associating each object with a distribution vector over

clusters.

Most of these models share a basic assumption that the

networks are unweighted, where the interaction existence

or absence is represented as a binary variable. However,

most real-world networks contain information about link

weights. For instance, in social networks the weights rep-

resent the strengths of social ties between people [30],

while in biological networks such as the connectome (i.e.,

networks formed by neurons connections to each other)

weights can code the number of links that exist between

neurons [45]. A common technique, employed to conduct

analysis on weighted networks, is transforming the data

into the binary framework via thresholding [29]. But the

potential loss of information caused by thresholding may

lead to obscuration or distortion in recovering underlying

structure [1, 38].

Instead of thresholding, to directly learn the latent

structure of weighted networks, an extension of SBM with

Poisson likelihood [19, 24] was considered for count-val-

ued pairwise interactions. Recently, a generalization of

SBM, called Weighted Stochastic Block Model (WSBM),

was introduced in [1] to learn the latent structure by

combining the link-existence and link-weight information.

Although very powerful, all these models require one to

specify the number of latent clusters (or blocks), which

may be very difficult to access for real-world networks.

Usually, this parameter is tuned via a computational

expensive model selection procedure, such as minimum

description length [34], or Bayes factors [1, 14]. To relax

the finite-cardinality assumption on the latent clusters, the

Infinite Relational Model (IRM) [20] and the Infinite

Hidden Relational Model [46] use the Dirichlet process

prior to define a nonparametric relational model for

unweighted networks.

In this paper, we introduce the Weighted Infinite Rela-

tional Model (WIRM), a Bayesian nonparametric model

that can learn a potentially infinite number of clusters from

both the existence and weight of links. We treat each

weighted link as a draw from a parametric exponential

distribution family. The exponential families include many

of the most common distributions, which enables us to

directly use the weight information in recovering the latent

block structure. Moreover, WIRM uses a nonparametric

Bayesian approach to simultaneously infer the number of

latent clusters, the cluster membership of each object, and

how cluster membership influences the observed weighted

interactions.

The paper is arranged as follows. We first describe the

generative process of our model in Sect. 2. Section 3

explains the relationship of our model to two popular

models. We then derive a variational inference algorithm

for performing approximate posterior inference and

parameter estimation in Sect. 4. Section 5 compares the

performance of the WIRM to alternative methods for

structure learning and two link prediction tasks, and ana-

lyzes the results. Finally, Sect. 6 concludes the paper.

2 Weighted infinite relational model

Consider a directed relational network of N objects. Let A

be a N � N matrix that contains links information among

objects. The direction information is contained in the

matrix A ¼ Aij

� �
. For example, Aij represents the directed

link information from object i to object j, so Aij is not

necessarily equal to Aji. Here, we assume that there are two

types of information in the link observations: information

about existence (presence or absence of links) and infor-

mation about weights (the weighted values). To specify

these two types of information in the network, we can take

the adjacency matrix A as a binary-valued matrix or a real-

valued (or count-valued) matrix. Our goal is to partition the

set of objects into clusters, so that the relationships

between objects can be predicted by their cluster assign-

ments. The number of latent clusters present in the net-

work, which is not known a prior, is denoted by K, so that

the cluster assignment variable of object i is

zi 2 1; 2; . . .;Kf g.

2.1 Modeling observed link information

Suppose we are given the cluster assignment vector Z ¼
fz1; . . .; zNg that represents a partition of the N objects into

K clusters. For each pair of clusters kk0ð Þ, we can model the

‘bundle’ of links from objects in cluster k to those in cluster

k0, using an exponential distribution family parameterized

by hkk0 . That is, for object i with cluster assignment zi ¼ k

and object j with zj ¼ k0, the likelihood of observing a link

Aij from object i to object j is given by

PðAijjZ; hÞ / exp TðAijÞ � gðhzizjÞ
� �

ð1Þ
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where T is the vector valued function of sufficient statis-

tics, and g is the vector valued function of natural

parameter.

Exponential distribution family [6, 39] provides a

powerful uniform representation for different probability

distributions. Indeed, by choosing different function pairs

ðT; gÞ, we can use the exponential family to express many

continuous or discrete distributions, including the Ber-

noulli, the Multinoulli, the Gaussian, the Poisson, the

Gamma, the Geometric, the NegBinomial, etc. Members of

the exponential family have some important properties. For

example, the exponential family is the only family of dis-

tributions for which conjugate priors exist; this simplifies

the computation of posteriors. Moreover, the exponential

family is at the core of variational inference; by exploiting

the conjugate duality between the cumulant function and

the entropy for exponential families, a wide variety of

variational representations for different probabilistic

inference problems were developed in [39].

To model binary existence information of the links, the

Bernoulli distribution (with success rate p) could be a good

choice, and we can set the sufficient statistics and the

natural parameters pair of the exponential family as: T ¼
ðx; 1Þ and g ¼ ðlog½p=ð1� pÞ�; log½1� p�Þ. For count-val-
ued existence information of links, we may choose the

Poisson distributions with mean parameter k, and the cor-

responding function pair can be set as: T ¼ ðx; 1Þ and

g ¼ ðlog k;�kÞ. To model real-valued weight information

of links, we may choose the Gaussian distribution with

mean l and variance r2, which has sufficient statistics T ¼
ðx; x2; 1Þ and natural parameters g ¼ l=r2;�1=ð2r2Þ;ð
�l2=ð2r2ÞÞ.

Let A eð Þ be the link-existence observation and A wð Þ be

the link-weight observation. If the pair Te; geð Þ denotes the
family of link-existence distributions and Tw; gwð Þ denotes
the family of link-weight distributions, then we may

incorporate these two types of information into the likeli-

hood function via a simple relative importance parameter

c 2 ½0; 1�:

logPðA eð Þ
ij
;A wð Þ

ij
jZ; hÞ / cTeðA eð Þ

ij
Þ � geðhðeÞzizj

Þ

þ ð1� cÞTwðA wð Þ
ij

Þ � gwðhðwÞzizj
Þ: ð2Þ

2.2 Nonparametric prior on cluster assignment

In order to allow flexible inference of the latent structure of

data, we set the number of possible clusters K to be infinity

by using the Dirichlet process prior. The Dirichlet process,

introduced by Ferguson [10], is the underlying random

measure of the Chinese restaurant process (CRP) [3, 35],

which is widely used as a nonparametric prior for latent

class models. A distinguishing characteristic of the prior is

that conditioned on data, we examine the posterior distri-

bution of Z to obtain a data-dependent distribution of how

many clusters are needed.

The CRP metaphor gives the intuition. Imagine a

restaurant with infinite number of tables, each with infinite

number of seats. The customers enter the restaurant one

after another, and each chooses a table at random. In the

CRP with parameter a, each customer chooses an occupied

table with probability proportional to the number of

occupants, and chooses the next vacant table with proba-

bility proportional to a. This process continues until all

customers have seats, defining a distribution over alloca-

tions of people to tables, and more generally, objects to

clusters. It is known that the joint probability of final

assignment is not affected by the order of customers getting

into the restaurant, which is called exchangeability [35].

The Chinese restaurant construction of Dirichlet process

directly leads itself to a Gibbs sampler; whereas for the

variational inference of Dirichlet process, we turn to the

stick-breaking construction of Sethuraman [37], which

provides a concrete set of hidden variables on which to

place an approximate posterior [8, 21, 22]. The stick-

breaking representation of the cluster assignment zi 2
1; 2; . . .f g is defined as follows:

vk : 1; að Þ; k ¼ 1; 2; . . .

pkðvÞ ¼ vk
Yk�1

l¼1
ð1� vkÞ; k ¼ 1; 2; . . .

zi : ðpkðvÞÞ; i ¼ 1; . . .;N

ð3Þ

2.3 The full Bayesian model

To perform fully Bayesian inference, we now introduce the

prior for link bundle parameter h. For Bayesian models, if

we use conjugate priors, the inference analysis would be

considerably simplified, because the posterior distributions

have the same functional form as the priors. Given expo-

nential family likelihood (1) with link bundle parameter h,
the standard conjugate prior [6, 39] is

pðhÞ ¼ 1

ZðsÞ exp s � gðhÞ½ �; ð4Þ

where s parameterizes the prior and ZðsÞ is a normalizing

factor.

For notational convenience, we let r index the K � K

link-bundles between clusters; hence h ¼ ðh1; . . .; hrÞ.
When we update the prior based on the observed links in a

given link bundle r, the posterior’s parameter becomes

sr ¼ sþ Tr, where Tr is the sufficient statistics of the

observed links; see Sect. 4.3 for details. Thus we see that

the parameter s can be interpreted as an effective number

of pseudo-observations in the prior, which push the
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likelihood function away from the degenerate cases so that

every link bundle produces a valid and reasonable param-

eter estimate.

Now, we can summarize the whole generative process of

the Weighted Infinite Relational Model:

• For each object i, assign a cluster membership zi as in

(3).

• For each pair of clusters kk0ð Þ, draw a link bundle

parameter hkk0 according to (4).

• For each pair of objects with index i and j, draw the link

observation Aij from the exponential family in (1).

Note that we can take (2) instead of (1) as the likelihood

function in the generative process of WIRM, to represent

the existence and weight observations at the same time.

3 Related work

Here, we examine two models that are closely related to

WIRM. Using Bernoulli likelihood, the Infinite Relational

Model (IRM) [20] previously adapted the Dirichlet process

to define a nonparametric model for network modeling.

More specifically, the link-existence probability between

two objects is

PðAi;j ¼ 1jZ;WÞ ¼ Wzizj

where the link probabilities for each pair of clusters,

fWkk0 : k; k
0 ¼ 1; . . .;Kg, are given independent Beta pri-

ors, and the cluster assignment Z follows a CRP con-

struction of the Dirichlet process. It is notable that IRM is a

special case of our model, with c ¼ 1 in likelihood defined

as (2). This implies that IRM ignores link-weight infor-

mation, and fits only to the link-existence information.

Moreover, the approximate inference of our model is

conducted using variational methods, but inference for

IRM follows a Markov chain Monte Carlo (MCMC)

sampling procedure.

On the other hand, WIRM can also be seen as a non-

parametric extension of the WSBM proposed in [1], where

the number of clusters K is chosen before the model can be

applied to data. WSBM is a generative model that can learn

from both the presence and weight of links, using com-

bined likelihood of both types of link information. But the

prior on cluster assignment Z is a multinomial distribution

over a fixed, finite number of clusters. Compared to

WSBM, a distinctive feature of the WIRM is its ability to

infer from the observed data that how many latent clusters

there are, and learn increasingly complex representations

when more observations are encountered. This is vital

when we have little prior knowledge about the number of

clusters, especially for applications in novel domains.

4 Inference

The WIRM posits a generative probabilistic process of

network data that includes hidden structure. Given link

observations, our goal is to uncover the underlying struc-

ture of the weighted network by inferring the posterior

distribution of the latent variables. However, like many

interesting Bayesian nonparametric models [4, 20], the

posterior distribution of the latent variables under a

Dirichlet process Prior is not available in closed form.

Here, we apply the variational method to infer the latent

variables of WIRM.

Variational inference is a wide-used approach to

approximating the posterior in graph models [5, 18]. This

approach is based on the idea of approximating the pos-

terior with a simpler family of distributions and searching

for the member of that family that is closest to the poste-

rior. This problem is (approximately) solved by optimizing

a function equal up to a constant to the KL divergence of

the approximate distribution from the true posterior.

Compared to the sampling methods based on MCMC [16,

27], variational methods are deterministic, usually more

efficient and they have an objective to monitor the con-

vergence behavior [8, 21, 22].

We now represent a mean-field variational algorithm for

WIRM with likelihood function defined in (1). For the

general case with likelihood defined in (2), the inference

algorithm follows with minor modifications, and here we

omit the redundant details. To derive the variational opti-

mization, we first propose the truncated mean-field varia-

tional distributions in Sect. 4.1, then variational objective

function is derived in Sect. 4.2; finally, in Sect. 4.3, we

will present an explicit coordinate ascent algorithm for

optimizing the objective function with respect to the vari-

ational parameters.

4.1 Truncated variational distributions

The hidden variables that we are interested in are the

auxiliary stick-breaking variables V ¼ fv1; . . .; vKg, the

cluster assignment vector Z ¼ fz1; . . .; zNg, and the link

parameters h ¼ fh1; � � � ; hrg. We use the truncated stick-

breaking representation for variational distributions [8]. By

setting qðvK ¼ 1Þ ¼ 1 for a fixed K, we enforce the pro-

portions pkðvÞ in (3) to be zero for k[K. It is a remarkable

fact that our model follows a full Dirichlet process prior

which is not truncated; only the variational posterior is

truncated. Moreover, the truncation level K is a variational

parameter which can be freely set; it is not a part of the

prior model specification. If K is large enough, the fitted

approximate posterior will exhibit fewer than K clusters.
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We use the following fully factorized variational dis-

tribution for mean-field variational inference:

qðV ;Z; hÞ ¼
YK�1

k¼1

qðvk; ckÞ
YN

i¼1

qðzi;/iÞ
Y

r

qðhr; srÞ; ð5Þ

where qðvk; ckÞ are beta distributions, qðzi;/iÞ are multi-

nomial distributions, and qðhr; srÞ are exponential family

distributions with natural parameters sr and sufficient

statistics gðhrÞ.

4.2 Lower bound on the marginal likelihood

Using the standard variational theory, we have the lower

bound for marginal log likelihood of the observed data:

logpðAÞ�Eq½logpðA;V ;Z;hÞ��Eq½logqðV;Z;hÞ�
¼Eq½logpðV jaÞ�þEq½logpðZjVÞ�þEq½logpðhjs0Þ�
þEq½logpðAjV;Z;hÞ�Eq½logqðV;Z;hÞ�,LðqÞ;

ð6Þ

here and elsewhere in the paper we omit the variational

parameters when using q in (5) as a subscript of an

expectation.

Now we expand the lower bound LðqÞ in (6) with the

approximate posterior q in (5). To simplify notation, let

hTir and hgir be the expected values of the sufficient

statistics Tr and natural parameters gr under the approxi-

mation distribution q, that is,

hTir ¼
X

i;j

X

ðzi;zjÞ¼r

/i;zi/j;zjTðAi;jÞ;

hgir ¼
o

os
log ZðsÞjs¼sr :

By substituting q and the conjugate prior p in (6), and

evaluating all the expectations, we have:

LðqÞ ¼
X

r

ðhTir þ s0 � srÞ � hgir þ
X

r

log
ZðsrÞ
Zðs0Þ

þ ðK � 1Þ loga�
XK�1

k¼1

log
Cðck;1 þ ck;2Þ
Cðck;1ÞCðck;2Þ

�
XK�1

k¼1

fðck;1 � 1ÞEq½log vk� þ ðck;2 � aÞEq½logð1� vkÞ�g

þ
XN

i¼1

XK�1

k¼1

XK

l¼kþ1

/i;lEq½logð1� vkÞ� þ/i;kEq½log vk�
( )

�
XN

i¼1

XK

k¼1

/i;k log/i;k; ð7Þ

where

Eq½log vk� ¼ Wðck;1Þ �Wðck;1 þ ck;2Þ;
Eq½logð1� vkÞ� ¼ Wðck;2Þ �Wðck;1 þ ck;2Þ:

The digamma function, denoted by W, arises from the

derivative of the log normalization factor in the Beta

distribution.

4.3 Coordinate ascent algorithm

Now, we present an explicit coordinate ascent algorithm

for optimizing the bound (7). We will seek a consistent

solution by first initializing all of the factors in q appro-

priately, and then iteratively optimize the variational lower

bound with respect to each factor in turn. Convergence is

guaranteed [6, 7] because the bound LðqÞ is convex with

respect to each of the factors in the variational distribution

q.

The details of the iteration are as follows:

Update for the link bundle parameter hr The variational
distribution for the link bundle parameter hr is exponential
family with sufficient statistic gðhrÞ and natural parameter

sr. Coordinate ascent update equation for the variational

parameter sr is

sr ¼ s0 þ hTir:

Update for the cluster assignment zi The variational

parameter for the cluster assignment zi is f/i;kgk, and the

update equation for f/i;kgk is

/i;k / exp Eq½log vk� þ
Xk�1

l¼1

Eq½logð1� vlÞ� þ
X

r

ohTir
o/i;k

� hgir

( )

;

where
ohTir
o/i;k

¼
P

ðk;lÞ¼r

P
j6¼i TðAijÞ/j;l:

Update for the auxiliary stick-breaking variable vk The

variational distribution for the auxiliary stick-breaking

variable vk is a beta distribution parameterized with the

shape parameters ðck;1; ck;2Þ. Coordinate ascent update

equations for these free variational parameters are

ck;1 ¼ 1þ
X

i

/i;k; ck;2 ¼ aþ
X

i

XK

l¼kþ1

/i;l:

Algorithm 1 represents coordinate ascent algorithm for

variational inference of WIRM. It is pointed out by Blei

and Jordan [8] that, although the algorithm yields a bound

for any starting value of the variational parameters, poor

initialization can lead to local maxima that yields poor

bounds. In practice, we run the algorithm multiple times

with random initializations and choose the final parameter

settings that give the best bound on the marginal likelihood

in (7). To further improve the performance, we may apply a

sequential initialization scheme [8] (which can be viewed

as a variational version of sequential importance sampling).

Under this scheme, we initialize the variational distribution

by incrementally updating the parameters according to a

random permutation of the objects in the network.
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Algorithm 1 Coordinate ascent algorithm for variational inference of WIRM
Input: Link-weighted network A , Hyper parameters ,c α , Prior parameter 0τ and Function pairs

( ),T η
Output: Variational parameters τ , φ , γ
Initialize φ
repeat 

for 21, ,r K= L do

Set , , ,, ( , )
( )

i ji j
r i z j z i ji j z z r

T T Aφ φ
=

〈 〉 = ∑ ∑ and log ( ) .|
rr Z τ τη τ

τ =
∂〈 〉 =

∂
Update 0 .r rTτ τ= + 〈 〉

end for
for 1, ,k K= L do

Update ,1 ,1k i ki
γ φ= + ∑ and ,2 ,1

K
k i li l k

γ α φ
= +

= + ∑ ∑ .

Compute ,1 ,1 ,2[log ] ( ) ( )q k k k kE v γ γ γ= Ψ − Ψ + and ,2 ,1 ,2[log(1 )] ( ) ( ).q k k k kE v γ γ γ− = Ψ − Ψ +
end for
for 1, ,i N= L do

Compute ,( , )
,

( ) .r
ij j lk l r j i

i k

T T A φ
φ = ≠

∂〈 〉
=

∂ ∑ ∑

Update 1
, 1

,

exp [log ] [log(1 )] .k r
i k q k q l rrl

i k

TE v E v ηφ
φ

−

=

⎫⎧ ∂〈 〉 ⎪⎪∝ + − + ⋅ 〈 〉 ⎬⎨ ∂ ⎪⎪ ⎭⎩
∑ ∑

end for
until τ , φ , γ converge
Return τ , φ , γ

5 Experiments

In this section, we evaluate the performance of WIRM on

a synthetic data and four real-world networks. Experi-

ments were conducted for two purposes. First, we gen-

erate synthetic data to explore the ability of our model to

infer the number of latent clusters using both link-exis-

tence and link-weight information. Second, for two pre-

diction tasks on real-world datasets, we compare the

performance of our model with several state-of-the-art

network models.

5.1 Synthetic data

We generate a simple N = 100 synthetic dataset with 4

known equal-size clusters; see Fig. 1. The weights and

existences of each link bundle are drawn from Gaussian

distributions and Bernoulli distributions, respectively, with

different bundle-specific parameters. This dataset is care-

fully designed, so that the bundle-specific parameters are

shared in a subtle manner. Specifically, if we only consider

the weight information, the nodes can be naturally sepa-

rated into two equal-size sup-clusters: one is the cluster

comprised of nodes indexed by {1,…,50}, the other is

comprised of nodes indexed by {51,…,100}; the link

weights between objects in different clusters are drawn

from N 1; 1ð Þ, and the weights between objects among the

same cluster are drawn from N 10; 1ð Þ; see Fig. 1a. Con-

sidering the existence information (ignoring the weights)

leads to a different cluster assignment: one cluster is

comprised of nodes indexed by {1,…,25,51,…,75}, the

other one is comprised of nodes indexed by

{26,…,50,76,…,100}; the probability that there is a link

between objects in different clusters is 0.1, and the prob-

ability that there is a link between objects among the same

cluster is 0.9; see Fig. 1b.

To analyze this network, we set the truncation level to be

20 and fit our model with pure weight information by setting

c ¼ 0, pure existence information by c ¼ 1, and mixed

information by c ¼ 0:5, respectively. The posterior cluster

assignments over 20 possible clusters learned by WIRM are

shown in Fig. 2. Examining the results, we can see that the

latent structure learned by WIRM with c ¼ 0 exactly

recovers the partition underlying the link-weight informa-

tion (Fig. 2a), and with c ¼ 1 reveals the partition under-

lying the existence information (Fig. 2b). Moreover, Fig. 2c

demonstrates the ability of the fitted model with c ¼ 0:5 to

recover the ground-truth partition with 4 equal-size clusters,

regarding the combination of both information types.

The approximate posterior distribution q in (5) is trun-

cated at K ¼ 20. Although we hold K fixed in our simu-

lations, it is possible to optimize K with respect to the

approximate lower bound. Indeed, Fig. 3 shows how the

optimal bounds on log likelihood for different variants of

WIRM change as functions of the truncation level K. We

can see that the optimal bounds are relatively stable for

different value of K[ 4. This implies that WIRM can

function well, when the truncation level K is reasonably

chosen.

We assess the structure exploration performance of

WSBM [1] and IRM [20] on this dataset. It is notable that

K denotes the truncation level in our model, which can be

seen as an upper bound for the true number of clusters;

while in WSBM, K stands for the presumed value of the

number of clusters. For this synthetic dataset, WSBM with

K ¼ 2 recovers the latent structure for any single type

information of links, and WSBM with K ¼ 4 captures the

ground-truth partition using the combination of both

information types. But the performance of WSBM is very

sensitive to K, and the cluster assignment diverges as K

increase. On the other hand, IRM can automatically dis-

cover the partition underlying the existence information,

using the truncation-free MCMC inference procedure;

however, it can’t reveal the latent structure concerning

weight information.

Furthermore, we compare the performance of WIRM,

WSBM and IRM in three noisy situations. The first is that

we randomly discard a portion of the interactions when

training different models (called ‘‘salt & pepper’’-like

noise). The second is that we randomly arrange a portion of

the interactions that are randomly chosen from the network,

and keep the rest interactions untouched (called ‘‘randomly

arranging’’ noise). In these two situations, the noise varies

in density (the portion of interactions being discarded or

randomly arranged), specifically, {0.05, 0.10, 0.15, 0.20};
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we can see both weight and existence information are

affected by the noise. The third situation is simulated by

adding Gaussian white noise with standard deviations {1,

10, 20, 30} to the original observed link weights, which

doesn’t change the existence information.

For each noisy situation and each model, we run 25

independent trials and evaluate the performance using the

normalized mutual information (NMI) [26] between the

partition learned and the ground-truth partition. We omit the

experiment details for saving space, and summarize the

findings to our interests as follows. Firstly, for all noisy cases,

WIRM with truncation level K ¼ 20 performs comparable

or slightly worse than WSBM (with carefully hand-chosen

parameter K) and IRM. Secondly, the latent structures

learned from the existence information are more stable than

the structures underlying the weight information, and IRM is

more stable than WIRM and WSBM to learn existence

information. Moreover, for Gaussian white noise, we found

Fig. 1 Observed synthetic data example. a Observed synthetic 100 9 100 link-weight matrix. White corresponds to unobserved interaction.

b Observed synthetic 100 9 100 link-existence matrix. White corresponds to zero, black to one

Fig. 2 Results for WIRM. a Posterior cluster assignments learned from link-weight information. b Posterior cluster assignments learned from

link-existence information. c Posterior cluster assignments learned from both types of information

Fig. 3 The optimal bound on the log probability as function of the

truncation level

Int. J. Mach. Learn. & Cyber. (2016) 7:479–489 485

123



that those models learning from both weight and existence

information performmoderately better than those only fitting

weight information (here we only compare thosemodels that

can learn from the weight information or both types of

information, because the Gaussian noise doesn’t affect the

existence information). Finally, the results of all models for

‘‘salt & pepper’’-like noise are relatively better than ‘‘ran-

domly arranging’’ noise. Indeed, in the latter case, by ran-

domly arranging a portion of the interactions which are

randomly chosen from the network, the information con-

tained in these interactions is discarded and somemisleading

information is added; however, the ‘‘salt & pepper’’-like

noise just causes information loss.

5.2 Real-world networks

We now compare our model to several other network

models for predicting the existence or the weight of some

unobserved interactions on four real-world networks. The

weighted networks used for the comparison are given as

follows:

Collaboration [33] Nodes represent 226 nations on

Earth, and each of the 20,616 links is weighted by a nor-

malized count of academic papers whose author lists

include that pair of nations.

Congress [36] Nodes represent the 163 committees in

the 102nd US Congress, and each of the 26,569 edges is

weighted by the pairwise normalized ‘interlock’ value of

shared members.

Airport [9] This is a network of the 500 busiest com-

mercial airports in the United States, and each of the 5960

directed links is weighted by the number of passengers

traveling from one airport to another.

Forum [32] The student social network at UC Irvine

includes 1899 users that sent or received at least one

message, and each of the 20,291 directed links is weighted

by the number of messages sent between users.

We evaluate the following variants of our model: the

‘pure’ WIRM (pWIRM), using only weight information

(c ¼ 0), the ‘balanced’ WSBM (bWIRM), using both link

existence and weight information (c ¼ 0:5), and the ‘non-’

WIRM (nWIRM), using only link existence information

(c ¼ 1). We use Gaussian distribution to model the weight

of link interactions, and Bernoulli distribution to model the

existence information. A comparative study with the other

typical models, (namely, WSBM [1], SBM [31], and IRM

[20] ), is also performed. The training details of WSBM are

same as in [1], and the number of latent clusters for WSBM

is fixed at K ¼ 4 as therein. We use the publicly available

source codes and adopt the original implementations of

WSBM provided by the authors. They described an

approach for choosing K based on Bayes factors, i.e.,

choosing K with largest marginal log-likelihood [1].

However, this approach requires to repeatedly train WSBM

for different K, and they didn’t conduct this scheme on real

datasets. We will further discuss this model selection issue

in the end of this section.

In both prediction tasks, we treat all networks as

directed, and fit each model on 80 % of N2 interactions,

and use the remaining 20 % for test. For all datasets, the

truncation level for our model is fixed at K ¼ 50. The

interactions between two objects are predicted based on

their cluster assignments learned. Specifically, for object i

with cluster assignment zi ¼ k and object j with zj ¼ k0, the

link Aij follows an exponential distribution family param-

eterized by hkk0 , moreover, if object i and j are assigned to

the same cluster, i.e. zi ¼ zj ¼ k, then the distribution of Aij

is parameterized by hkk0 . For those models that were ini-

tially established for unweighted networks (nWIRM, SBM

and IRM), we take their partitions and compute the sample

mean weight for each of the induced link bundles in the

weighted network, and take this value as predictor for the

weight of any missing link in that bundle.

For each model and each dataset, we run 25 repeats,

each time with a different 80/20 cross-validation split and

using a different random initialization, and then compute

the average mean-squared error (MSE) on the particular

prediction task. Specifically, let T ¼ i; jð Þf g be the set of

links which is hold out for test. The mean squared error is

defined as follows:

MSE ¼ 1

Tj j
X

i;jð Þ2T
A
pred
ij � Aij

� �2

where Tj j is the cardinality of set T , i.e. the total number of

hold-out links, and A
pred
ij is the predicted value of link from

object i to object j.To compare the results across different

datasets, we normalized link-weights to the interval [-1, 1]

after applying a logarithmic transform.

The average running time for a single iteration of the

coordinate ascent algorithm (see Algorithm 1) for WIRM is

shown in Table 1. We find that the average running time

for a single iteration increases almost linearly as the

number of nodes in the networks increases, which implies

the efficiency of our algorithm. Moreover, we represent the

average training time for all the models in Table 2, in order

to provide a fair comparison. We can see that the whole

Table 1 Average running time (in seconds) of single iteration for

different variants of WIRM

pWIRM bWIRM nWIRM

Collaboration 0.0119 0.0182 0.0145

Congress 0.0952 0.0198 0.0137

Airport 0.0258 0.0548 0.0309

Forum 0.2691 0.6228 0.3486
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training procedure of WIRM usually takes two to three

times as that of WSBM, and IRM is more computationally

expensive than others because MCMC algorithms take long

time to converge.

To demonstrate the efficiency and stability of our

approximate inference algorithm, we examine the change

of the log marginal probability bound during the iterations.

The results on Collaboration dataset is shown in Fig. 4.

The results on the other three datasets are similar, and we

omit it. It is found that on all datasets, the bound converges

within several iterations, and then keeps relatively stable in

the following iterations.

Both WIRM and IRM are Bayesian nonparametric

models, which assume that the number of clusters is not

known a priori and use Dirichlet Process to determine the

number of latent clusters. In Table 3, we list the numbers

of latent clusters learned by WIRM and IRM. It is also

notable that the estimated numbers of clusters are similar

for all methods, and by incorporating two types of link

information, bWIRM usually divides networks into more

clusters. Moreover, the numbers of clusters learned by

WIRM on all datasets are not affected by the fixed trun-

cation level K.

We now report the prediction results. Tables 4 and 5

represent the results for predicting link-existences and link-

weights, respectively. The bolded values denote the best

MSE across all models, and parentheses indicate the

uncertainty (standard error) in the last digit. Clearly, for the

link-existence prediction, nWIRM and IRM outperform

WSBM and SBM by using nonparametric priors. And

pWIRM performs well for the link-weight prediction, as it

is designed to learn only from weight information. We also

notice that, bWIRM is very competitive on both tasks,

which reveals its capability to learn both types of infor-

mation simultaneously without confusing each other.

Finally, it is important to highlight, that WIRM avoids

the model selection procedure by using a nonparametric

Bayesian approach. Given Dirichlet process prior, we can

simultaneously infer the number of latent clusters, the

cluster assignment for each object, and how cluster

assignment influences the observed interactions. Although

the training procedure for WIRM usually takes two to three

times as that for WSBM with K ¼ 4, it may take much

longer if we conduct the whole model selection scheme to

tune K for WSBM. We also try fitting WSBM with the

estimated number of clusters by WIRM, and the results

show that its prediction performance is quite similar to

WIRM. This is because WIRM is the nonparametric

extension of the WSBM, the latent structure learned by

Table 2 Average training time

(in seconds) for different

models

pWIRM bWIRM nWIRM pWSBM bWSBM SBM IRM

Collaboration 1.87 2.19 0.79 1.01 1.68 0.47 13.39

Congress 0.76 2.03 0.70 0.25 0.68 0.42 10.35

Airport 8.53 34.46 7.24 3.81 12.77 2.58 48.90

Forum 18.89 47.08 22.86 4.56 23.05 10.26 225.90

Fig. 4 Log marginal probability bound during iterations for pWIRM in (a), nWIRM in (b) and bWIRM in (c) on Collaboration dataset with 25

randomly initialized runs

Table 3 Average (std) of the (expected) number of clusters learned

by different models

pWIRM bWIRM nWIRM IRM

Collaboration 17.4 (1.1) 18.3 (0.9) 17.0 (0.8) 16.9 (1.0)

Congress 30.2 (1.7) 32.4 (1.4) 29.9 (1.6) 29.6 (1.4)

Airport 11.0 (0.8) 11.8 (0.7) 10.8 (0.6) 10.9 (0.7)

Forum 23.4 (1.6) 25.1 (1.5) 23.2 (1.4) 22.2 (1.6)
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WSBM with the estimated value of K by WIRM, is

probably the same as that by WIRM. On the other hand,

WIRM can learn both existence and weight information of

links, using an efficient variational inference procedure,

while the nonparametric model IRM fits only to the exis-

tence information by a time-consuming MCMC sampling

scheme.

6 Conclusions

In this paper, we propose a novel Bayesian nonparametric

model to generalize the classic infinite relation model to

the important case of weighted networks. This model

adopts Dirichlet Process prior, in order to learn the number

of latent clusters and the cluster assignment from the data.

An efficient variational inference algorithm is developed to

approximate the posterior distributions. The empirical

results show that our model can efficiently capture the

complex latent structure of weighted networks, and accu-

rately predict the missing interactions and their weights.

Our future work is to extend our study to some more

complicated networks, including dynamic networks, and

bipartite networks, etc.

Acknowledgments This work was supported by the National Nat-

ural Science Foundation of China (Grant No. 61472423, 61432008,

61532006, U1135005). We thank the reviewers for their helpful

comments and constructive suggestions which improved the paper

greatly.

References

1. Aicher C, Jacobs AZ, Clauset A (2014) Learning latent block

structure in weighted networks. J Complex Netw. doi:10.1093/

comnet/cnu026

2. Airoldi EM et al (2008) Mixed membership stochastic block

models. J Mach Learn Res 9:1981–2014

3. Aldous DJ (1985) Exchangeability and related topics. Lect Notes

Math 1117:1–198

4. Antoniak CE (1974) Mixtures of Dirichlet processes with appli-

cations to Bayesian nonparametric problems. Ann Stat

2(6):1152–1174

5. Attias H (2000) A variational Bayesian framework for graphical

models. In: Advances in neural information processing systems.

MIT Press, Cambridge, MA, pp 209–215

6. Bishop CM (2006) Pattern recognition and machine learning.

Springer, New York

7. Blei DM, Jordan MI (2006) Variational inference for Dirichlet

process mixtures. Bayesian Anal 1(1):121–143

8. Boyd S, Vandenberghe L (2004) Convex optimization. Cam-

bridge University Press, New York

9. Colizza V, Pastor-Satorras R, Vespignani A (2007) Reaction–

diffusion processes and metapopulation models in heterogeneous

networks. Nat Phys 3(4):276–282

10. Ferguson TS (1973) A Bayesian analysis of some nonparametric

problems. Ann Stat 209–230

11. GirvanM,NewmanMEJ (2002)Community structure in social and

biological networks. Proc Natl Acad Sci USA 99(12):7821–7826

12. Goldenberg A et al (2010) A survey of statistical network models.

Found Trends Mach Learn 2(2):129–233
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