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ABSTRACT
Cross-modal retrieval extends the ability of search engines to
deal with the massive cross-modal data. The goal of image-
text cross-modal retrieval is to search images (texts) by using
text (image) queries by computing the similarities of images
and texts directly. Many existing methods rely on low-level
visual features and textual features for cross-modal retrieval,
ignoring the characteristics existing in the raw data of dif-
ferent modalities. In this paper, a novel model based on
modality-specific feature learning is proposed. Considering
the characteristics of different modalities, the model uses two
types of convolutional neural networks to map the raw data
to the latent space representations for images and texts, re-
spectively. Particularly, the convolution based network used
for texts involves word embedding learning, which has been
proved effective to extract meaningful textual features for
text classification. In the latent space, the mapped features
of images and texts form relevant and irrelevant image-text
pairs, which are used by the one-vs-more learning scheme.
This learning scheme can achieve ranking functionality by
allowing for one relevant and more irrelevant pairs. The
standard backpropagation technique is employed to update
the parameters of two convolutional networks. Extensive
cross-modal retrieval experiments are carried out on three
challenging datasets that consist of image-document pairs
or image-query clickthrough data from a search engine, and
the results firmly demonstrate that the proposed model is
much more effective.
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1. INTRODUCTION
Cross-modal retrieval can extend the services of tradi-

tional search engines. Text-to-document search and keyword-
to-image search are two major applications provided by search
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engines. Text-to-document search is a task of single modal-
ity. Keyword-to-image search is a pseudo “cross-modal” is-
sue, because the query keywords are matched with tags an-
notated to the images, not the images themselves. The
goal of image-text cross-modal retrieval is to search images
(texts) by using text (image) queries without any auxiliary
information. The main challenges is how to correlate data
from different modalities while capturing their respective in-
ner properties.

There are some approaches proposed for cross-modal re-
trieval [25, 37, 32, 20, 35, 34, 36, 6, 33]. However, most
methods do not pay attention to learning modality-specific
features. Instead, they directly use hand-crafted visual fea-
tures, such as SIFT [19] based bag of words feature, Gist
[24] feature, MPEG-7 [21] descriptors and color histograms,
and popular textural features, such as latent dirichlet allo-
cation (LDA) [2] feature, replicated softmax model (RSM)
[10], one-hot feature and word frequency feature. However,
these features have some weaknesses, since the artificial fea-
tures may not contain enough information that are useful for
the different modalities. For example, visual features always
reflect one aspect property of image contents, and one-hot
feature ignores the orders of words. In [6] and [33], auto-
encoders are used to relearn the hand-crafted features. The
structure of auto-encoders is not delicate enough to grasp
the inner properties of different modalities, which prevents
these methods from further improvements.

Conventionally, there are some typical image-text cross-
modal datasets employed for evaluation. For example, the
Wikipedia dataset [25] is widely used for cross-modal re-
trieval. It contains 2866 image-text pairs from “Wikipedia
featured articles”, falling into 10 semantic categories. The
texts alongside each image are long descriptions, always re-
sulting in paragraphs. This type of “text” is constructed via
words, which has strong sequential and structural informa-
tion. Another well known dataset NUS-WIDE [4] is also
used for cross-modal retrieval task. There are 269,648 im-
ages collected from Flickr in this dataset. Different from
Wikipedia, each image associates with some tags, rather
than textual descriptions. These tags have no sequential
and structural information. Additionally, the prior knowl-
edge, namely the class labels for image-text pairs, is provided
by above two datasets. In our view, such prior information
is not easy to obtain in practice. On the Internet, massive
web data contains multimedia components, such as texts,
images, audio signals and videos, whereas they are seldom
classified. Based on these discussions, we focus on using the
datasets that have the following properties:
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• The data form is image-text pair, and the text part
should be sentences or paragraphs.

• The prior knowledge is not provided.

To satisfy above properties, we use three datasets for the
experiments: IAPRTC-12 [7], Attribute Discovery [1] and
MSR Bing challenge dataset [12].

In this paper, we propose a novel cross-modal retrieval
model based on modality-specific feature learning for im-
ages and texts. Two types of convolution based networks
are employed. Specifically, conventional convolutional neu-
ral network (CNN) [18] is used to model the image modality.
CNN has greatly boosted the performance of image classifi-
cation due to its power of image feature learning [17]. We
leverage the benefits of CNN to build up the proposed model.
As for the text modeling, we also use a convolution based
network (WCNN) [15] which has achieved state-of-the-art
performance on text classification. WCNN takes sentences
in forms of word embeddings as inputs, and performs convo-
lution operations with different filter widths sequentially to
the word embeddings. Finally, max-pooling operations are
applied to the outputs of the convolution. It should be noted
that WCNN can handle sentences with different lengths and
outcome feature vectors with the identical dimension.

By using CNN and WCNN, the proposed model can trans-
form the raw image and text data into a latent space while
maintaining the data characteristics. To accomplish the re-
trieval task, we use cosine similarity to calculate the rele-
vance scores between images and texts in the latent space.
The relevant and irrelevant image-text pairs are gathered
to form the one-vs-more learning scheme: one relevant and
more irrelevant image-text pairs are put to the objective of
maximizing posterior likelihood of the relevant pairs. By
doing this, the objective function can rank relevant pairs
ahead of irrelevant ones. Comprehensively, the proposed
model associates the modality-specific feature learning with
the goal of cross-modal retrieval. Extensive experiments are
conducted on three datasets: IAPRTC-12 [7], Attribute Dis-
covery [1] and MSR Bing challenge dataset [12]. The results
consistently demonstrate the effectiveness of the proposed
model compared with the existing methods.

2. RELATED WORK
The issue of cross-modal retrieval has attracted much at-

tention from researchers. In the past few years, many meth-
ods are proposed. Some of them [25, 32, 35, 36] take advan-
tages of prior knowledge (namely label information) while
establishing their models, and some of them [20, 34] leverage
ranking information. Since the experiments are conducted
on datasets in the form of image-text pairs without any ad-
ditional information, these methods are hardly applied to
such data. Thus, we do not make further discussions of
these methods.

Generally, methods that can project heterogeneous data
into a latent space are potential to do cross-modal retrieval,
since the similarity of heterogeneous data can be computed
in the latent space. Canonical correlation analysis (CCA)
[8] is one of the candidate algorithms. The method in [25] is
developed based on CCA. The key idea of CCA is to learn a
common latent space in which the correlations between pro-
jected features of two modalities are maximized. Once the
heterogeneous data is projected to the latent space, some
popular similarities, such as `2 distance and cosine distance,

are used to generate search results. Another method is the
partial least squares (PLS) [27], which has been used for het-
erogeneous face recognition [29]. PLS is a regression model
to project data of one modality to another through a latent
space. Specifically, two data types are first projected to the
latent space instead of a direct mapping. Although CCA
and PLS are not designed for cross-modal retrieval, they
can project heterogeneous data to a common latent space,
which is a key step to address cross-modal retrieval.

Recently, some methods based on deep learning are also
proposed for cross-modal tasks. In [30] and [23], deep boltz-
mann machines [28] and deep auto-encoders [9] are employed
to model cross-modal data. They result in generative mod-
els and learn unified representations for both modalities, but
not aim at retrieval task. Kiros et al. [16] proposed to use
log-bilinear language model [22] to predict word sequences
combined with image information. This model can jointly
learn text and image features by using CNN. In recent works
[6] and [33], the deep auto-encoders are used to do feature
learning with the objective of cross-modal retrieval. In fact,
the method in [6] is an extension of [23], in which auto-
encoders reconstruct both modalities while integrating the
objective of retrieval. Similarly, Wang et al. [33] utilized
single-modality auto-encoders to separately handle differ-
ent modalities. Both of them use outputs of middle layers
of auto-encoders to represent data of different modalities.
And their final objective functions are also similar: min-
imize the `2 distance of paired cross-modal data and the
reconstruction error, simultaneously. Auto-encoder based
methods successfully combine feature learning with the goal
of cross-modal retrieval and achieve promising results. How-
ever, feature learning in auto-encoders is the relearning of
hand-crafted features, which is not able to reflect the in-
ner properties of each modality. On the contrast, in the
proposed model, two convolutional networks are used to ex-
tract modality-specific features, which is verified to be more
effective than auto-encoders.

3. THE PROPOSED MODEL

3.1 Notation
Some important notations are first defined. In this paper,

we focus on image-text cross-modal retrieval. Suppose the
training set consists of image-text pairs {(Ii, Ti)}Ni=1, N is
the number of pairs, Ii and Ti are raw image and text data
respectively. Let xi and yi be the hand-crafted features for
images and texts. Additionally, Ti is composed of words
from the vocabulary V, and the size of V is M . Embedding
vectors {wj}Mj=1 are created for each word. The dimension
of wj is set manually.

3.2 Feature Learning for Image Modality
Convolutional neural network (CNN) [18] is chosen to han-

dle image modality. In recent years, CNN has demonstrated
its outstanding capability in several vision tasks, such as
image classification [17], face keypoints detection [31]. A
typical CNN structure is shown in Fig. 1. Spatial convo-
lution and pooling operations can preserve inner properties
of images. In the proposed model, raw images with RGB
channels are taken as inputs of CNN, and the outputs of full
connection layer are representations for images:

x̃i = CNN(Ii), (1)
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Figure 1: Structure of CNN containing alternative
convolution and pooling layers, and full connection
layers as well.

where x̃i are image features in the latent space. The details
of our CNN structure can be found in Section 4.2.

3.3 Feature Learning for Text Modality
In most previous work, latent dirichlet allocation (LDA)

[2] based feature, one-hot feature and word frequency fea-
ture are ordinary choices for texts. However, these features
have some limitations. LDA relies on corpus to generate
topic probabilities. This process needs prior knowledge from
corpus and can be influenced by the quality of corpus. As
for one-hot feature and word frequency feature, they ignore
word sequences and semantic correlations. For example, two
words “car” and “vehicle” are semantically similar, and they
may be represented as [· · · , 1, 0, · · · ] and [· · · , 0, 1, · · · ] in
one-hot form. With such one-hot features, the cosine simi-
larity between these two words is zero, which is not rational
in practice. What’s more, the dimensions of one-hot feature
and word frequency feature will linearly increase along with
the size of vocabulary. Once the number of unique words is
massive, such kinds of features become intractable.

In natural language processing, recent works [15],[3] and
[11] propose to model sentences using convolution based
structures. The method in [15] achieve state-of-the-art per-
formance on sentence classification with only one convolu-
tion layer and one max-pooling layer. We adopt this method
(WCNN) to extract text features in the proposed model.

An illustration of WCNN is shown in Fig. 2. The in-
put sentence is represented as a matrix of word embeddings.
The word embeddings are aligned to have the same sequence
as the words in the sentence. In the phase of convolution,
a large number of convolutional filters are applied to the
embedding matrix. Filters may have different widths (in
Fig. 2, filters in orange and blue have the width of 2, while
the width of filter in purple is 3), but they have the same
length as the word embedding. It is noticed that the convo-
lution is performed within adjacent word embeddings, which
can extract local semantics. The convolutional stride is 1 for

the   sky    is   clear and blue

.
.

.   
Word embedding

convolution

Max pooling

 𝒚𝑖

Figure 2: Structure of WCNN containing only one
convolutional layer and one max-pooling layer.

all filters, and the outputs of the convolution operation are
vectors with different lengths after nonlinearity. Afterwards,
each vector is max-pooled to form the final representation of
the sentence as illustrated in Fig. 2. The dimension of out-
put feature is equal to the number of filters. This process is
notated as:

ỹi = WCNN(Ti), (2)

where ỹi are text features in the latent space. The detailed
calculation of WCNN can be referred in [15].

There are some advantages of WCNN. First, WCNN can
naturally handle sentences with variable lengths. The di-
mension of output features depends on the number of fil-
ters, not the length of sentences. Second, the sequential and
structural information of sentences can be maintained by
convolution and max-pooling operations, which is neglected
by one-hot feature and word frequency feature. Third, WCNN
is easy to deal with large vocabulary size. The lengths of in-
puts are related to the lengths of sentences, not the size of
the vocabulary.

3.4 Modality-Specific Deep Structure
The structure of the proposed model is illustrated in Fig. 3.

The proposed model, named as Modality-Specific Deep Str-
ucture (MSDS), is motivated by [13]. Next, we discuss the
model in detail.

The one-vs-more learning scheme is adopted here. The
model focuses on text modality as queries1. For each text
query, the text and its matched image form the relevant
pair, and the irrelevant pairs are constructed by the text
and a few unmatched images. Specifically, the relevant pair
is (Ti, Ii). For irrelevant pairs, c random unmatched images
are selected {(Ti, I

−
ij )}cj=1 (c is set to 4 in the experiments).

Notice that, in the training process, unmatched images se-
lected for the text Ti are different in each iteration. The
input text and images are transformed to the latent space

1Actually, the goal of the model is to score the image-text
pairs. No matter what the query modality is, the model
can be sufficiently learned and then used to do cross-modal
retrieval. Here, we use the text modality as queries.
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Figure 3: Structure of the proposed model. The one-vs-more scheme can involve one relevant and mul-
tiple irrelevant image-text pairs. Image modality and text modality are processed by CNN and WCNN,
respectively. The relevance scores of image-text pairs are calculated using cosine similarity. The posterior
probability of relevant image given the text query is estimated by softmax function. Finally, a maximum
likelihood framework is adopted to optimize the model parameters.

using WCNN and CNNs. In the latent space, the relevance
scores of image-text pairs are estimated by cosine similarity:

si = r(ỹi, x̃i) =
ỹT
i x̃i

‖ỹi‖‖x̃i‖
. (3)

Our objective is to enlarge the relevance scores of relevant
pairs while suppressing the relevance scores of irrelevant
pairs. To achieve this goal, a maximum likelihood frame-
work is employed. First, the relevance scores of the relevant
and irrelevant pairs are gathered to compute the posterior
probability of the relevant image given the text query via
the softmax function:

P (Ii|Ti) =
exp(si)

exp(si) +
∑c

j=1 exp(s−ij)
. (4)

Next, minimizing the negative logarithmic likelihood of the
posterior probability of the relevant images over the training
set is formulated as:

min
θ
− log{

N∏
i=1

P (Ii|Ti)}, (5)

where θ is the model parameter, including WCNN parame-
ters and CNN parameters (each CNN substructure in Fig. 3
share the same parameters).

From the description above, the architecture in the pro-
posed model can engage both relevant and irrelevant pairs.
This design can make the model sufficiently explore the in-
teractions between relevant and irrelevant pairs, which is not
considered in [6, 33].

In test phase, the features for images and texts are first
extracted by trained CNN and WCNN. Next, the relevance
scores of image-text pairs are computed using Eq. 3. Finally,

images (texts) are ordered into the ranking lists according
to their relevance scores.

3.5 Variations of the Proposed Structure
Furthermore, two trivial variations of the original struc-

ture are studied. The first variation (MSDS-v1) takes the
hand-crafted features as inputs. WCNN and CNN are re-
placed by deep forward neural networks (DNN). DNNs are
ordinary methods of feature learning without considering
the characteristics of a specific modality. This process of
feature learning is formulated as:

x̃i = DNNI(xi), (6)

ỹi = DNNT (yi), (7)

where DNNI(·) and DNNT (·) are DNNs for images and
texts, respectively. The comparison between MSDS and
MSDS-v1 will provide insights of the power of modality-
specific feature learning. The second variation (MSDS-v2)
only replaces CNNs with DNNs, preserving WCNN. This
modification is to prove that features extracted by WCNN
are more effective than hand-crafted features, such as LDA
based feature and word frequency feature.

The model and its variations can be optimized using stan-
dard stochastic gradient descend (SGD) and backpropaga-
tion algorithm.

4. EXPERIMENT
In this section, the proposed model is compared with some

representative methods on three datasets. The datasets are
first introduced in subsection 4.1. Then, the implementation
details of the proposed model are described. Next, compared
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methods and evaluation metric are briefly introduced. Sub-
sequently, the experimental results are shown and discussed.

4.1 Datasets
IAPRTC-12. This dataset is initially released by Grub-

inger et al. [7] for cross-lingual retrieval. There are 19,627
images and each image is attached with several descriptive
sentences. The vocabulary size is 4,576. The dataset is split
into two subsets: 17,627 images-text pairs for training and
2000 pairs for test. The texts in this dataset are grammat-
ical with little noise. The language in the sentences is well
organized and the content of the sentences is closely related
to images. As for the hand-crafted features, we use word
frequency feature for text modality (the feature dimension
is equal to the size of vocabulary) and CNN feature2 for
image modality (the feature dimension is 4096). The same
hand-crafted features are extracted for other two datasets.

Attribute Discovery. This dataset is created for visual
attribute discovering from noisy text descriptions by Berg
et al. [1], which consists of 37,794 images. Dissimilar to
IAPRTC-12, the texts in Attribute Discovery are in form of
sentences but less informative to images with much noisy.
The vocabulary size is 27,570. 32,794 image-text pairs are
used for training and 5,000 pairs for test. Notably, the con-
tent of images is very simple, since each image only depicts
one product without background clutter.

MSR-Bing Challenge Dataset. This dataset is orig-
inally used for image retrieval challenge [12]. The data is
collected from a practical search engine—Bing3, with the
form of triplets: <query, image, click count>. The mean-
ing of a triplet is that an image is clicked several times by
users under a text query. In this dataset, there are 23M
triplets including 1M images and 11.7M queries, and the
click count varies from zero to thousands. In the exper-
iments, image-query pairs with large click counts are se-
lected, since they are highly correlated. The final dataset
results in 40,000 image-query pairs for training and 5,000
pairs for test. The vocabulary size is 24078. A difference
between this dataset and other datasets is that user queries
are short and arbitrary. We notice that the queries suffer
typos, near-duplications and reversed order. Additionally,
user queries are less structural than sentences, which make
it a big challenge.

4.2 Implement Details
In this section, we describe the settings of the proposed

structure including WCNN, CNN and DNN in detail.
WCNN. The structure of WCNN is determined by three

factors: the embedding size, the number of filters and fil-
ter widths. For IAPRTC-12 and Attribute Discovery, the
embedding size is set to 25, filter widths are {3, 4, 5, 6, 7, 8}
and 50 filters are created for each width. For MSR-Bing
Dataset, the embedding size is also set to 25, filter widths
are {1, 2, 3, 4, 5} and there are 60 filters for each width.
Thus, for all datasets, the output dimension of WCNN is
300. Additionally, all word embeddings and filters are ini-
tialized with random variables. These WCNN settings are
applied to MSDS and MSDS-v2.
CNN. The CNN used in the proposed model has the

2CNN features are extracted using the tool of Caffe [14].
This CNN model is trained based on Imagenet dataset [5].
The output of the 6th layer is used for features.
3www.bing.com

same structure as that in Caffe (details can be found in
http://caffe.berkeleyvision.org/). Furthermore, we use the
trained model on Imagenet to initialize our model, which
is known as supervised pre-training [26]. The output di-
mension of CNN is 4096 that is not equal to the output
dimension of WCNN, thus two extra fully connected layers
with sizes of 1024 and 300 are sequently added to the output
layer of CNN. The parameters of these additional layers are
randomly initialized. This CNN setting is applied in three
datasets for MSDS.

DNN. Image DNN and text DNN are used in MSDS-v1
and MSDS-v2. The input dimension of text DNN depends
on the vocabulary size, since word frequency feature is used.
For IAPRTC-12 and Attribute Discovery, text DNN has two
hidden layers (vocabulary size-512-512), and image DNN
also has two hidden layers (4096-1024-512). For MSR-Bing
Dataset, text DNN has the structure of vocabulary size-
1024-512, and image DNN is the same as the other two
datasets. All parameters for DNNs are initialized with ran-
dom variables.

Input images for CNN are centered and input features for
DNNs are processed to have zero mean and unit variance.
The learning rates for WCNN, CNN and DNN are 0.01,
0.001 and 0.001, respectively. Some other techniques, such
as `2 decay and momentum, are also utilized. Actually, the
one-vs-more scheme can naturally generate much more data.
For example, if there are 100 matched image-text pairs, the
number of inputs can reach to C1

100×C4
99. This may partially

overcome the overfitting.

4.3 Compared Methods and Evaluation Met-
ric

Some comparative methods are listed below:

• CCA. CCA takes the CNN feature and the word fre-
quency feature as inputs to calculate the projection
matrices. In the latent space, we use `2 distance to
measure the similarity between two modalities.

• PLS. Similar with CCA, PLS also project the hand-
crafted features of both modalities to the latent space
in which the similarity between two modalities is mea-
sured by `2 distance.

• corr-AE. This method is proposed in [6]. Two auto-
encoders are used to reconstruct the input hand-crafted
features. Each auto-encoder in this method is for sin-
gle modality, namely the input modality is consistent
with the output modality. Particularly, the input layer
of text auto-encoder is modeled using replicated soft-
max [10]. The middle layer is used for features in latent
space, and the modality similarity is measured by `2
distance.

• cross-corr-AE. This method is also proposed in [6].
Different from corr-AE, cross-corr-AE uses cross-modal
auto-encoders that take one modality as input to re-
construct another modality.

The cross-modal retrieval has two tasks: search images by
text queries and search texts by image queries. In previous
works [25, 37, 32, 20, 35, 34, 36, 6, 33], the evaluation metric
widely used is the mean average precision (MAP). However,
in practice, users always care the top ranked results. Thus,
we suggest to use top@k precision instead of MAP.
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Table 1: Cross-modal retrieval results on three datasets. Two tasks, searching images by text queries and
searching texts by image queries, are evaluated.

(a)IAPRTC-12 (search images by text queries)
Method top@1 top@2 top@4 top@10 top@20 top@40 top@100 top@200 top@500 top@1000
Random 0.0005 0.0010 0.0020 0.0050 0.0100 0.0200 0.0500 0.1000 0.2500 0.5000

CCA 0.0724 0.0943 0.1254 0.1692 0.2171 0.2691 0.3502 0.4511 0.6157 0.8119
PLS 0.1677 0.2569 0.3435 0.5051 0.6152 0.7222 0.8287 0.8899 0.9506 0.9806

corr-AE 0.0285 0.0510 0.0765 0.1412 0.2136 0.3038 0.4730 0.6203 0.8344 0.9429
cross-corr-AE 0.0958 0.1463 0.2171 0.3333 0.4475 0.5647 0.7105 0.8211 0.9363 0.9913

MSDS-v1 0.1750 0.2700 0.3800 0.5590 0.6970 0.8120 0.9170 0.9590 0.9920 0.9980
MSDS-v2 0.1860 0.2800 0.3920 0.5680 0.6990 0.8230 0.9250 0.9660 0.9920 0.9990

MSDS 0.2560 0.3640 0.4710 0.6260 0.7400 0.8360 0.9210 0.9600 0.9900 0.9970

(b)IAPRTC-12 (search texts by image queries)
Method top@1 top@2 top@4 top@10 top@20 top@40 top@100 top@200 top@500 top@1000
Random 0.0005 0.0010 0.0020 0.0050 0.0100 0.0200 0.0500 0.1000 0.2500 0.5000

CCA 0.0938 0.1407 0.1942 0.2773 0.3440 0.4225 0.5082 0.5780 0.6779 0.7895
PLS 0.1035 0.1529 0.2095 0.2992 0.3710 0.4383 0.5423 0.6147 0.7263 0.8405

corr-AE 0.1570 0.2385 0.3502 0.5117 0.6284 0.7554 0.8879 0.9439 0.9913 0.9985
cross-corr-AE 0.1009 0.1483 0.2171 0.3491 0.4664 0.5928 0.7416 0.8405 0.9414 0.9837

MSDS-v1 0.1620 0.2600 0.3810 0.5530 0.6870 0.8120 0.9150 0.9620 0.9800 0.9990
MSDS-v2 0.1680 0.2530 0.3710 0.5300 0.6710 0.7950 0.9160 0.9640 0.9920 1.0000

MSDS 0.2550 0.3620 0.4790 0.6330 0.7420 0.8320 0.9190 0.9610 0.9880 0.9970

(c)Attribute Discovery (search images by text queries)
Method top@1 top@5 top@10 top@25 top@50 top@100 top@500 top@1000 top@2000 top@3000
Random 0.0002 0.0010 0.0020 0.0050 0.0100 0.0200 0.1000 0.2000 0.4000 0.6000

CCA 0.3454 0.4608 0.4958 0.5362 0.5608 0.5782 0.6112 0.6260 0.6502 0.6832
PLS 0.2044 0.3636 0.4320 0.5250 0.6070 0.6792 0.8392 0.8990 0.9444 0.9638

corr-AE 0.0284 0.1036 0.1592 0.2498 0.3422 0.4478 0.7446 0.8528 0.9274 0.9642
cross-corr-AE 0.1066 0.2514 0.3360 0.4686 0.5818 0.6960 0.9168 0.9706 0.9948 0.9978

MSDS-v1 0.1114 0.3100 0.4272 0.5948 0.7208 0.8376 0.9750 0.9896 0.9954 0.9976
MSDS-v2 0.2688 0.5152 0.6184 0.7388 0.8092 0.8696 0.9606 0.9794 0.9920 0.9960

MSDS 0.3298 0.5748 0.6760 0.7904 0.8536 0.9024 0.9618 0.9828 0.9934 0.9968

(d)Attribute Discovery (search texts by image queries)
Method top@1 top@5 top@10 top@25 top@50 top@100 top@500 top@1000 top@2000 top@3000
Random 0.0002 0.0010 0.0020 0.0050 0.0100 0.0200 0.1000 0.2000 0.4000 0.6000

CCA 0.3286 0.4376 0.4746 0.5172 0.5562 0.5874 0.6750 0.7266 0.8060 0.8748
PLS 0.0982 0.1988 0.2530 0.3368 0.4008 0.4810 0.6648 0.7466 0.8468 0.9112

corr-AE 0.0886 0.2464 0.3456 0.4892 0.6038 0.7170 0.9384 0.9810 0.9964 0.9986
cross-corr-AE 0.0560 0.1790 0.2674 0.4120 0.5418 0.6724 0.9308 0.9758 0.9952 0.9978

MSDS-v1 0.1122 0.2978 0.4154 0.5816 0.7124 0.8286 0.9736 0.9908 0.9962 0.9988
MSDS-v2 0.1988 0.4358 0.5528 0.6928 0.7886 0.8560 0.9582 0.9810 0.9928 0.9968

MSDS 0.2986 0.4134 0.5138 0.6548 0.7502 0.8244 0.8968 0.9330 0.9632 0.9802

(e)MSR-Bing Dataset (search images by text queries)
Method top@1 top@5 top@10 top@25 top@50 top@100 top@500 top@1000 top@2000 top@3000
Random 0.0002 0.0010 0.0020 0.0050 0.0100 0.0200 0.1000 0.2000 0.4000 0.6000

CCA 0.0060 0.0126 0.0188 0.0312 0.0484 0.0730 0.1986 0.3200 0.5154 0.7014
PLS 0.0240 0.0650 0.0954 0.1518 0.2072 0.2776 0.5000 0.6226 0.7598 0.8558

corr-AE 0.0010 0.0038 0.0072 0.0154 0.0256 0.0486 0.1638 0.2826 0.4792 0.6674
cross-corr-AE 0.0008 0.0026 0.0060 0.0126 0.0204 0.0420 0.1620 0.2892 0.4958 0.6832

MSDS-v1 0.0106 0.0322 0.0528 0.0966 0.1652 0.2566 0.5332 0.6720 0.8144 0.9090
MSDS-v2 0.0094 0.0326 0.0564 0.1112 0.1776 0.2666 0.5410 0.6870 0.8420 0.9230

MSDS 0.0198 0.0618 0.1002 0.1778 0.2602 0.3634 0.6208 0.7488 0.8748 0.9386

(f)MSR-Bing Dataset (search texts by image queries)
Method top@1 top@5 top@10 top@25 top@50 top@100 top@500 top@1000 top@2000 top@3000
Random 0.0002 0.0010 0.0020 0.0050 0.0100 0.0200 0.1000 0.2000 0.4000 0.6000

CCA 0.0086 0.0236 0.0346 0.0598 0.0834 0.1070 0.2154 0.3266 0.5068 0.6626
PLS 0.0162 0.0494 0.0726 0.1128 0.1494 0.1922 0.3174 0.4586 0.6364 0.7834

corr-AE 0.0042 0.0196 0.0370 0.0774 0.1234 0.1858 0.4166 0.5654 0.7528 0.8816
cross-corr-AE 0.0030 0.0086 0.0128 0.0238 0.0352 0.0564 0.1822 0.3110 0.5094 0.6916

MSDS-v1 0.0104 0.0330 0.0676 0.1404 0.2190 0.2568 0.5169 0.6883 0.8536 0.9230
MSDS-v2 0.0100 0.0346 0.0586 0.1170 0.1780 0.2636 0.5272 0.6772 0.8336 0.9162

MSDS 0.0222 0.0712 0.1072 0.1798 0.2614 0.3634 0.6176 0.7418 0.8734 0.9378

352



4.4 Results and Discussions
We present the results of cross-modal retrieval in Table 1.

For each dataset, searching images by text queries (the first
task) and searching texts by image queries (the second task)
are performed. Notice that, there is only one matched image
(text) for each text (image). The evaluation metric top@k
covers a wide range of k values. In practice, users only con-
centrate on top ranked items. So the discussions are mainly
for top 10% (IAPRTC-12: ≤top@200, Attribute Discovery
and MSR-Bing Dataset: ≤top@500).

4.4.1 On IAPRTC-12 (Table 1(a)-(b))
On IAPRTC-12, MSDS significantly outperforms other

methods including its two variations in both tasks. Par-
ticularly, top@1 performance of MSDS is 25.6% which is
much larger than the second 18.6% obtained by MSDS-v2.
MSDS-v2 is slightly better than MSDS-v1, which indicates
that WCNN offers limited promotion compared with word
frequency feature in the scenario of “clean” texts and small
vocabulary size. PLS performs surprisingly well. As for
the auto-encoder based methods, they achieve unsatisfac-
tory results on the first task (namely searching images by
text queries), particularly when k is small. But they per-
form better on the second task. IAPRTC-12 is the ideal
one among three datasets. The good performance of MSDS
relies on the modality-specific feature learning that extract
good representations for input modalities.

4.4.2 On Attribute Discovery (Table 1(c)-(d))
On Attribute Discovery, the CCA achieves the best per-

formance for top@1 on both tasks. Recall that the images
in this dataset are very simple, this may lead to easy corre-
spondences between images and texts, which is considered
by CCA. PLS can only obtain good performance on the first
task. Although the proposed method MSDS and MSDS-v2
are marginally lower than CCA at top@1 and top@5, they
consistently perform well when k ≤ 100. MSDS-v1 can not
get a good performance when k ≤ 10. This is due to the poor
feature learning ability of DNN for text modality. Text de-
scriptions in this dataset are noisy and less informative, and
the vocabulary size is larger than that in IAPRTC-12. Thus
word frequency feature is less functional. Noticeably, MSDS-
v2 can perform much better than MSDS-v1 with WCNN for
text feature learning. Auto-encoder based methods do not
perform well when k is small, but when k ≥ 500, their per-
formances are beyond CCA and PLS except corr-AE on the
first task.

4.4.3 On MSR-Bing Dataset (Table 1(e)-(f))
As aforementioned, MSR-Bing Dataset comes from a real-

world search engine, making it a big challenge. Overall,
the average performances of all methods are relatively lower
than those in the other two datasets. PLS achieves satis-
factory results on both tasks. MSDS still obtains the best
performances in most cases. Whereas, MSDS-v1 and MSDS-
v2 do not obtain the expected performances. Furthermore,
MSDS-v2 dose not get performance gain compared with
MSDS-v1 due to the short and noisy user queries, since
WCNN is suitable for sequential and structural sentences.
In this dataset, auto-encoder based methods are failed to
give ordinary performances.

In summary, MSDS is constantly superior than other meth-
ods, and its two variations are proved to be effective as

well. The good performances of MSDS and its variations
firmly demonstrate the effectiveness of modality-specific fea-
ture learning and the one-vs-more learning scheme. Al-
though CCA and PLS show their potential to do cross-modal
retrieval, they need in-memory computation, which limits
them to scale to large datasets. Whereas, the proposed
model uses minibatch based stochastic gradient descend op-
timization that is easy to be applied to large datasets. As for
auto-encoder based methods, they do not exhibit the good
potential for cross-modal retrieval.

5. CONCLUSIONS
In this paper, a novel model based on modality-specific

feature learning is proposed. We adopted two convolution
based neural networks, namely CNN and WCNN, to fulfill
feature learning for image and text modalities, respectively.
CNN and WCNN take the modality-specific characteristics
into consideration, and thus they can extract better fea-
tures from raw data. As a result, data from two modalities
are transformed to a latent space where the inter-modality
similarity is calculated via cosine distance. Subsequently,
the one-vs-more learning scheme with maximum posterior
likelihood objective function is used to optimize the model
parameters. In summary, we combine the modality-specific
feature learning with the goal of cross-modal retrieval. Ex-
tensive experiments are carried out on three datasets with
different properties, and the results firmly demonstrate the
effectiveness of the proposed model compared with state-of-
the-art methods.
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