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ABSTRACT

In this paper, we propose a novel structured binary feature
extraction method for hyperspectral image classification. To
pursuit high discriminative ability and low memory cost, we
resort to applying the learning to hash technique to the tradi-
tional spectral-spatial hyperspectral features. We show how
the structured information among different kinds of features
and different feature groups can be used to learn discrimina-
tive binary features for classification. Experiments on two
standard benchmark hyperspectral data sets demonstrate the
effectiveness of the proposed method.

Index Terms— binary feature extraction, structured regu-
larization, hyperspectral image classification, learning to hash

1. INTRODUCTION

Hyperspectral imaging sensors can provide us with images
of hundreds of spectral bands at each pixel [1]. A vital ap-
plication of hyperspectral images is land-cover classification,
which classifies pixels into multiple predefined categories [2].

Although it has been studied over a decade, it is still an ac-
tive research topic due to its difficulties and importance. The
existing methods can be categorized into three classes [3]: (1)
spectral-spatial feature extraction, (2) spatial-spectral image
segmentation or post-processing, and (3) other methods, e.g.
multiple kernel learning, etc. In terms of spectral-spatial fea-
ture extraction, representative techniques include Gabor fil-
tering, gray-level concurrence matrices, extended morpholog-
ical profiles (EMP, [4]), extended attribute profiles (EAP, [5]),
etc. These methods can obtain satisfactory performances on
hyperspectral imagery classification. However, these single
kind of features can only describe some characteristics of the
considered pixel. Some researchers integrated multiple types
of features in order to further improve classification.

Previous researches demonstrate that high feature re-
dundancy requires dimension reduction for decreasing the
computational cost. In general, dimension reduction can be
achieved by feature extraction or feature selection. Repre-
sentative feature extraction technologies include principal
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component analysis (PCA), nonparametric weighted feature
extraction (NWFE, [6]), kernel linear discriminant analy-
sis (KLDA, [7]), etc.. All these methods consider features
using float-vector representation, few works are focused on
obtaining more compact features in binary space.

In order to get a compact binary feature representation
(i.e., binary codes), learning to hash technique has been well
studied in recent year [8]. Very recently, Demir and Bruz-
zone [9] have introduced the hashing technique to scalable
image retrieval in large remote sensing archives. More re-
cently, Zhong et al. [10] have also conducted a comparative
study on hashing based multiple feature fusion in hyperspec-
tral imagery classification, demonstrating the promising po-
tential of using hashing in remote sensing community.

In this paper, we propose a learning-to-hash based struc-
tured binary feature extraction method on multiple features
for hyperspectral image classification. Our method is inspired
by the supervised discrete hashing (SDH, [11]), which aims to
learn hash functions to maximize the classification accuracy
and simultaneously minimize the quantization errors. How-
ever, for hyperspectral images, it is usual to have some redun-
dant elements in the extracted features. Meanwhile, when it
comes to combine multiple features for better performance,
some modalities may be redundant too. These factors should
be considered in learning hashing functions for hyperspec-
tral image classification. To this end, we extend SDH with
two regularized terms to better handle the problem of hyper-
spectral classification. Since our formulation takes structural
information into consideration when learning hashing func-
tions, we call our method structured SDH (SSDH).

2. THE PROPOSED METHOD

In this section, we first briefly introduce the learning to hash-
ing technique and the supervised discrete hashing. Then we
give details about our model and its optimization algorithm.

2.1. Supervised Discrete Hashing

Given N training samples {xi, yi}Ni=1 where xi ∈ R1×d

is the i-th training point, yi ∈ {1, · · · , c} is the class la-
bel of i-th training point and c is the number of labeled
classes. The learning-to-hash is to learn a set of hash
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functions {hl (x)}rl=1 to map the original high-dimensional
float-type feature xi into a low-dimensional binary code
zi = [h1 (xi) , h2 (xi) , · · · , hr (xi)] ∈ {−1, 1}1×r. To
obtain discriminative and compact binary codes, a lot of re-
search endeavors have been devoted on the design of hash
functions based on different strategies [8]. Recently, the
supervised discrete hashing (SDH, [11]) is proposed to maxi-
mize classification accuracy and minimize quantization error,
which can be formulated as:

min
B,W,P

||Y −BW||2F + λ1 ||W||2F + λ2 ||B− F (X)||2F

s.t. B ∈ {−1, 1}N×r ,

where X ∈ RN×d is the set of N training samples with
d-dimensional features. F (X) is a linear or nonlinear em-
bedding (e.g., kernel mapping) of X. Y ∈ RN×c is the label
matrix and the i-th row yi ∈ R1×c is the one-hot based la-
bel vector. W ∈ Rr×c is the classification coefficients based
on the learned B. The first two terms formulate the learning-
to-hash as a linear classification problem and the third term
models the fitting error of the binary codes by the embedding
F (X). λ1 and λ2 are regularization parameters.

2.2. The Proposed Model

In our method, we propose to learn compact binary features
from multiple spatial-spectral features. Therefore, each sam-
ple xi in our formulation is a concatenated vector of V groups
of features. For the v-th feature group, supposing its dimen-
sion is dv (v = 1, · · · , V ), its corresponding data matrix can
be denoted as X(v) ∈ RN×dv . Therefore, the whole data ma-
trix is X ∈ RN×d

(
d =

∑V
v=1 dv

)
. Meanwhile, we choose

to use the linear embedding as our hash function for its sim-
plicity, i.e., F (X;P, t) = XP + 1NtT , P ∈ Rd×r is a
linear transformation matrix, t ∈ R1×r is a bias term and
1N ∈ RN×1 is an all-one vector.

As we explained before, SDH does not take the intrinsic
relationship among different features in the original feature
space. On one hand, as some features in the original space
may be not useful for generating good binary features (e.g.,
due to noisy or irrelevant features), it is desirable to have some
rows of the projection matrix P be all zeros. This motivates
us to adopt the L2,1-norm regularizer [12]

||P||2,1 =

d∑
i=1

||pi,:||2 =

d∑
i=1

√√√√ r∑
j=1

P 2
ij ,

where pi,: is the i-th row of P. On the other hand, to
model the structured information in different feature modali-
ties, we introduce the group structured regularization, i.e., the
G2,1-norm , which is defined as

||P||G2,1
=

V∑
v=1

√√√√∑
i∈gv

r∑
j=1

P 2
ij =

V∑
v=1

∣∣∣∣∣∣P(v)
∣∣∣∣∣∣
F
,

where gv is a set of indices belonging to the v-th feature,
P(v) ∈ Rdv×r is the sub-matrix related to v-th feature. With
the above two structured terms, the proposed SSDH model is
formulated as follows:

min
B,W,P,t

||Y −BW||2F + λ1 ||W||2F

+λ2

(∣∣∣∣B−XP− 1NtT
∣∣∣∣2
F
+ β1 ||P||2,1 + β2 ||P||G2,1

)
s.t. B ∈ {−1, 1}N×r ,

where λ1, λ2, β1 and β2 are regularization parameters.

2.3. Optimization

In general, the problem of SSDH is NP hard and difficult to
solve due to the binary constraint on B. One common method
is to adopt the alternative optimization technique.

(1) P, t-subproblem. Fix B,W, update P, t. From
the derivation in [12], we can simply reformulate the P, t-
subproblem into a standard least squares problem, for which
we can easily derive the closed solutions.

(2) W-subproblem. Fix P, t and B, we solve W. It can
be easily derived that the solution is W =

(
BTB+ λ1Ir

)−1
BTY.

(3) B-subproblem. Fix P, t and W, we solve B. Let
R = XP+ 1NtT , the subproblem can be written as

minB ||Y −BW||2F + λ2 ||B−R||2F
⇔ minB tr

(
YTY − 2YTBW +BWWTBT

)
+λ2tr

(
BTB− 2BTR+RTR

)
s.t. B ∈ {−1, 1}N×r

Since B ∈ {−1, 1}N×r, tr
(
BTB

)
is a constant. By de-

noting Q ← YWT + λ2R, the subproblem is equivalent to
the following form:

minB tr
(
BWWTBT

)
− 2tr

(
BTQ

)
s.t. B ∈ {−1, 1}N×r

Similar to SDH [11], we adopt discrete cyclic coordinate
descent method to solve the subproblem. For complement, we
briefly describe it here. In each iteration, we learn one column
of B with others fixed. Without loss of generality, suppose
we learn the l-th column, l = 1, · · · , r. Based on MAT-
LAB expression, let z = B (:, l) ∈ {−1, 1}N×1 being the
l-th column of B, B1 = B (:, [1, · · · , l − 1, l + 1, · · · , r]) ∈
{−1, 1}N×(r−1), v = W (l, :)

T ∈ Rc×1, q = Q (:, l) ∈
RN×1, W1 = W ([1, · · · , l − 1, l + 1, · · · , r] , :) ∈ R(r−1)×c,
Q1 = Q (:, [1, · · · , l − 1, l + 1, · · · , r]) ∈ RN×(r−1), then
we have

tr
(
BWWTBT

)
= tr

(
zvTvzT

)
+ tr

(
B1W1W

T
1 B

T
1

)
+ 2tr

(
vTWT

1 B
T
1 z
)

= const+ 2tr
(
vTWT

1 B
T
1 z
)

tr
(
BTQ

)
= tr

(
BT

1 Q1

)
+ tr

(
qT z

)
= const+ tr

(
qT z

)
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Thus, for solving the l-column of B, the related z-
subproblem can be rewritten as

min
z

(
vTWT

1 B
T
1 − qT

)
z

s.t. z ∈ {−1, 1}N×1 ,

where the solution can be derived as z = sign (q−B1W1v).
We iteratively update each column one by one until the ob-
tained B converges.

With the learnt linear hash transformation P and t,
we can reduce a test sample x into binary codes using
b = sign (xP+ t). The proposed method is summarized in
Algorithm 1.

Algorithm 1 SSDH algorithm.
Input: Training data X,Y; number of bits r; number of

maximum iterations T ; converge precision ε; parameters
λ1, λ2, β1, β2.

Output: Binary codes B; Hash transformation P and t.
1: Initialize B and P randomly.
2: for t = 1, · · · , T do
3: 1) Solve P, t-subproblem;
4: 2) Solve W-subproblem;
5: 3) Solve B-subproblem as follows.
6: while not converged do
7: Set B0 = B.
8: for l = 1, · · · , r do
9: Update l-th column of B.

10: end for
11: if ‖B−B0‖F ≤ ε then
12: break
13: end if
14: end while
15: end for

3. EXPERIMENTS

3.1. Data Sets

Indian Pines [13] (denoted as D1). The image has a size of
145 × 145 pixels and 220 spectral bands with a spatial reso-
lution of 20 m/pixel. It has 16 land-cover classes. For each
class, we randomly select 50 samples as training set and the
remaining as testing set. For those classes with less than 50
samples, 15 samples are selected as training set. In experi-
ments, we removed 20 noisy bands. The false color image
and its ground truth are shown in Fig. 1.

University of Pavia [13] (denoted as D2). The size of
the image is 610× 340 pixels with a spatial resolution of 1.3
m/pixel. It has 103 bands. Here, 30 samples per class are
randomly selected as training set and the rest as test set.

3.2. Experimental Setup

In experiments, three kinds of features (V = 3) are extracted
for each pixel: (1) the original spectral feature, (2) EMP [4],
and (3) EAP [5]. For EMP and EAP, we use five and three
principal components on the two data sets, respectively. For
EMP, 9 MPs are computed for each component with a disk-
shaped structural elements, whose radius is increased from 1
with a step size of 2. For EAP, four APs are computed for
each component with the same parameters as [5].

Four representative methods are compared, which in-
clude two subspace-based dimension reduction methods:
(NWFE[6], KLDA) and two learning to hash methods:
FastHash[14], SDH[11]. For NWFE, KLDA, FastHash and
SDH, we select their parameters by grid search. Additionally,
concatenating the original float multiple features (denoted as
MultiFeature) is served as a baseline. For features repre-
sented by float vectors, we adopt nearest neighbor classifier
with Euclidean distance and output the classification results.
While for binary features, Hamming distance is used.

For the two data sets, we conduct ten independent trials
and report the best average results with standard deviation of
two common scores: overall accuracy (OA) and kappa (κ).

3.3. Experimental Results

Table 1 shows classification accuracies of the compared meth-
ods on Indian Pines data set. From this table, we have the
following observations. First, all the evaluated methods can
achieve better performance than the original MultiFeature
method without dimension reduction. This indicates that di-
mension reduction can preserve the important discriminative
information. Second, compared to the traditional subspace-
based dimension reduction methods, the obtained binary
features by hashing methods require much less storage cost.
Third, the proposed SSDH can achieve comparable or com-
petitive results among all compared methods. Based on the
fact that SSDH outperforms SDH, the effectiveness of the
used structured regularization terms can be validated. Noted
that since SSDH adopts linear hash functions, it is much
simpler in the procedure of model learning, compared to the
FastHash that utilizes the boosted decision trees as hash func-
tions. Fourth, from the results on the University of Pavia data
set, SSDH can still achieve the competitive results among all
compared methods on this data set, and also achieves higher
accuracy than original SDH, with a relative improvement of
63.7% on classification error measured by OA.

Fig. 1 visualizes the obtained classification maps of dif-
ferent methods. Generally speaking, the supervised methods
can generate better classification maps with better visual qual-
ity. Compared with the SDH method, the proposed SSDH has
better classification maps. Especially, in some left-bottom ar-
eas, SSDH achieves smoother prediction outputs.

The classification OAs obtained by the compared methods
with varying number of reduced dimensions in the range of
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Table 1. Performance of different methods on the two data sets. The number in each bracket is the number of bytes used.
Time(ns) is the averaged time for distance computation between two feature vectors measured by nanoseconds.

D1

Classes MultiFeature(1700) NWFE(80) KLDA(60) FastHash(8) SDH(6) SSDH(8)
OA 85.65± 1.27 93.85± 0.98 94.76± 0.66 95.16± 0.52 91.51± 1.40 95.28± 0.28
κ 0.8363± 0.0141 0.9295± 0.0111 0.9398± 0.0076 0.9444± 0.0060 0.9028± 0.0160 0.9457± 0.0032

Time(ns) 622.5365 23.7454 17.9966 7.9272 6.4014 7.9272

D2

Classes MultiFeature(952) NWFE(56) KLDA(32) FastHash(4) SDH(6) SSDH(8)
OA 89.28± 0.79 97.62± 0.52 98.47± 0.58 97.20± 0.77 96.14± 1.45 98.60± 0.28
κ 0.8623± 0.0100 0.9688± 0.0067 0.9799± 0.0076 0.9634± 0.0100 0.9497± 0.0185 0.9816± 0.0036

Time(ns) 333.7593 16.7077 10.4053 8.0419 6.3868 7.9240

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. Classification maps of different methods on two data
sets. (a, f) False color image, (b, g) ground truth image and
classification maps obtained by (c) MultiFeature, (d) SDH,
(e) SSDH, (f) KLDA, (g) FastHash (h) SSDH.

[2, 4, · · · , 16, 20, 30, · · · , 100] are shown in Fig. 2. For hash-
ing methods, we just show the results of 64 bits (i.e., 2 float
values). From these two figures, we can see that SSDH per-
forms significantly better than SDH. Second, both SSDH and
FastHash achieve very high classification accuracies, which
indicates that we can use only 8 bytes to obtain better clas-
sification performance than that with 1700 bytes of the origi-
nal MultiFeature method. As storing binary features is much
more economical than the original float-type features, it can
potentially facilitate subsequent processing for large scale hy-
perspectral data analysis (e.g., similar hyperspectral objects
retrieval in large archives).

To check the parameter sensitivities of SSDH, extensive
experiments are conducted. Fig. 3 shows the classification
OAs of SSDH with two variable parameter values while keep-
ing the other two fixed on University of Pavia data set. Note
that the x,y-axis are log-scaled. From these two figures, we
can see that a proper selection of these regularization parame-
ters is important for a good classification performance. Even
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(b) University of Pavia data set.

Fig. 2. Classification OAs with different reduced dimensions.

though, it is not difficult task since SSDH performs well in
a relatively large range of these parameters. Note that when
both β1 and β2 become zeros, it is equivalent to SDH with
linear embedding. The better performance of SSDH with ap-
propriate values of β1 and β2 demonstrates the effectiveness
of incorporating structural information in hashing learning.
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Fig. 3. Parameter sensitivities of SSDH on University of
Pavia data set.

4. CONCLUSION

In this paper, we have proposed a novel structural regular-
ized binary feature extraction method for hyperspectral im-
age classification. The introduced structured terms can handle
feature redundancy and help generate more discriminative bi-
nary features. Comparative experiments on two data sets have
shown the effectiveness of the proposed method.

528



5. REFERENCES

[1] Antonio Plaza, Jon Atli Benediktsson, Joseph W
Boardman, Jason Brazile, Lorenzo Bruzzone, Gus-
tavo Camps-Valls, Jocelyn Chanussot, Mathieu Fauvel,
Paolo Gamba, Anthony Gualtieri, et al., “Recent ad-
vances in techniques for hyperspectral image process-
ing,” Remote sensing of environment, vol. 113, pp.
S110–S122, 2009.

[2] J Bioucas-Dias, Antonio Plaza, G Camps-Valls, PAUL
Scheunders, N Nasrabadi, and Jocelyn Chanussot, “Hy-
perspectral remote sensing data analysis and future chal-
lenges,” IEEE Geoscience and Remote Sensing Maga-
zine, vol. 1, no. 2, pp. 6–36, June 2013.

[3] Gustavo Camps-Valls, Devis Tuia, Lorenzo Bruzzone,
and Jn Atli Benediktsson, “Advances in hyperspectral
image classification: Earth monitoring with statistical
learning methods,” IEEE Signal Process. Mag., vol. 31,
no. 1, pp. 45–54, Jan. 2014.

[4] Jón Atli Benediktsson, Jón Aevar Palmason, and Jo-
hannes R Sveinsson, “Classification of hyperspectral
data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 3, pp. 480–491, Mar. 2005.

[5] Mauro Dalla Mura, Jon Atli Benediktsson, B. Waske,
and Lorenzo Bruzzone, “Extended profiles with mor-
phological attribute filters for the analysis of hyperspec-
tral data,” International Journal of Remote Sensing, vol.
31, no. 22, pp. 5975–5991, 2010.

[6] Bor-Chen Kuo and David A Landgrebe, “Nonparamet-
ric weighted feature extraction for classification,” IEEE
Trans. Geosci. Remote Sens., vol. 42, no. 5, pp. 1096–
1105, 2004.

[7] Deng Cai, Xiaofei He, and Jiawei Han, “Efficient ker-
nel discriminant analysis via spectral regression,” in
IEEE International Conference on Data Mining, 2007,
pp. 427–432.

[8] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and
Jianqiu Ji, “Hashing for similarity search: A survey,”
arXiv preprint arXiv:1408.2927, 2014.

[9] B. Demir and L. Bruzzone, “Hashing-based scal-
able remote sensing image search and retrieval in large
archives,” IEEE Trans. Geosci. Remote Sens., vol. 54,
no. 2, pp. 892–904, Feb. 2016.

[10] Z. Zhong, B. Fan, K. Ding, H. Li, S. Xiang, and
C. Pan, “Efficient multiple feature fusion with hashing
for hyperspectral imagery classification: A comparative
study,” IEEE Trans. Geosci. Remote Sens., vol. PP, no.
99, pp. 1–18, 2016.

[11] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao
Shen, “Supervised discrete hashing,” arXiv preprint
arXiv:1503.01557, vol. 1, no. 1, pp. 1–8, 2015.

[12] Shiming Xiang, Feiping Nie, Gaofeng Meng, Chun-
hong Pan, and Changshui Zhang, “Discriminative least
squares regression for multiclass classification and fea-
ture selection,” Neural Networks and Learning Systems,
IEEE Transactions on, vol. 23, no. 11, pp. 1738–1754,
Nov 2012.

[13] “Hyperspectral remote sensing scenes,” http://
www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes,
Accessed: 2017-05-20.

[14] G. Lin, C. Shen, and A. van den Hengel, “Supervised
hashing using graph cuts and boosted decision trees,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. PP, no. 99,
pp. 1–1, 2015.

529


