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Due to the factors such as visual occlusion, illumination change
and pose variation, it is a challenging task to develop effective
and efficient models for vehicle detection and classification in
surveillance videos. Although plenty of existing related models
have been proposed, many issues still need to be resolved.
Typically, vehicle detection and classification methods should
be vulnerable in complex environments. Moreover, in spite of
many thoughtful attempts on adaptive appearance models to
solve the occlusion problem, the corresponding approaches often
suffer from high computational costs. This paper aims to address
the above mentioned issues. By analyzing closures and convex
hulls of vehicles, we propose a simple but effective recursive
algorithm to segment vehicles involved in multiple-vehicle occlu-
sions. Specifically, a deep convolutional neural network (CNN)
model is constructed to capture high level features of images
for classifying vehicles. Furthermore, a new pre-training strategy
based on the sparse coding and auto-encoder is developed to pre-
train CNNs. After pre-training, the proposed deep model yields
a high performance with a limited labeled training samples.

Index Terms—Visual occlusion, recursive segmentation, vehicle
classification, deep convolutional neural network.

I. INTRODUCTION

Vision-based traffic surveillance, an indispensable part of In-
telligent Transport System (ITS), has been widely studied over
past few years. Many applications, including transportation
planning, traffic operating and highway capacity analysis, are
based on the vehicle detection and classification. There are two
main challenging problems that still need to be well resolved
[1]. One problem is the reliability and the instantaneity of
the vehicle detection influenced by the illumination and the
visual occlusion. The other is the accuracy of the vehicle
classification related to the factors including pose, illumination
and viewpoint of camera.

In the literature, there have been a number of studies on
vehicle detection [2]–[6] and classification [7]–[11] over the
past decade. Technically, two common steps are implemented
in most vehicle detection models, i.e., foreground extraction
and vehicle segmentation from the foreground. Due to visual
occlusions, the performance of these vehicle detection methods
may be largely degraded in the complicated traffic environ-
ments. As for the vehicle classification, one essential problem
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is how to extract robust features to represent the images.
Although many methods [12]–[15] have been presented for the
task of vehicle classification, they often suffer from appearance
variations of scenes and objects.

This paper focuses on the task of vehicle detection with
visual occlusions as well as the task of vehicle classification.
To tackle the occlusion problem, we develop an efficient
model based on the techniques of Recursive Segmentation and
Convex Hull (RSCH). Specifically, we assume that vehicles
are convex regions in foregrounds. Under this assumption, a
subset decomposition optimization model is derived to deal
with the vehicle occlusion problem. For the task of vehicle
classification, a deep convolutional network (CNN) model is
represented to manage it. Since collecting the labeled vehicle
images is a troublesome and time-consuming task, a novel
pre-training stage is proposed to combat overfitting when the
labeled data is limited. Specifically, the convolutional layers
are initialized based on the sparse coding model and the fully
connected layers are pre-trained via the auto-encoder model,
respectively. For brief, we refer this pre-training strategy as
SCAE: Sparse Coding and Auto-Encoder based method.

To sum up, the main contributions of this work are high-
lighted as follows:

• The RSCH method treats the connected regions as sets
and utilizes a subset decomposition optimization for
dealing with multiple occluded vehicles. As a result,
the task of vehicle detection with visual occlusions can
be formally converted into an optimization problem that
could be solved efficiently by recursion.

• The sparse coding and the auto-encoder methods are
employed to initialize the convolutional and the fully
connected layers, respectively. Experimental results show
that SCAE achieves excellent performance with only
limited labeled data. Furthermore, beyond those compli-
cated models with the support of the hardware system
of large scale of GPUs, our model can be implemented
on the ordinary computer based on CPUs only, which
significantly extends the application of our method.

The reminder of this paper is structured as follows. Section
II reviews the related work. Section III presents the details of
the proposed RSCH method. Section IV describes the devel-
oped SCAE model. In Section V, the experimental results are
reported with sufficient discussions. Conclusions are presented
in the last section.
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Video sequence (1) Foreground extraction (2) Object segmentation (3) Feature learning (4) Vehicle classification
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Fig. 1. Main flow of the proposed framework including four steps, i.e., foreground extraction, object segmentation, feature learning and vehicle classification.

II. RELATED WORK

Occlusion Problem: In prior studies, there are many solu-
tions to address the vehicle occlusion problem. By calculating
the direction of the contour and assigning a resolvability
index to each occluded vehicle, Pang et al. [16] proposed
a generalized deformable model (GDM) based method for
vehicle segmentation in traffic images. While GDM can tack-
le occlusions effectively, the high computational complexity
severely restricts the scalability in practical applications. Some
real-time algorithms have been explored in [17], [18]. In
[17], the occlusion is first detected by motion vectors of
vehicles and then the occluded regions are segmented into two
individual regions based on the “Cutting Region”. This model
can be treated as a clustering method based on motion vectors.
However, it can only be used to solve the occlusion of two
vehicles. Zhang et al. [18] proposed a multilevel framework to
detect and handle vehicle occlusion, which tackles occlusion
problem from the intraframe, interframe, and tracking aspects.
With these different aspects, “cutting region” of the occlud-
ed vehicles, motion vectors of vehicles and occlusion layer
images are utilized to handle occlusion. The results exhibit
the effectiveness of the proposed framework. However, these
methods have one main limitation: the occlusions of more than
two vehicles are beyond their capabilities.

Vehicle Classification: In general, feature-based methods
are commonly used for vehicle classification. Existing feature
extraction methods can be grouped into two categories: the
manually designed and the automatically extracted.

Among the former, Peng et al. [14] utilized scale-invariant
feature transform (SIFT) descriptors to represent vehicle im-
ages. By leveraging sparse coding, the features are projected
to a higher dimensional feature space. Then, a linear support
vector machine (SVM) classifier is adopted to estimate vehicle
types. In [15], the edge-based features and the modified SIFT
descriptors were used to represent vehicle images. Moreover,
Bayesian Decision rule is employed to distinguish each cate-
gory of vehicles from others. While the SIFT feature descriptor
can improve the effect of feature extraction, the local features
of the images are described only and the global structure
information can allow better performance for classification.

As a frequently used method for automatically learning fea-
tures, deep learning is able to learn the informative features for
vehicle classification [19]–[21]. Krause et al. [19] lifted two
object representations from 2-dimensional to 3-dimensional to
generalize across viewpoints based on a deep model. Based on
a large-scale dataset, Yang et al. [20] presented a deep neural

(a) (b) (c)

Fig. 2. Vehicle occlusion cases. (a,b) different number of vehicles, (b,c)
different weather, (a,c) different camera angles.

network model to distinguish fine-grained vehicle images. By
using a pre-trained deep model, Zhou et al. [20] employed
the fine-tuning strategy to improve the performance of vehicle
classification on a specific large labeled dataset. Although such
achievements are notable, two issues still require to be tackled.
First, with a mass of parameters to be estimated, a large
amount of labeled data is indispensable for training CNNs.
However, collecting labeled data is troublesome and time-
consuming. Second, high-performance servers are prerequisite
to execute CNNs. Thus, with the purpose of extensive appli-
cations, effective CNNs with a small-size is required that can
be implemented on CPUs only.

III. VEHICLE DETECTION

In this Section, we describe the proposed RSCH method.
Specifically, the modified gaussian mixture model (GMM)-
based model described in [18] is employed to extract the mov-
ing foreground since its robustness to illumination changes.
After that, the probable existed occlusions are solved by the
proposed RSCH method.

A. Motivation

There are two main reasons that give rise to occlusion: the
limitation of camera angle and the heavy traffic. Ignoring the
problem of occlusion may lead to erroneous estimates of traffic
information. For example, the predicted number of vehicles
will less than the actual value. As shown in Fig. 2, there are
a variety of occlusion situations in practice, which indicates
that a proper model must be common for all kinds of vehicle
occlusion cases. According to the spatial relationships between
vehicles, one should confront with three cases: no occlusion,
partial occlusion and total occlusion. Following the previous
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Fig. 3. The motivation of RSCH method. (a) Current frame, (b) foreground,
(c) the yellow region represents total occlusion or no occlusion, and the
red region means partial occlusion. In (c), when occur total occlusion or no
occlusion, each connected region is a convex set or approximate to a convex
set when total occlusion or no occlusion occur. However, it will be very
different when some vehicles with partial occlusion.

work [16], we focus on the partial occlusions since the cases
with no occlusion or total occlusion require no handling.

As shown in Fig. 3, each vehicle can be expressed by a
convex set in foreground. Therefore, the occlusion problem
can be considered as a problem of dividing the union of
convex sets into several disjoint convex sets. In this paper,
an optimal equation is established for this problem, and a
recursive algorithm is proposed to solve it.

B. RSCH Model

In this section, we detail the proposed RSCH method.
1) Occlusion Detection
As shown in Fig. 4, for a connected region Rk, C(Rk)

represents the convex region which is enclosed by the convex
hull of Rk. In the situations with no occlusion or total
occlusion, Rk is close to C(Rk); otherwise, Rk is much
smaller than C(Rk). Therefore, we introduce area difference
function Γ to detect occlusions. Formally, Γ is defined as
follows:

Γ(Rk) = card(C(Rk))− card(Rk), (1)

where card(·) is a function that returns the cardinality of a
set. Based on Γ(·), the occlusion can be detected by:

Y =

{
1, if Γ(Rk) < Γ̂

0, if Γ(Rk) ≥ Γ̂
, (2)

where Γ̂ is an area difference threshold. For each region Rk

and the area difference Γ(Rk), Y = 1 indicates that Rk

has partial occlusion; otherwise, Rk has no occlusion or total
occlusion.

2) Problem Formulation
Once partial occlusion is detected in region Rk, the occlu-

sion problem can be solved by finding a group of subsets
{Rk

1 , R
k
2 , · · · , Rk

N} of Rk, in which only one vehicle is
included in each subset. Accordingly, the objective of our
model is to decrease the area difference Γ(Rk

i ). Formally, the
final objective function can be formulated as follows:

min
{Rk

1 ,R
k
2 ,··· ,Rk

N}

N∑
i=1

Γ(Rk
i )

s.t. Rk =

N⋃
i=1

Rk
i , R

k
i

⋂
Rk

j = ∅(i 6= j)

, (3)

(a) (b) (c)

Fig. 4. Notations. (a) Connected region Rk . (b) The convex hull of Rk and
C(Rk) are depicted in yellow and red color, respectively. (c) Difference set
Dk and S(Rk). In (c), all Harris corners of Dk are depicted in colored
circles. Specially, Harris corners which belong to the convex hull of Rk are
marked in the yellow color circles, the rest in the red circles indicate S(Rk).

Algorithm 1 RSCH-based method

Input: Foreground mask f , thresholds Γ̂, εv and ε
Output: Vehicle set V

1: V = ∅
2: for each connected region Rk of f do
3: Calculate C(Rk), Dk of Rk

4: V ← V ∪ SEGMENT(Rk) //Algorithm 2
5: end for

where Rk
i is a subset of Rk and N is the number of vehicles.

One major problem of the above model lies in the lack of
appropriate constrained condition – it is possible to decrease
the objective function to 0 by increasing the vehicles number
N . To simplify the problem, we first consider the occlusion
problem of two vehicles. Then, a recursive algorithm is
proposed to manage more general cases.

3) Basic Segmentation
In fact, the segmentation problem can be treated as a

clustering problem of 2D points. For partial occlusion caused
by two vehicles, each vehicle is on different sides of a line.
Therefore, it is reasonable to use a cutting line [17] to segment
the occluded vehicles. Based on the cutting line, occluded
regions can be segmented into two individual regions. Because
it is costly to search for all possible of cutting lines, we narrow
down the searching range of cutting lines to compress the time
consumption as follows.

We detect corners of foregrounds by handling occlusion. Let
Dk denote the different set between C(Rk) and Rk. Since
binary images have more defined corners than gray images,
Dk is employ to detect occluded corners. These corners in
convex hull are not occluded corners of vehicles. Therefore,
the occluded corners are the different set between H(Dk) and
CH(Rk), where H(Dk) is a set of Harris corners [22] of Dk.
In addition, CH(Rk) represents the convex hull of C(Rk).
More formally, the occluded corners are detected as follows:

S(Rk) = H(Dk)− CH(Rk), (4)

where S(Rk) represents the occluded corners of Rk. Next,
the points in the S(Rk) are employed as the cutting points,
and lines between pairs of cutting points are considered as the
cutting lines. Since the difference of vehicle size is not very
large when vehicles locate in similar position, it is reasonable
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Algorithm 2 SEGMENT(Rk)

Input: A subset Rk

Output: Vehicle set in Rk.
1: Calculate Γ(Rk) = card(C(Rk))− card(Rk) // Eq. (1)
2: if Γ(Rk) ≥ Γ̂ then
3: return {Rk}
4: else
5: Calculate cutting point set S(Rk) // Eq. (4)
6: Calculate T , which bring the maximum of Eq. (5)
7: Calculate Rk

i,1, R
k
i,2 using cutting line line(PT [i])

8: t = arg min
i
|card(Rk

i,1)− card(Rk
i,2)|

9: Rk
1 = Rk

T [t],1, R
k
2 = Rk

T [t],2

10: Calculate e(Rk) = γ(Rk)− Γ(Rk) // Eq. (6)
11: if e(Rk) ≤ ε then
12: return {Rk}
13: else
14: return SEGMENT(Rk

1) ∪ SEGMENT(Rk
2) // Eq. (7)

15: end if
16: end if

to constrain the segmentation based on the difference of
vehicle size. Finally, we reform the optimal equation in Eq. (3):

min
t

Γ(Rk
1) + Γ(Rk

2)

s.t. Rk = r
(
Rk

1 , R
k
2 , line(Pt)

)
|card(Rk

1)− card(Rk
2)| < εv

, (5)

where P is the Cartesian product of S(Rk) and S(Rk).
In addition, line(Pt) represents the cutting line between
the two cutting points of the tth element of P . The first
constrained condition indicates that Rk is divided into Rk

1

and Rk
2 through line(Pt). Specifically, a regularization term

|card(Rk
1) − card(Rk

2)| < εv is introduced to avoid over
segmentation, where εv is a regularization threshold. In order
to prevent the appearance of more than one optimal solution,
RSCH chooses the cutting line which can minimize the cost of
regularization term. To further reduce unnecessary segmenta-
tion, we introduce a variable e which indicates the difference
of objective function in Eq. (5) between before and after
segmentation. If there is a large difference, the segmentation
is valid; otherwise, there is no point in dividing Rk to Rk

1 and
Rk

2 . For clarity, let γ(Rk) denote the optimal value of Eq. (5),
then e can be accordingly defined as follows:

e(Rk) = γ(Rk)− Γ(Rk). (6)

When e(Rk) > ε, {Rk
1 , R

k
2} can be regarded as a reasonable

segmentation scheme of Rk; otherwise, Rk is treated as a
single vehicle without occlusion. Additionally, the constant ε
is a threshold that is determined by experiment.

4) Recursive Segmentation
More generally, inspired by the recursive algorithm, a gener-

al occlusion problem can be solved by recursive segmentation
as illustrated in Fig. 5, i.e.,

SEGMENT(Rk) = SEGMENT(Rk
1) ∪ SEGMENT(Rk

2), (7)

where SEGMENT(·) is a function which can divide a region
into two parts, and {Rk

1 , R
k
2} is a segmentation scheme of Rk.

V=SEGMENT(R
1
) SEGMENT(R

2
) SEGMENT(R

3
)
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2
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2
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2
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Fig. 5. Vehicle segmentation via the proposed RSCH method. For each
connected region R, cutting point set S(R) and the optimal cutting line are
depicted in red and yellow color, respectively.

An illustration of the proposed RSCH method can be found
in Algorithm 1. The inputs are the foreground mask f , the
area difference threshold Γ̂ which determines whether there
is occlusion inside a connected region, and threshold ε which
determines whether to make a segmentation for a connected
region. By handling each connected region of f , vehicles are
detected gradually. As described in Algorithm 2, for each con-
nected region Rk, the segmentation function SEGMENT(Rk)
is employed to segment vehicles of connected region. As
described in the 5-15 lines, if Rk has partial occlusion and
can be segmented as {Rk

1 , R
k
2}, we will segment Rk

i (i = 1, 2)
recursively until they can not be segmented; otherwise, Rk is
treated as a single vehicle.

IV. VEHICLE CLASSIFICATION

In this section, SCAE model is developed to classify the
vehicles detected by our RSCH method.

A. Motivation

A straightforward way to train an excellent deep neural
network is increasing the number of labeled training data
[23]. However, it is laborious and expensive to obtain a large
amount of labeled data. Since training deep neural network can
be regarded as an optimal problem with a group of parameters
[24], it is reasonable to learn deep models by pre-training
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these models with a mass of unlabeled data and fine-tuning the
models for the specific classification task with labeled data.

In order to train a deep model with limited labeled data, a
new pre-training strategy is proposed to find the initial point in
this paper. The new pre-training strategy is motivated by some
studies in biology. Hubel et al. have discovered the receptive
field based on the researches of simple cells in mammalian
primary visual cortex [25]. Furthermore, Olshausen et al.
have shown that sparse coding algorithm can develop a group
of complete receptive fields which are similar to Hubel’s
discovery in the visual cortex [26]. Inspired by that, a group
of feature detectors learned by sparse coding are applied to
extract low level features in our model. Furthermore, the fully
connected layers are employed to yield more abstract features
to represent images, as designed in [27]. More details are given
in the following subsections.

B. Architecture of SCAE

Let Dt = {xk ∈ Rh×w}mk=1 denote m unlabeled images,
where xk is the kth image in Dt, h and w represent the height
and width of each image, respectively. We represent Df =
{(xk,yk)}nk=1 as a set of n labeled images with their labels,
which are denoted by yk ∈ Rc×1, and c indicates the number
of vehicle categories. Specifically, yk

p = 1 and yk
q = 0 (q 6= p)

if xk belongs to the pth category.
1) Feature Extraction
There is essential difference between vehicle classification

and large scale image classification. In total, the latter is more
complicated and requires more deep architecture to make it.
However, more deeper architectures mean that they require
more labeled data to learn parameters and more powerful
machine to execute models. Therefore, a shallow architecture
is preferred for vehicle classification. As shown in Fig. 6,
SCAE consists of two parts: convolutional feature learning
and stacked auto-encoder feature learning.

The architecture of convolutional feature learning is similar
to convolutional neural networks [28], and consisting of two
layers: (1) a convolutional layer “C1”, which is obtained as
convolution of the input image and the learnable kernels, and
(2) a pooling layer “S2”, which following the convolutional
layer “C1”. For the image xk, its ith feature map xk-conv

i and
pooling map xk-pool

i are computed as follows:

xk-conv
i = ReLU(xk ∗ Fi + bi), (8)

xk-pool
i = Maxpooling(xk-conv

i ), (9)

where Fi ∈ Rd×d and bi are the kernel weights with size
d × d and basis, respectively. In addition, “∗” denotes the
convolution operation, ReLU(·) indicates the rectified linear
function [29], i.e.,

ReLU(x) = max(0,x), (10)

where x is the input of the ReLU(·) function. In addition,
Maxpooling(·) represents max-pooling function. For each
feature map, the max-pooling can obtain robust features, while
losing some spatial information. To tackle this issue, we

Algorithm 3 Training strategy of CNN
Input: unlabeled dataset Dt, labeled dataset Df

Output: W = ({Fi}Ni=1,b,W
1,b1,W2,b2,Ws)

1: Random initialization ({Fi}Ni=1,b,W
1,b1,W2,b2,Ws);

// pre-training
2: Sample image batches Xb on Dt;
3: Update {Fi}Ni=1 based on Xb; // Eq. (15)
4: Calculate {hk

0}nk=1 by using {Fi}Ni=1 on Dt;
5: Update W1,b1 based on {hk

0}nk=1; // Eq. (18)
6: Calculate {hk

1}nk=1 by using {Fi}Ni=1,W
1,b1;

7: Update W2,b2 based on {hk
1}nk=1; // Eq. (18)

// fine-tuning
8: Update W based on Df ; // Eq. (19)

assemble the features of each pooling map to remedy the
information loss, i.e.,

hk
0 =

N⋃
i

V ec(xk-pool
i ), (11)

where V ec(·) is a vectorization function to reshape matrixes
to vectors, N represents the number of convolution kernels,⋃

indicates a function to concatenate a set of vectors to
a vector and hk

0 represents the output of the convolutional
feature learning part with the input xk.

We introduce the stacked auto-encoder feature learning part
in our model to learn high-level features. In fact, it is not
independent between different pooling maps. That is, they
have a complicated interrelationship. Therefore, we assemble
the pooling maps to obtain more complicated features, and
employ stacked auto-encoder to learn the high level features
of image. The functions in the stacked auto-encoder feature
learning part can be formulated as follows:

hk
1 = ReLU(W1hk

0 + b1), (12)

hk
2 = ReLU(W2hk

1 + b2), (13)

where W1, W2 and b1, b2 are the weight matrices and bias
of “L3” and “L4” layer, respectively. In addition, hk

1 , hk
2 are

the outputs of “L3” and “L4” layer, respectively.
2) Classification

As shown in Fig.6, softmax classifier is employed to classify
images. We model the output by a probability vector Ok,
which can be formulated as follows:

Ok =
exp(Wshk

2)∑c
i=1 exp(Ws

i·h
k
2)
, (14)

where c indicates the number of vehicle categories, Ws is the
projection matrix that maps hk

2 to output, and Ws
i· denotes

the ith row vector of Ws.

C. Training Strategy

The training process of our model is a two-step strategy.
First, we adopt unsupervised methods to pre-train the devised
CNN since the labeled data is limited. Second, the pre-trained
network are fine-tuned with supervised methods.
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Fig. 6. The structure of SCAE. The input is a gray scale image. Through two specific feature learning steps, the visual features are mapped into a latent
space and then a softmax classifier is employed to classify the image.

1) Unsupervised Pre-training Strategy
The proposed CNN is pre-trained on the unlabeled dataset

Dt based on the sparse coding and the auto-encoder methods.
We attempt to learn a group of sparse feature detectors

to initialize the convolution kernels {F}Ni=1. This is because
sparse kernels can significantly improve the performance of
classification tasks, as analyzed in [27]. Specifically, sparse
coding attempts to find a dictionary matrix B ∈ Rd2×N to find
sparse representations Z ∈ Rd2×nb for unlabeled data sample
Xb ∈ RN×nb , where nb is number of samples. Formally, the
objective function is formulated as follows:

`SC(Xb;B,Z) =
N∑
i=1

1

2
‖xi −Bzi‖22 + λ

√
‖zi‖22 + ε+ γ‖B‖22,

(15)

where xi is the ith column vector in Xb and indicates a vector
representation of image patch obtained by random sampling
from the unlabeled dataset Dt. Moreover, zi is the ith row
vector in Z and implies a sparse representation of xi. In
Eq. (15), λ and γ are the regularisation parameters of the
representation and basis vectors, respectively.

Eq. (15) can be optimized by alternately optimizing for Z
for a fixed B, and then optimizing for B given a fixed Z. It
turns out that this works quite well in practice. In this paper,
λ = 5 × 10−5, γ = 1 × 10−2 and ε = 1 × 10−5. Conjugate
gradient method are used to optimize the Eq. (15). Finally, the

obtained N column vectors {bi ∈ Rd2} of B are resized to
d× d to initialize the convolution kernels {Fi}Ni=1.

We pre-train the stacked auto-encoder feature learning part
layer by layer with each layer being an auto-encoder [30]. For
clarity, let v denote the input of the auto-encoder. An auto-
encoder is a two layer neural network defined as follows:

h = ReLU(W0v + b0), (16)

v̂ = ReLU(Ŵ0h + b̂0), (17)

where h indicates the latent representation of v, v̂ is the
reconstruction of the input v and W0, Ŵ0 are the encoder
and decoder parameters, respectively. Our goal is to minimize
the reconstruction error with the following objective function:

`AE(v;W0,b0,Ŵ0, b̂0) =
1

2
‖v − v̂‖22. (18)

In Eq. (18), the encoder parameters w0, b0 are employed
to initialize the fully connected networks. Specifically, error
backpropagation and RMSProp [31] optimizer are used to
solve the Eq. (18). Technically, the “L3” layer is first pre-
trained by reconstructing the output of the pre-trained convolu-
tional feature learning part. Then, the “L4” layer is pre-trained
based on the output of the “L3” layer.

In summary, we illustrate the pre-training strategy in Al-
gorithm 3. The devised CNN is pre-trained in a layer-wise
way. First, the convolution kernels are pre-trained based on
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the sparse coding method. Second, the fully connected layers
are pre-trained layer by layer via auto-encoder.

2) Fine-tuning Strategy
Except for last fully connected layer, the parameters of

convolutional and stacked auto-encoder feature learning parts
are initialized by aforementioned pre-training strategy. To
enable the proposed CNN adapt to specific classification task,
the entire CNN is fine-tuned in a supervised learning way.
Given the labeled dataset, the objective function is formulated
as follows:

min
W
− 1

c

m∑
k=1

c∑
h=1

(yk
h lnOk

h + (1− yk
h) ln(1−Ok

h)), (19)

where W = ({Fi}Ni=1,b,W
1,b1,W2,b2,Ws) represents

entire parameters of network, and c is the number of vehicle
categories. Error backpropagation and RMSProp optimizer are
utilized to calculate the optimal value of the objective function.

V. EXPERIMENTAL RESULTS

In this section, we apply the proposed methods to detect
and classify vehicles on surveillance videos. The algorithms
are written in Visual C++ on a 2.5 GHz Core i5 PC with 4GB
DDR3 RAM. The core code and the partial video data are
shared at https://github.com/vector-1127/SCAE.

A. Vehicle Detection

1) Dataset
The test data consists of more than 5 hours of RGB scale

videos, which were captured at the rate of 25 frames/s with
an image size of 640×480 pixels on expressways in Chengdu
during the day. The videos are taken from the heavy traffic
environment, large amount of vehicles with visual occlusion,
motion blur as well as different visual angles make detection
more difficult.

2) Evaluation Protocol
Based on the same foreground detection model [18], we

compared the performance of the RSCH method with other
methods. We set Γ̂ = 500, εv = 2000 and ε = 300.
Specifically, we split the occluded foreground images to oc-
clusion samples of two and more than two vehicles to make
comparisons, respectively. For two vehicles occlusion, CR [17]
and MF [18] methods are employed to make comparisons.
For more than two vehicles occlusion, GDM model [16] is
employed to make comparisons. Furthermore, the F-measure
and the average of time consumption are utilized to measure
the stability of methods. The precision and the recall are
calculated as follows:

P =
The number of vehicles detected correctly

The number of detected vehicles
,

R =
The number of vehicles detected correctly

The number of vehicles in testing data
,

(20)

where P and R are represent the precision and recall, respec-
tively. In addition, F-measure F1 can be calculated as follows:

F1 =
2× P ×R
P +R

(21)

TABLE I
THE RESULTS OF DIFFERENT METHODS.

two vehicles more than two vehicles

Methods CR [17] MF [18] Ours GDM [16] Ours

P 0.94 0.95 0.97 0.96 0.95

R 0.87 0.92 0.93 0.92 0.90

F1 0.90 0.93 0.95 0.93 0.92

time 28ms 33ms 34ms 145ms 45ms

3) Results and Comparison
The test videos have 487 and 253 occluded images of two

vehicles and more than two vehicles, respectively. The accu-
racy and the average time consumption of different methods,
including CR [17], MF [18] and GDM [16], are summarized
in Table I.

As shown in Table I, the proposed method is a compromise
of accuracy and efficiency. For the occluded problem of two
vehicles, the proposed method outperforms other methods.
For the occlusions with more than two vehicles, in terms of
accuracy, GDM [16] is better than RSCH method. The main
reason is that the foreground utilized in [16] is more accurate.
However, it is high time-complexity to calculate an accurate
foreground. In summary, our RSCH method can be considered
as a trade-off between efficiency and effect.

4) Discussion
The proposed RSCH method requires no more a prior

knowledge of the vehicle other than an empirical assumption
that vehicle is a convex region in foreground. Although this
property depends on the accuracy of foreground detection and
resolution of videos, it significantly avoids the influence of
vehicles’ shape and direction on vehicle detection. At the same
time, low time-consumption extends its application in practice.

B. Vehicle Classification

1) Dataset
In this paper, the deep neural networks library Keras [32] is

employed to train neural network. The 136726 vehicle images
in the CompCars dataset [20] are employed as the unlabeled
dataset Dt to pre-train the devised CNN. The labeled dataset
Df contains 5000 images, which were automatically collected
from the aforementioned surveillance videos by using our
proposed vehicle detection method. Among these samples, we
sampled 4000 images to form the training dataset Dtrain

f , and
the remainder 1000 images were then grouped into the testing
dataset Dtest

f .
2) Evaluation Protocol

We first select the hyper-parameters based on the labeled
dataset, then we retrain the developed CNN with these settings
according to our training strategy.

To train well our model (namely the CNN), the hyper-
parameters are first selected in a way of the cross-validation.
This task is conducted on the training dataset Dtrain

f . Specif-
ically, 10-fold cross-validation is performed to achieve this



8

TABLE II
THE CONFIGURATION OF SUPERVISED METHODS.

AlexNet-like [27] VGG-like [33] Ours

conv3-64 conv3-64 conv11-25

maxpool2 conv3-64 maxpool4

conv3-128 maxpool2 FC-1024

maxpool2 conv3-128 FC-512

conv3-256 conv3-128 softmax

maxpool2 maxpool2

FC-512 FC-512

softmax softmax

goal, where the label information of the samples in Dtrain
f is

also utilized. The design of the 10-fold cross-validation can
be explained as follows. Specifically, we random assigned the
samples in the dataset Dtrain

f into 10 subsets of equal size.
This means that each group of the hyper-parameters with given
values will be evaluated 10 times. In each time of parameter
evaluation, nine subsets will be employed to train the model,
and the rest one will be used to test the model.

In the training stage, the developed SCAE method with
the unlabeled dataset Dt are utilized to pre-train our CNN
model first. Then, the labeled dataset Dtrain

f and Dtest
f are

employed to fine-tune and test the devised CNN, respectively.
In testing phase, given the trained CNN and a test image x, the
classification procedures are as below. First, we resize x into
64× 64. Next, the output O is calculated through the forward
pass of the entire network. In the end, label L is assigned to
the image x as follows:

L = arg max
i
Oi, 1 ≤ i ≤ c, (22)

where c represents the number of categories, Oi is treated as
the probability of x belong to the ith category. For a reasonable
evaluation, we perform 10 random restarts for all experiments
and the average results are employed to compare with the
others methods. Specifically, the method of data augmentation
described in [27] is employed to combat overfitting. The
form of data augmentation consists of randomly generating
image rotations and translations only. Finally, the devised
CNN model is trained again with these settings according to
our proposed pre-training method. Error backpropagation and
RMSProp optimizer are utilized to train the networks based on
the different methods. The learning rate is 0.001 for the initial
phase of training. The batch size is 128 during learning.

3) Compared Methods
Two baseline networks are devised in our work, namely,

the AlexNet-like networks and VGG-like networks, which are
similar to AlexNet [27] and VGG [33], respectively. There is
no pre-training process when using AlexNet-like and VGG-
like networks to test. The configuration of networks are listed
as Table II. The convolutional layer parameters are denoted as
“conv(receptive field size)-(number of channels)”. The max-
pooling layer parameters are denoted as “maxpool(pooling

TABLE III
THE RESULTS OF SEVERAL METHODS (%).

Methods sedan SUV van bus truck accuracy time/image

AlexNet-like 95.5 94.8 95.7 95.0 96.5 95.50 47ms

VGG-like 94.8 94.4 94.9 95.3 96.5 95.18 58ms

SCAE0 91.5 90.8 89.5 95.5 97.3 92.92 22ms

SCAE1 89.2 88.8 87.2 92.7 94.3 90.44 20ms

SCAE2 90.2 93.1 92.3 96.7 97.1 93.88 22ms

SCAE 98.5 95.9 96.7 98.4 98.6 97.62 22ms

size)”. The fully connected layer parameters are denoted as
“FC-(output dim)”. The ReLU activation function is employed
as activation function because of its high efficiency and excel-
lent effect [27]. For each network, the convolutional stride is
fixed to 1 pixel, the spatial stride of max-pooling layer is equal
to the pooling size, and the border mode of convolutional layer
and pooling layer is “valid”.

Furthermore, we compare the following additional methods
to evaluate the effect of the SCAE pre-training strategy:
• SCAE0: In contrast to SCAE, there is not pre-training

process in SCAE0.
• SCAE1: In contrast to SCAE, SCAE1 only contains the

convolutional feature learning part.
• SCAE2: In contrast to SCAE, only convolutional feature

learning part is pre-trained in SCAE2.
4) Classification Results and Comparison

The details of the classification results of aforementioned
methods are shown in Table III. As shown in Table III, the
comparative experiment results indicate that our method can
achieve superior performance than other methods. Compared
with the proposed CNN, AlexNet and VGG have more com-
plicated structures. Therefore, when training data is limited,
they will be more easy to cause overfitting and degrade per-
formance. Furthermore, the developed CNN is high efficiency,
which can extend the practicability of our method.

Compared with SCAE0 and SCAE2, SCAE has high capa-
bility for vehicle classification. This demonstrates that SCAE
can initialize the good parameters for the devised CNN and
improve the performance. In contrary to SCAE1, SCAE can
obtain more informative features by combining low-level fea-
tures. The results also verify that the combination is effective.

5) Experiment for Pre-training Strategy
In order to further evaluate the effect of the developed

pre-training strategy, some traditional state-of-the-art unsuper-
vised methods including convolutional restricted Boltzmann
machine (CRBM) [34], Deconvolutional network (DeCNN)
[35] and convolutional auto-encoder (CAE) [36] are employed
to compare with proposed pre-training strategy on the STL-
10 [37] dataset when labeled data is limited. Specifically,
we transform the data of STL-10 into 64 × 64 first. Then,
the 100000 unlabeled images with these pre-training methods
are used to pre-train our devised network as described in
Table II. Finally, a small amount of images random sampled
from STL-10 are utilized to fine-tune the CNN. As shown in
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Fig. 7. The testing error rate of different methods with various number of
labeled images on the STL-10 dataset.

Fig. 7, a good initial point is beneficial for training deep neural
network when labeled data is limited. Actually, our proposed
SCAE pre-training method can achieve best performance when
labeled data is dramatically lacking.

6) Discussion
There are some advantages of the proposed model. Firstly,

the developed pre-training method can initialize a group of
good parameters to network by utilizing unlabeled data, this
strategy can significantly improve the classification perfor-
mance when labeled data is limited. Secondly, the proposed
CNN model only requires less computation time and fewer
resources than a deeper network. The advantage extends the
practicability to practical applications.

VI. CONCLUSIONS

Acquiring reliable vehicle numbers and categories data is
necessary to improve the quality of Intelligent Transport Sys-
tem. In this paper, we have proposed two effective and efficient
models for vehicle detection and classification. For the vehicle
detection, we focus on proposing a generalized approach to
solve the problem of multiple-vehicle occlusion by analyzing
the closure and convex hull of vehicles. Experimental results
show that the proposed method can not only separate most
of the vehicles independently when multiple-vehicle occlusion
occurs, but meet the requirement of real-time processing. We
also address the problem of vehicle classification. To this end,
a CNN model has been presented for classification problem.
Furthermore, based on the sparse coding and auto-encoder, a
new pre-training strategy is presented to pre-train the model.
This strategy makes the deep model work well when labeled
data is limited. The experimental results demonstrate that our
model achieves superior performance and can be implemented
on the ordinary computer based on CPUs only.
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