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ABSTRACT

Semantic segmentation of indoor scene images has a wide range of
applications. However, due to a large number of classes and uneven
distribution in indoor scenes, mislabels are often made when facing
small objects or boundary regions. Technically, contextual infor-
mation may benefit for segmentation results, but has not yet been
exploited sufficiently. In this paper, we propose a learnable contex-
tual regularization model for enhancing the semantic segmentation
results of color indoor scene images. This regularization model is
combined with a deep convolutional segmentation network without
significantly increasing the number of additional parameters. Our
model, derived from the inherent contextual regularization on the
indoor scene objects, benefits much from the learnable constrain-
t layers bridging the lower layers and the higher layers in the deep
convolutional network. The constraint layers are further integrated
with a weighted L1-norm based contextual regularization between
the neighboring pixels of RGB values to improve the segmenta-
tion results. Experimental results on NYUDv2 indoor scene dataset
demonstrate the effectiveness and efficiency of the proposed method.

Index Terms— Deep convolutional neural networks, Semantic
segmentation, Contextual constraints, End-to-end training

1. INTRODUCTION

As one of the important branches of image scene understanding, se-
mantic image parsing has become a hot research topic in the fields
of image processing and computer vision. Semantic segmentation is
to assign a category level label to each pixel in an image. Recen-
t several years have witnessed an increasing interest on pixel-wise
image labeling [1–9]. Many recent approaches [5–8] have tried to
directly adopt deep architectures designed for category prediction to
pixel-wise labeling and achieved very encouraging results. Howev-
er, image segmentation tasks in different scenes confront with differ-
ent challenges. Semantic segmentation for indoor scenes still faces
many difficulties, such as large variations of semantic categories, oc-
clusions and overlaps between multiple indoor objects, lack of dis-
tinctive features and illumination changes and so on.

With the success of deep convolutional neural networks, CNNs
are very popular in many visual recognition problems and also have
been applied to the semantic segmentation problems. These models
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can be roughly divided into three categories. The first one is the cur-
rently most successful model based on fully convolution network-
s(FCN) [2]. This model can be trained in an end-to-end and pixels-
to-pixels manner, which enables the model to adaptively combine
sematic information. This information is from a deep and coarse
layer with appearance information obtained from a shallow and fine
layer to produce accurate and detailed segmentations. Unfortunate-
ly, due to its large receptive field and the lack of space constraints,
each neuron corresponds to a large area of the original image (for
example, FCN-32s has a 32-times magnification). Therefore, the a-
bilities of FCNs to delineate boundaries, structures and shape are
actually very poor. In order to integrate more contextual informa-
tion, other approaches, e.g., [4, 8, 10, 11], propose to use techniques
from graphical models, such as conditional random field (CRF), to
introduce global context and structured information into FCNs.

The second class of models is to learn an encoding-decoding
network for pixel-wise predictions, for example, SegNet [6], Decon-
voNet [3] and semi-supervised Decoupled network [12]. DeconvNet
applies the trained network to each proposal in an input image and
construct the final semantic segmentation map by combining the re-
sults from all proposals in a simple manner. The encoder network
of DeconvNet and decoupled network consist of the fully connected
layers transplanted from the VGG-16 [13] network. A large number
of parameters of the entire network often make their training very d-
ifficult and thus require additional steps such as the use of region pro-
posals to enable training tractable. Moreover, time complexity will
be increased significantly during inference the proposals. In com-
parison, SegNet, also trained end-to-end, does not use multi-stage
training [2] or region proposals [3]. The key component of SegNet
is the decoder network, which consists of a hierarchy of decoders
that are one-to-one correspondence to each encoder.

The third class of methods for semantic segmentation are based
on multi-scale deep architectures [7, 11]. Input images are resized
into many scales and the corresponding multiple scales features are
extracted or combined with feature maps from different layers of
deep architecture [5, 14]. Multiple scales features can provide both
local and global context [15], while early layers retain more details
of class boundaries. However, parameter numbers in early layers and
late layers are very different. Thereby, the training of multi-scale ar-
chitectures is very difficult. Besides, the inference is also expensive
with multiple convolutional pathways for feature extraction. Several
of the recently proposed deep architectures for segmentation are not
feed-forward in inference time [3, 12, 16]. They require either MAP
inference over a CRF [10, 11] or region proposals [3] for inference.

Although region proposals can make the results more accurate,
since they help to establish benchmarks that are more easily repeat-
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Fig. 1. The proposed architecture of deep neural networks with
learnable contextual regularization for semantic segmentation of in-
door scene images.

able, overlaps and occlusions that commonly exist in indoor scene
images often introduce local confusions, making the accurate seg-
mentation much difficult. To address this issue, we introduce a learn-
able contextual regularization in this paper to help clarify these local
confusions. Our method benefits from three main contributions:

• A set of weight matrixes are constructed from the input im-
ages. These weight matrixes are computed in the form of
convolution by some learnable kernels. To regularize the last
classification layer with contextual information, a constraint
loss layer is introduced, which plays the same role as softmax
loss layer, for supervising the training of the network.

• These weight matrixes can impose additional contextual reg-
ularization of all the pixels on the segmentation network
output, without relying on the labels. In addition, a kernel
regularization is introduced to supervise the weight matrix-
es learning for local optimization. The learnable kernels
help capturing more inherent and adaptive contextual weight
matrixes to constrain the coarse segmentation results.

• Our method can also be applied to general models with-
out significantly introducing additional parameters during
network training. For this reason, the contextual regulariza-
tion does not introduce much computational overhead versus
training and evaluating a standard network, e.g., FCNs, while
improving the performance significantly.

2. PROPOSED MODEL

Our proposed model for semantic segmentation of indoor scene im-
ages is shown in Fig. 1. They are trained end-to-end to optimize
the output semantic segmentation quality. In this figure, the contex-
tual regulation is modeled as a loss layer with some convolutional
kernels to constrain the softmax predictions. In the architecture, the
kernel of the contextual regulation layer is learnable, enabling the
layer more robust and flexible to different types of indoor scenes.
We will learn the context relationship both from the lowest layer and
the highest segmentation output layer by means of weight sharing.

2.1. Contextual Regularization

An image can be considered as a combination of image patches in
orders. Based on this assumption, we derive a contextual regulariza-
tion from an input RGB image and use it to constrain the segmenta-
tion results of a deep segmentation network.

To this end, a weighting functionW (i, j) is introduced to model
the contextual constraints of the segmentation results, i.e.,

W (i, j)(f(i)− f(j)), (1)

where i and j are two neighboring pixels, and f is the last output that
will be regularized. The weighting function permits candidate values

from 0 to 1. ForW (i, j) = 0, the contextual constraint between f(i)
and f(j) will be terminated. Intuitively, the weight function plays a
switch role to control whether the constraint between i and j will be
canceled. By learning a reasonable weighting function from lower
layers of a segmentation network and applying it to the output layer
of the network to regularize the segmentation results, we actually
use this weighting function as an intermediary to transit low-level
contextual information to upper-level semantic results.

Now the question is how to choose a reasonable W (i, j). Ob-
viously, the optimal W (i, j) is closely related to the RGB value dif-
ference between pixel i and j. If two neighboring pixels in original
image have similar RGB value, weight function will put significant
constraints on the two pixels. Here we consider 8-neighbourhood of
every pixel. In another word, the more difference between the neigh-
boring pixels the smaller value of the W (i, j) is. Consequently, the
color difference of local pixels are necessary elements to construct
the weight matrixes. Here below is the construction of such weight-
ing function. It bases on the squared difference between the color
vectors of two neighboring pixels [17], given as below:

W (i, j) = e−||I(i)−I(j)||2/2σ2

, (2)

where σ is a prescribed parameter, I is the RGB image.
Integrating the weighted contextual constraints in the whole im-

age domain leads to the following,∑
i,j∈I

W (i, j) | f(i)− f(j) |, (3)

where I is the index set of image. Each pixel in the results are weight-
ed by contextual regularization.

2.2. Learnable Constraint Loss Layer

We construct neighboring pixel affinities to regularize the contextual
information of all pixels in the coarse score maps. Contextual reg-
ularization means that building a learnable weight matrix from the
input RGB image and then combine them in a global manner.

The learnable constraint loss function evident from Eq. (3), we
employ L1-norm which is more robust to outliers than L2-norm and
the boundary effect is better. To facilitate the computation, we intro-
duce a set of convolutional operators and exchange summation order.
We further give the discrete form of Eq. (3) as below:∑

j∈ωi

∑
i∈I

ωij |(Dj ⊗ f)|, (4)

or more compactly∑
j∈ω

||Wj ◦ (Dj ⊗ f)||1, (5)

where ωij is the discrete versions of W (i, j), ωi is the index set of
neighbourhood of pixel i, Dj is the convolutional kernel, ω is an
index set of the convolutional operators, ◦ represents the element-
wise multiplication operator,⊗ stands for the convolution operation.

The learnable constraint loss layer takes the context of the
coarse score maps compared with the learnable contextual features
and weighted them. The layer takes two inputs: (1) the current
contextual maps of softmax output, and (2) the contextual weight
feature maps learned from the input RGB image. Both of the two
inputs are convolutional by j-dimensional kernels D = (D1 · · ·Dj)
with N-dimensional input f = (f1 · · · fN).
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The contextual weight maps weighted on softmax output. This is
because softmax function is a generalization of the logistic function
that maps a length-p vector of real values to a length-K vector of
values, and normalizes classification probability value between 0 and
1. The expression of weight maps is as follows:

Wj(i) = e
−
(∑

c
|(Dj⊗Ic)i|2

)
/2σ2

, (6)

where σ is a prescribed parameter.
The last classification layer produces a bank of N feature maps

forN category, and thus has aN -channels output for softmax. Using
this notation, with N-dimensional input f = (f1 · · · fN) in our layer
we can then formulate the constraint loss objective as:

lc = λ

N∑
n=1

∑
j∈ω

||Wj ◦ (Dj ⊗ fn)||1, (7)

where the constraint loss lc is the accumulation of all pixels of the
N -maps and λ is the super parameter.

Various convolutional kernels lead to different feature maps
which represent relevant context information. Learnable kernels
are more robust and appropriate to obtain particular context for the
current task. In deep convolutional network, the lower layer contains
more contextual boundary information than higher layer.

2.3. Optimization Of Our Model

A) Global Optimization The last step in our method is to combine
the contextual weight maps with the coarse segmentation from the
network softmax layer to produce an improved segmentation results.
The traditional segmentation network only use a softmax loss layer
to optimize. The softmax loss in semantic segmentation considers
pixel-wise loss for the right classified while ignores the wrong clas-
sified neighboring pixels that share similar colour values. We intro-
duce the contextual constraint loss, which can better utilize the local
relationship of neighboring pixels and improve the initial network
segmentation. We do this by introducing a global energy function
that utilizes the contextual constraint loss and softmax loss as:

L = ls + lc, (8)

where ls is softmax loss, and lc is our contextual regularization loss.
We use back propagation and chain rule to compute derivatives with
respect the input data.
B) Local Optimization For our purpose, we need control the kernels
to learn the right context regularization features corresponding to
the segmentation task. With more comprehensive consideration, we
import a convolution kernel loss layer. Let lk be the convolution
kernel loss:

lk =
∑
i∈ω

{α(
∑

d2i − 1)2 + β
∑

d2i }, (9)

where α, β are the regularization parameters for balancing and usu-
ally set very large. di is the i-th convolution kernel, the total number
of kernels is ω.

3. EXPERIMENTS

3.1. Dataset and Metrics

Other challenges such as Pascal VOC12 [18] salient object segmen-
tation have occupied researchers more, but indoor scene segmenta-
tion is more challenging and has more practical applications such as

in robotics. To evaluate our proposed method, we implemented a se-
ries of experiments on the public NYUDv2 dataset. This dataset is an
RGB-D collected using the Microsoft Kinect. It has 1,449 RGB-D
images, both RGB image and depth image. HHA images [19] en-
coder the depth image of three channels (horizontal disparity, height
above ground, and the angle the pixel’s local surface normal). H-
HA images have enough common structure with RGB images that
a CNN network can learn a suitable representation for them. We
evaluate our method on semantic class sets with 4 and 40 labels, de-
scribed in [20] and [19] respectively. The 4-class segmentation task
uses high- level category labels floor, structure, furniture and props,
while the 40-class tasks use different sets of more fine-grained cate-
gories. We report results on the standard split of 795 training images
and 654 testing images.

Matrices Four metrics are used to evaluate our metod. For the
4-class task we use pixel accuracy and mean accuracy. For the 40-
class task, we report metrics from common semantic segmentation
and scene parsing evaluations that are variations on pixel accuracy
and region intersection over union (IU) introduced in FCNs [2].

• pixel accuracy:
∑
i nii/

∑
i ti

• mean accuracy: (1/ncl)
∑
i nii/ti

• mean IU: (1/ncl)
∑
i nii/(ti +

∑
j nji − nii)

• frequency weighted IU: (
∑
k tk)

−1∑
i tinii/(ti+

∑
j nji−nii)

3.2. Compared Methods and Network Parameters

Two models are compared with our method: FCNs [2] and SegNet
[?]. As described in Section2, our learnable constraint layer is added
to the last coarse classification layer of the two models. We employ
the VGG-16 network [13] which has been pre-trained on ImageNet
and used SGD [21] with a fixed learning rate and momentum for
training. We implement the proposed network based on Caffe [22]
framework on NVIDIA K20 GPU with 12-GB memory. The con-
straints parameters are σ = 0.25, λ = 100, α = 1000, β = 1000.

FCNs We use momentum of 0.99 and a batch size of one , a
weight decay of 0.0005, the learning rate is fixed to e-9 with no nor-
malize of softmax loss. Note that 100 zero-padding operation is used
to FCNs, so the first layer output size is bigger than input image size
and many nonessential information in outputs. We chose the second
convolutional layer and resize the output by bilinear interpolation to
have the same spatial resolution with the softmax output.

SegNet The learning rate was fixed to 0.001 and momentum to
0.9, the mini-batch size is four.

3.3. Experimental Results

Experiments on NYUDv2 dataset are conducted to prove the effec-
tive of our method. Satisfyingly, contextual regularization turns out
can benefit for accuracy improvement in RGB and HHA images.

We compare the segmentation performances with FCNs and
SegNet, and some representative results are shown in Fig. 2. Fewer
mislabels are made for large-sized objects in FCNs results. Typical-
ly, small objects can also be correctly detected even embedded into
other classes. The 32-times upsample in FCNs makes the boundary
coarser, and even the structure of objects would be damaged serious-
ly. Our method can distinguish small objects from large-sized ones.
By adding contextual regularization, objects in the adjacent area can
also be correctly classified, resulting in more accurate boundaries.
The accuracies of 40-class and 4-class segmentation present them in
Table 1 and Table 2. Our method improves fw-IU about 3.9% and
mean-IU about 2.0% point with respect to FCN(32s-RGB).
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Input images Ground truth FCNs Our-FCNs SegNet Our-SegNet
Fig. 2. Examples of semantic segmentation results on the NYUDV2 dataset RGB images. Respectively, Our-FCNs and Our-SegNet are the
results by our method based on FCNs and SegNet. Compared with original FCNs, our method can distinguish small objects from large-sized
ones. By adding contextual regularization, objects in the adjacent area can also be correctly classified, resulting in more accurate boundaries.

Input images Ground truth FCNs Our-FCNs SegNet Our-SegNet
Fig. 3. Examples of semantic segmentation results on the NYUDV2 dataset HHA images. HHA images [19] encoder the depth image of
three channels (horizontal disparity, height above ground, and the angle the pixel’s local surface normal). Compared with original SegNet,
local constraints are used in our method to achieve more consistent classification results in adjacent regions which proves that our method is
also effective for HHA images.

Table 1. FCN-32s 40-class segmentation accuracy
pixel-acc mean-acc mean-IU fw-IU

FCN(32s-RGB) [2] 61.8 44.7 31.6 46.0
FCN(32s-HHA) [2] 58.3 35.7 25.2 41.7

Gupta et al [23] 60.3 - 28.6 47
our(32s-RGB) 62.5 46.3 33.6 49.9
our(32s-HHA) 60.7 45.3 32.0 47.9

Table 2. FCN-32s 4-class segmentation accuracy
pixel-acc mean-acc

Couprie et al [24] 64.5 63.5
Khan et al [25] 69.2 65.6

Stuckler et al [26] 70.9 67.0
Muller et al [27] 72.3 71.9
Gupta et al [23] 78 -
our(32s-RGB) 81.1 80.3

Due to max-unpooling operation in SegNet, scattered points
would exist around boundary regions. Compared with SegNet, lo-
cal constraints are used in our method to achieve more consistent
classification results in adjacent regions. As for HHA images, the
depth information can be learned in the training process. Especially,
our constraints can follow spatial distributions of original HHA im-
ages in the regions where depth information changes severely. The
class average accuracy and mean I/U metric are little poor, also at
the same level as the hand engineered method which input image
size is 425 × 520. Motivated by batch normalization layer [28],
the more parameters and memory are required for running SegNet.

Consider the restrictions of the GPU memory, we resized the image
to 200 × 264 by original proportion for the minimum batch size.
The quantitative results of SegNet with 40-class are presented in
Table 3, where our method improves pixel accuracy about 8.3% (in
RGB images) and 1.5% (in HHA images) point respectively.

Table 3. SegNet 40-class segmentation accuracy
pixel-acc mean-acc mean-IU fw-IU

SegNet-RGB [6] 46.8 22.3 14.2 33.4
our(SegNet-RGB) 55.1 32.1 22.3 39.1

SegNet-HHA 54.1 30.5 21.0 38.5
our(SegNet-HHA) 55.6 31.7 21.8 39.9

4. CONCLUSIONS

In this paper, we proposed a learnable contextual regularization for
semantic segmentation of indoor scene images. This regularization
term can be flexibly used in many segmentation networks, such as
FCNs and SegNet. We consider not only the low-level information
but also the upper-level information. We construct a set of learn-
able weight matrixes from the low-level that can impose additional
contextual constraints of all the pixels on the segmentation network
output, not limited to the label pixels. Our method helps models
adapt to different segmentation tasks. In future work, we will try to
use more multiple information, and standardize the middle tier ef-
fectively to guide the net learning more richer context and get more
effective segmentation results.

1270



5. REFERENCES

[1] Clement Farabet, C. Couprie, Laurent Najman, and Yann Le-
cun, “Learning hierarchical features for scene labeling,” IEEE
Transactions on Software Engineering, vol. 35, no. 8, pp.
1915–1929, 2013.

[2] Evan Shelhamer, Jonathon Long, and Trevor Darrell, “Fully
convolutional networks for semantic segmentation,” vol. 79,
no. 10, pp. 1337–1342, 2015.

[3] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han, “Learn-
ing deconvolution network for semantic segmentation,” pp.
1520–1528, 2015.

[4] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-
Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang
Huang, and Philip HS Torr, “Conditional random fields as re-
current neural networks,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2015, pp. 1529–1537.

[5] Wei Liu, Andrew Rabinovich, and Alexander C Berg,
“Parsenet: Looking wider to see better,” arXiv preprint arX-
iv:1506.04579, 2015.

[6] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla,
“Segnet: A deep convolutional encoder-decoder architecture
for image segmentation,” arXiv preprint arXiv:1511.00561,
2015.

[7] David Eigen and Rob Fergus, “Predicting depth, surface nor-
mals and semantic labels with a common multi-scale convolu-
tional architecture,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2650–2658.

[8] Liang-Chieh Chen, Jonathan T Barron, George Papandreou,
Kevin Murphy, and Alan L Yuille, “Semantic image segmen-
tation with task-specific edge detection using cnns and a dis-
criminatively trained domain transform,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016, pp. 4545–4554.

[9] Nico H?ft, Hannes Schulz, Sven Behnke, and Nico H?ft, “Fast
semantic segmentation of rgb-d scenes with gpu-accelerated
deep neural networks,” in German Conference on Artificial
Intelligence, 2014, pp. 80–85.

[10] Alexander G Schwing and Raquel Urtasun, “Fully connected
deep structured networks,” arXiv preprint arXiv:1503.02351,
2015.

[11] Guosheng Lin, Chunhua Shen, Anton van den Hengel, and Ian
Reid, “Efficient piecewise training of deep structured models
for semantic segmentation,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2016, pp.
3194–3203.

[12] Seunghoon Hong, Hyeonwoo Noh, and Bohyung Han, “De-
coupled deep neural network for semi-supervised semantic
segmentation,” in Advances in Neural Information Processing
Systems, 2015, pp. 1495–1503.

[13] Karen Simonyan and Andrew Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

[14] B. Hariharan, P. Arbelez, R. Girshick, and J. Malik, “Hy-
percolumns for object segmentation and fine-grained localiza-
tion,” pp. 447–456, 2015.

[15] Mohammadreza Mostajabi, Payman Yadollahpour, and Grego-
ry Shakhnarovich, “Feedforward semantic segmentation with
zoom-out features,” pp. 3376–3385, 2014.

[16] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille, “Semantic image segmen-
tation with deep convolutional nets and fully connected crfs,”
arXiv preprint arXiv:1412.7062, 2014.

[17] Gaofeng Meng, Ying Wang, Jiangyong Duan, Shiming Xiang,
and Chunhong Pan, “Efficient image dehazing with boundary
constraint and contextual regularization,” in IEEE Internation-
al Conference on Computer Vision, 2013, pp. 617–624.

[18] Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christo-
pher K. I. Williams, John Winn, and Andrew Zisserman, “The
pascal visual object classes challenge: A retrospective,” In-
ternational Journal of Computer Vision, vol. 111, no. 1, pp.
98–136, 2015.

[19] S. Gupta, P. Arbelaez, and J. Malik, “Perceptual organization
and recognition of indoor scenes from rgb-d images,” 2013,
pp. 564–571.

[20] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus, “Indoor segmentation and support inference from rgbd
images,” in European Conference on Computer Vision, 2012,
pp. 746–760.

[21] Lon Bottou, Large-Scale Machine Learning with Stochastic
Gradient Descent, Physica-Verlag HD, 2010.

[22] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell, “Caffe: Convolutional architecture for fast feature em-
bedding,” arXiv preprint arXiv:1408.5093, 2014.

[23] Saurabh Gupta, Ross Girshick, Pablo Arbelez, and Jitendra
Malik, Learning Rich Features from RGB-D Images for Object
Detection and Segmentation, Springer International Publish-
ing, 2014.

[24] Camille Couprie, Clment Farabet, Laurent Najman, and Yann
Lecun, “Indoor semantic segmentation using depth informa-
tion,” Eprint Arxiv, 2013.

[25] Salman Hameed Khan, Mohammed Bennamoun, Ferdous So-
hel, and Roberto Togneri, Geometry Driven Semantic Labeling
of Indoor Scenes, Springer International Publishing, 2014.

[26] J?rg Stckler, Benedikt Waldvogel, Hannes Schulz, and Sven
Behnke, “Dense real-time mapping of object-class semantics
from rgb-d video,” Journal of Real-Time Image Processing,
vol. 10, no. 4, pp. 599–609, 2015.

[27] A. C. Muller and S. Behnke, “Learning depth-sensitive con-
ditional random fields for semantic segmentation of rgb-d im-
ages,” in IEEE International Conference on Robotics and Au-
tomation, 2014, pp. 6232 – 6237.

[28] Sergey Ioffe and Christian Szegedy, “Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift,” arXiv preprint arXiv:1502.03167, 2015.

1271


