
Do We Need Binary Features for 3D Reconstruction?

Bin Fan∗ Qingqun Kong∗ Wei Sui∗ Zhiheng Wang‡ Xinchao Wang†

Shiming Xiang∗ Chunhong Pan∗ Pascal Fua†
∗ Institute of Automation, Chinese Academy of Sciences

‡ School of Computer Science and Technique, Henan Polytechnic University
† CVLab, EPFL

Abstract

Binary features have been incrementally popular in the
past few years due to their low memory footprints and the
efficient computation of Hamming distance between bina-
ry descriptors. They have been shown with promising re-
sults on some real time applications, e.g., SLAM, where the
matching operations are relative few. However, in computer
vision, there are many applications such as 3D reconstruc-
tion requiring lots of matching operations between local
features. Therefore, a natural question is that is the binary
feature still a promising solution to this kind of application-
s? To get the answer, this paper conducts a comparative
study of binary features and their matching methods on the
context of 3D reconstruction in a recently proposed large
scale mutliview stereo dataset. Our evaluations reveal that
not all binary features are capable of this task. Most of them
are inferior to the classical SIFT based method in terms of
reconstruction accuracy and completeness with a not sig-
nificant better computational performance.

1. Introduction

Matching local features across multiple images captured

from different viewpoints and positions plays a fundamen-

tal role in image based 3D reconstruction [37, 38, 11, 2, 16].

Feature matching involves extracting local keypoints from

images, constructing local descriptors for keypoints, and

establishing point correspondences across different images

according to distances of descriptors. SIFT [20] has been

a popular method for keypoint extraction and description in

the past decade for the task of 3D reconstruction. It uses a

128-dimensional float point vector, which is known as SIFT

descriptor, to represent the local information of a keypoint.

Such a high dimensional float point representation results

in a large memory footprint, limiting its potential in large

scale and embedded applications. Meanwhile, computing

Eculidean distances between SIFT descriptors is also time

consuming when it has to compute lots of them. These dis-

advantages motivate researchers to put efforts on studying

binary descriptors in recent years [6, 3, 18, 33, 42, 10, 39].

Unlike float point descriptors, binary descriptors use a

binary string to describe a keypoint. Due to the characteris-

tic of binary string, storing a binary descriptor only requires

1/32 memory of that used by storing a float point descrip-

tor of the same dimension. Another advantage of binary

descriptor lies in its matching speed. Modern computer ar-

chitecture has fully supported the computation of Hamming

distance between binary descriptors by simple machine in-

structions. Therefore, computing the Hamming distance is

usually 1-2 orders of magnitude faster than computing the

corresponding Eculidean distance. Although the research of

binary descriptors has been flourished in the past few years,

they have not yet been widely used except for some light

weight tasks, e.g., template based object detection [6] and

SLAM [30].

In these light weight tasks, feature matching is usually

conducted on several hundreds of keypoints. In this case,

a bruteforce, linear scan of nearest neighbors is efficient e-

nough, thus favoring Hamming distance over Eculidean dis-

tance. However, in image based 3D reconstruction, high

resolution images and large number of images are ubiq-

uitous. It typically includes thousands or millions image

matching operations (quadratic in the number of input im-

ages), each of which encounters matching tens of thousands

keypoints. For such a large scale feature matching prob-

lem, current solution is using SIFT and its approximate n-

earest neighbor (ANN) searching method, for instance, KD-

Tree [27] and cascade hashing [7]. Even with the most ef-

ficient Hamming distance, linear search of nearest neigh-

bors is impractical according to our experimental results (

Fig. 1(d)). Apparently, ANN methods that are capable of

dealing with binary descriptors are required too.

Most of such ANN methods are proposed recently [40,

28, 29, 9], and they are not well studied. This paper aims

at a comparative study of the recently proposed binary fea-

tures and ANN methods in the task of 3D reconstruction,

2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-1-5090-1437-8/16 $31.00 © 2016 IEEE

DOI 10.1109/CVPRW.2016.144

1126

which is a classical computer vision problem requiring lots

of feature matching operations. It tries to answer the fol-

lowing questions: (1) Is binary feature still a premier choice

for large scale feature matching problem? (2) If so, which

one in the literature performs the best? (3) Which ANN

method works the best? It is worth to point out that al-

though there are many works on local feature evaluation in

the literature, most of them are limited to the image match-

ing level [25, 1, 26, 15].

For this comparative study, a basic but typical 3D recon-

struction system is implemented. By using this system, we

can evaluate different binary features along with differen-

t feature matching methods. As a baseline feature match-

ing method for comparison, SIFT matching with cascade

hashing strategy [7] is also evaluated. We choose to con-

duct evaluations on a recently proposed multiview stereo

dataset (DTU MVS) [17], which contains more than 100 d-

ifferent scenes with high resolution images captured from

49 or 64 viewpoints. Groundtruth 3D points are available,

making it a good testbed for our purpose. We would like to

first summarize our principal findings in the following and

leave details in the remaining of this paper.

(1) In terms of 3D reconstruction accuracy and complete-

ness, Fig. 1(a)-(b) demonstrate that SIFT matching is better

than matching of binary features. Among all the three test-

ed binary features, FRIF [42] performs the best and only

slightly worse than SIFT.

(2) As can be seen in Fig. 1(c), in terms of the number

of recovered cameras by structure from motion, using SIFT

matching is significant better than matching binary features.

Using SIFT matching could recover all the cameras in 34

scenes, while using a binary feature, the best result is 17.

(3) As shown in Fig. 1(d), bruteforce matching of binary

features is very time consuming. By using an ANNmethod,

either float point or binary descriptor could achieve an ac-

ceptable time complexity. Among them, BRISK [18] with

LSH [13, 21] is the most efficient one, followed by ORB

with LSH. Considering the tradeoff between accuracy and

speed, FRIF with LSH is a good choice as it is only slightly

worse than SIFT in performance, but more efficient.

(4) For ANN methods of binary features, Locality Sen-

sitive Hashing(LSH) is consistently better than Hierarchical

Clustering Index (HCI) [28], both in terms of running time

and accuracy, as shown in Fig. 1. Meanwhile, using LSH

can obtain reconstruction results as good as using bruteforce

matching.

(5) To some extent, 3D reconstruction does not rely too

much on the number of recovered cameras. On the basis

of the number of scenes whose cameras are all being re-

covered (Fig. 1(c)), although FRIF is far below than SIFT,

their 3D reconstruction performance does not differ too

much (Fig. 1(a) and Fig. 1(b)).

The remaining parts of this paper are organized as fol-

ORB FRIF BRISK SIFT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
m

Mean Accuracy

BF
LSH
HCI
SIFT+CasHash

(a)

ORB FRIF BRISK SIFT
0

0.5

1

1.5

2

2.5

m
m

Mean Completeness

BF
LSH
HCI
SIFT+CasHash

(b)

ORB FRIF BRISK SIFT
0

5

10

15

20

25

30

35
number of scenes having all cameras recovered

Bruteforce
LSH
HCI
SIFT+CasHash

(c)

ORB FRIF BRISK SIFT
0

1000

2000

3000

4000

5000

tim
e(

s)

average total running time

Bruteforce
LSH
HCI
SIFT+CasHash

(d)

Figure 1. A performance glance of different feature matching

methods. (a) and (b) show the mean accuracy and mean complete-

ness of 3D reconstruction on the DTU MVS dataset [17]. The

lower, the better. (c) depicts the number of scenes that all cameras

have been successfully recovered by structure from motion based

the feature matching results. (d) shows the average running times.

lows. In Section 2, we briefly describe our implemented 3D

reconstruction system. Then, the evaluated local features

and feature matching methods are introduced in Section 3

and Section 4 respectively. After describing the dataset and

evaluation protocol in Section 5, we report and discuss re-

sults in Section 6. Section 7 concludes the paper.

2. Pipeline of 3D Reconstruction

To obtain the 3D points of an object or a scene by only

using a number of images, the popular solutions [2, 11, 16]

usually include three steps: feature matching across im-

ages, structure from motion [37, 8, 43] and dense recon-

struction [12]. Feature matching aims to find the so called

feature tracks. In essential, a feature track corresponds to a

3D point, containing point correspondences across different

images. For unordered and very large scale image collec-

tion, there is usually an additional preprocessing step, aim-

ing to quickly find out possible overlapping image pairs so

as to conduct feature matching only on these pairs to save

matching time [19, 34]. Structure from motion (SFM) takes

a number of feature tracks as input, and outputs a number of

3D points as well as some camera parameters of the input

images. With the recovered cameras, dense reconstruction

is applied to obtain a dense 3D point cloud as the recon-

struction result. The system outputs include a number of

3D points of the scene and the estimated camera parame-

ters of the input images. By comparing these outputs to the

1127

groundtruth, one can evaluate how good the system is, e.g.,

in terms of 3D reconstruction accuracy, completeness and

successfully recovered cameras.

In this paper, we focus on the step of feature matching,

studying its performance when using different binary fea-

tures and the related matching methods. As a result, we fix

the last two steps with typical methods: linear time incre-

mental structure frommotion [43] and PMVS [12] for dense

reconstruction. Their source codes are provided and can be

downloaded from their websites. Meanwhile, no prepro-

cessing is used. In the following, we give a brief introduc-

tion to the evaluated features and their matching methods.

3. Evaluated Local Features
Since there are many binary descriptors as well as feature

detectors in the literature, we try to avoid the combination

problem of detector and descriptor by only choosing those

methods containing both feature detector and descriptor. In

the scope of binary descriptors, there are three such meth-

ods: ORB [33], BRISK [18] and FRIF [42]. For float point

descriptors, there are SIFT [20], SURF [5] and KAZE [4].

As this paper is focused on studying the 3D reconstruction

performance of binary descriptors, we only choose SIFT as

the baseline and at the meantime choose all these three bi-

nary features for a comparative study.

3.1. ORB

To achieve scale and rotation invariance, ORB contains

a multiscale FAST [32] detector and an intensity centriod

based method for computing keypoint orientation. It im-

plements a scale pyramid of the input image and detect-

s FAST keypoints from all levels of the pyramid. A very

loose threshold is firstly used to get as many FAST corners

as possible. Then, the topN corners with the highest Harris

cornerness measure [14] are kept, where N is the expected

number of keypoints. For each keypoint, a reference orien-

tation is computed by taking the direction from the keypoint

to the centriod of a local patch around the keypoint.

For feature description, ORB constructs a binary de-

scriptor by intensity tests, similar to BRIEF [6]. However,

while BRIEF uses a random sampling pattern for intensity

tests, ORB uses a learning based sampling pattern. In ORB,

the intensity tests are selected from all possible candidates

to contain as much information as possible while being less

correlated to each other.

3.2. BRISK

The keypoint detector proposed in BRISK is based on A-

GAST [22], which is an effective extension of FAST detec-

tor. Instead of the Harris cornerness used in ORB, BRISK

defines a FAST score as the saliency measure of a potential

keypoint. Specifically, it is defined as the maximal threshold

with which the point can be detected as a keypoint. Another

difference lies in the implementation of scale space. BRISK

uses two pyramids alternately, one for the octaves and the

other for the intra-octaves, to cover a finer scale space than

ORB does.

Given a sampling pattern with 60 sampling points reg-

ularly sampled from 4 concentric circles, BRISK divides

their formed point pairs into long-distance pairs and short-

distance ones. The long-distance pairs are used to com-

pute an average local gradient to define the orientation of

the keypoint, while the short-distance pairs are used for in-

tensity tests to construct the binary descriptor. To deal with

aliasing effects, the intensity of a sampling point is com-

puted by filtering with a Gaussian kernel whose standard

deviation is proportional to its distance to the keypoint, i.e.,

the central point of the sampling pattern.

3.3. FRIF

While both ORB and BRISK resort to FAST detector for

efficient keypoint detection, FRIF was proposed to approx-

imate the Laplacian of Gaussian (LoG) with rectangular fil-

ters so that to compute its response very quickly. According

to Mikolajczyk and Schmid’s study [23], Laplacian is stable

in characteristic scale selection and has been used in many

feature detectors [24, 20]. In FRIF, it approximates a LoG

template by linear combination of four rectangles. There-

fore, computing the LoG responses on pixels of an image

just requires linear combination of four rectangular filtering

results, which can be done efficiently based on integral im-

ages. To detect extrema of the approximated LoG respons-

es across both spatial and scale spaces, FRIF implements

an identical scale space as BRISK does and uses a similar

strategy for non-maximum suppression as well as location

refinement.

As far as the binary descriptor is concerned, FRIF uses

a similar sampling pattern to BRISK, but proposes a mixed

binary descriptor to achieve better performance. For each

sampling point, it uses its neighboring points to conduct in-

tensity tests to obtain a number of bits as part of the descrip-

tor. It also uses some short-distance point pairs for intensity

tests as the remaining part of the descriptor to capture com-

plementary information. The long-distance point pairs are

used to compute the keypoint orientation as in BRISK.

3.4. SIFT

SIFT constructs a Difference of Gaussian (DoG) scale s-

pace to detect extrema across both spatial and scale spaces

as keypoints. DoG scale space is constructed by subtracting

neighboring images of a Gaussian scale space of the input

image. The keypoint orientation is computed by accumulat-

ing a histogram of gradient orientations from a local circular

region around the keypoint. The orientation corresponding

to the largest bin in this histogram is taken as the keypoint

orientation. Meanwhile, other orientations corresponding to

1128

the peak bins which are within 80% of the largest one are

also taken as the keypoint orientations.

For feature description, SIFT divides the scale and ro-

tation normalized local patch around a keypoint into 4 × 4
grids. In each grid, it computes a histogram of gradient ori-

entations with 8 bins. All these histograms are concatenated

together and normalized to get a 128 dimensional float vec-

tor as the SIFT descriptor. To improve its robustness, the

trilinear interpolation among spatial and orientation bins is

utilized and a Gaussian weight is assigned to each pixel in

the local patch.

3.5. Implementation Details

All the evaluated features have source codes available

on the Internet. For ORB, we use the implementation sup-

plied in the OpenCV 2.4.9. For BRISK and FRIF, we use

the original implementations released by their authors re-

spectively1. For SIFT, we use the implementation supplied

in VLFeat [41]. For a fair comparison, we use the default

parameters of SIFT (since it is the baseline and has been

stably used over 10 years) and tune the detector threshold

for other binary features to make them have a similar av-

erage number of features. The reason for us to do so is

that these binary features are proposed to address a relative

small scale problem, thus using the default parameters rec-

ommended by their authors can only produce a very small

number of features. This leads to a small number of match-

es that further degrades the performance of SFM and final

3D reconstruction results.

For feature matching, we search for the top two nearest

neighbors for a query feature and use their distance ratio (N-

NDR) [20] to decide if two keypoints match or not. The

threshold is set to 0.6, and mutual matching is imposed.

4. Approximate Nearest Neighbor Search
The bruteforce searching of nearest neighbors is only

suitable for matching a small number of descriptors. How-

ever, in case of 3D reconstruction from multiple images,

it usually involves thousands or even millions of image

matching operations as it has to match any two of the in-

put images. Therefore, it is necessary to use some scalable

approximate nearest neighbor (ANN) search methods for

feature matching in this task. Traditionally, KD-Tree [36]

and hierarchical vocabulary tree [31] are used for float point

descriptors. Cascade hashing (CasHash) [7] is a recent-

ly proposed one which we choose to use in our evaluation

for its good performance. For binary descriptors, although

computing their Hamming distance is fast, it is still time

consuming when we have to deal with large scale matching

problem. We will show this point in the experimental sec-

1BRISK: http://www.asl.ethz.ch/people/lestefan/personal/BRISK

FRIF: https://github.com/foelin/FRIF

tion (cf. Fig. 4). Thus ANN is still required for matching bi-

nary descriptors. Locality Sensitive Hashing (LSH) [13, 21]

and Hierarchical Clustering Index (HCI) [28] are two pop-

ular ones suitable for binary descriptors.

4.1. Locality Sensitive Hashing

The basic idea of Locality Sensitive Hashing (LSH) is

to use a set of locality sensitive hashing functions to map

a float vector into a binary string, which is used as the ad-

dress for a hash table to index the database. In this way,

adjacent vectors in the original space are expected to be lo-

cated in the same hash bucket (corresponding to an address

in the hash table) with a high probability. Therefore, AN-

N search of a given query feature just needs to index the

corresponding hash bucket based on its LSH code and then

rank the retrieved data by computing distances in the origi-

nal data space. Since indexing the hash bucket can be exe-

cuted in constant time and the retrieved data is only a few,

such strategy is very efficient in finding approximate nearest

neighbors. Although LSH is originally proposed for ANN

search of float vectors, it can be naturally extended to the

case of binary vectors. In this case, randomly selected ele-

ments in a binary vector are used to construct the hash table

instead of the hashing functions used in the original LSH.

To increase the probability that the true nearest neighbors

are within the retrieved data by indexing hash table (i.e., lie

in the same bucket as the query feature), multiple hash ta-

bles are used to produce a good candidate set. However, for

high dimensional features, it usually requires too many hash

tables to achieve a satisfactory performance. Lv et al. [21]

proposed the multi-probe LSH to achieve the same perfor-

mance with much less number of hash tables. They not only

use the LSH code of a query feature to produce the candi-

date set, but also use the nearby hash buckets of its LSH

code to improve the probability that candidate set contains

the true nearest neighbors. Therefore, a common way is to

use both multiple hash tables and multi-probe query strate-

gy to achieve a higher performance with moderate memory

cost.

4.2. Hierarchical Clustering Index

Hierarchical Clustering Index (HCI) is a kind of data

structure capable of fast matching of binary descriptors us-

ing Hamming distance. The idea is simple. It partitions

and organizes the high dimensional binary data space into a

hierarchical structure similar to the hierarchical vocabulary

tree [31]. Specifically, given a dataset D, it first randomly

selectsm points in D and clusters all points in D by assign-

ing them to the nearest selected point in Hamming space,

where each such cluster is called a branch. This procedure

is repeated iteratively for each branch until the size of clus-

ter is smaller than a predefined threshold (leaf size). After

building hierarchical clustering tree for the given dataset,

1129

for a query binary feature, it first conducts tree traversal to

get a small candidate set and then returns the nearest neigh-

bors according to the Hamming distances between the query

feature and elements in the candidate set. Similar to KD-

Tree, randomly building multiple such hierarchical trees can

largely boost its search performance.

4.3. Cascade Hashing

For our baseline SIFT descriptor, we use the recently

proposed CasHash [7] for ANN searching. It was report-

ed with better performance than the previous widely used

KD-Tree in the task of 3D reconstruction.

Essentially, CasHash uses two steps of LSH to acceler-

ate the process of ANN searching. In the first step, it uses

short LSH code (m bits) along with multi-table strategy (L
hash tables) to quickly eliminate a large proportion of non-

matches, returning a relatively small amount of potential

matches in a constant time. Since the number of remain-

ing candidates is still too large to be effectively searched,

it utilizes a second step of LSH with longer code (n bit-

s). In this way, both the query feature and the candidate

features returned in the first step are mapped into a n bit-
s Hamming space. Then, it builds a hash table to index the

candidate features by setting their Hamming distances to the

query feature as hash key values. Based on this hash table,

it can efficiently return the top k nearest neighbors of the
query feature in this n dimensional Hamming space. Final-
ly, the nearest neighbors of the query feature are obtained

by re-ranking them according to Eculidean distances in the

original feature space.

4.4. Implementation Details

For LSH and HCI, we use their implementations in the

FLANN library [27] in our experiments. According to the

results on several scenes that we randomly checked, the de-

fault parameter settings of LSH and HCI do not perform

well in our task. As a result, we set them based on these ran-

domly selected scenes. Due to the large size of the evaluated

dataset, we can not check all the testing scenes and tune the

parameters accordingly. For LSH, we use the multi-table,

multi-probe LSH, and set the number of hash tables as 4,

the multi-probe level as 1, the LSH code length as 24. For

HCI, we use 2 hierarchical clustering trees, each of which

has 48 branches in each level and has a leaf size of 150.

For the CasHash, we use the source code supplied by its

authors2 along with its default parameters. There are L = 6
hash tables with m = 8 bits LSH code in the first step, and
n = 128, k = 6 in the second step.

2http://www.nlpr.ia.ac.cn/jcheng/papers/CasHashing.tar.gz

5. Experimental Setup
Dataset: We choose to evaluate the 3D reconstruction

performance of different binary features on a recently pub-

lished multiview stereo dataset, known as the DTU MVS

dataset [17]. It contains a total number of 124 different

scenes, covering a wide range of objects and surface ma-

terials. For each scene, it collects images of 1600 × 1200
resolution from 49 or 64 different viewpoints, with 8 differ-

ent illumination conditions. Among these scenes, 80 scenes

contain necessary information (i.e., observability mask) that

is required for the evaluation of reconstruction results as

Jensen et al. did [17]. In this paper, we use the scenes with

49 views, which occupy 58 out of all 80 scenes. We do not

study effects of different lighting conditions, so we just use

the subset with all lights on.

Due to the fact that our evaluated system is fully au-

tomatic and uses the self-calibration to decide the camera

parameters, the coordinate system of the reconstructed 3D

points can be any of those recovered cameras. The recon-

structed coordinate system and the supplied reference co-

ordinate system are related by a 3D similarity transforma-

tion (scaling, rotation and translation). Therefore, we have

to firstly register the reconstructed 3D points to the refer-

ence scans (groundtruth) obtained by a structure light scan-

ner which are supplied in the dataset. To this end, we man-

ually selected three corresponding 3D points between the

reconstructed one and the groundtruth. Then, they are used

to estimate a similarity transformation to register the recon-

structed 3D points.

Evaluation Protocol: After registering the reconstruct-
ed 3D points to the reference coordinate system, we use

the supplied code in the dataset for performance evaluation.

The evaluation protocol is based on that of [35], with some

modifications to make it unbiased and better at handling

missing data and outliers. Basically, it adopts an observ-

ability mask so that the evaluation is only focused on the

visible part of the scene. Please refer to [17] for more de-

tails about how to obtain such masks.

As in [35, 17], accuracy and completeness are used as

quality measures of a reconstruction. According to their

definitions, given a reconstruction and the structured light

reference, the accuracy is computed as the distance from

the reconstruction to the reference scan. On the contrary,

the completeness is computed as the distance from the ref-

erence scan to the reconstruction. For each 3D point in

one (either the reconstructed 3D points or the reference 3D

points), its distance to the other is computed as the closest

distance to all the 3D points in the other.

There are two situations that are commonly encountered

in 3D reconstruction which could induce bias if they are

not treated properly. One is that there are usually more

3D points in the textured regions, while the other one is

outliers. We use the same strategy as in [17] to deal with

1130

these problems. The first issue is addressed by subsam-

pling, i.e., the reconstructed 3D points are subsampled so

that any two points have a distance larger than 0.2mm. For

the second issue, those points with large errors which could

be outliers are simply removed. Specifically, the points

whose distances are larger than 20mm are removed when

computing accuracy and completeness. The mean accura-

cy and completeness are recorded to evaluate the quality

of a reconstruction. The evaluation code implemented with

these considerations and the dataset can be downloaded on:

http://roboimagedata.compute.dtu.dk

All experiments reported in this paper are conducted in a

laptop with Intel 2.5GHz CPU and 8GB memory.

6. Results and Analysis

6.1. Performance

In our implemented 3D reconstruction system, after fea-

ture matching, the linear time incremental SFM [43] is first-

ly conducted to recover the parameters of cameras which

are further input to PMVS [12] to obtain 3D points of the

scene. Therefore, besides reporting performance on the fi-

nal 3D points, we also report the performance of SFM.

Fig. 2 shows the number of successfully recovered cam-

eras by SFM. In Fig. 2(a)-(c), they draw three curves for

ORB, FRIF and BRISK respectively. Each of these curves

corresponds to a specific feature matching method, includ-

ing LSH, HCI and bruteforce as the baseline comparison.

For a clearer visual illustration, the abscissas of these sub-

figures are rearranged so that the number of recovered cam-

eras is non-descending for the bruteforce method. From

them, we can find that LSH is consistently better than H-

CI independent of the used binary features. When using

ORB and FRIF, LSH is even better than bruteforce as it re-

sults in more cameras being recovered by SFM. While for

BRISK, LSH is a little worse than bruteforce. When only

considering the number of fully recovered scenes (i.e., the

scene has all cameras being recovered), bruteforce is bet-

ter than LSH for all tested binary features, which can also

be read from Fig. 1(c). In Fig. 2(d), it compares the per-

formance of different local features. Due to the good per-

formance of LSH according to Fig. 2(a)-(c), it is chose to

shown in Fig. 2(d) with different binary features to make a

comparison to SIFT matching with CasHash. Its abscissa is

also rearranged so that the number of recovered cameras is

non-descending for ORB. Overall, SIFT gets a significantly

better result than all the binary features. Out of the 58 tested

scenes, it recovers more than 44 cameras for 57 scenes, the

remaining one scene has 37 cameras being recovered. What

is more, it successfully recovers all cameras for 34 scenes,

which is much better than other binary features (also shown

in Fig. 1(c)).

Fig. 3 shows the mean accuracy and completeness for

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50
number of recovered cameras of ORB

scene

Bruteforce
LSH
HCI

(a)

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50
number of recovered cameras of FRIF

scene

Bruteforce
LSH
HCI

(b)

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50
number of recovered cameras of BRISK

scene

Bruteforce
LSH
HCI

(c)

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50
number of recovered cameras

scene

SIFT+CasHash
ORB+LSH
BRISK+LSH
FRIF+LSH

(d)

Figure 2. Number of recovered cameras by structure from mo-

tion. (a)-(c) are the results of different matching methods for ORB,

FRIF and BRISK respectively. For a clear comparison, (d) draws

the results across different local features, where the results of LSH

are shown with the binary features as it is the best according to (a)-

(c). In order to get a better visual illustration, the tested scenes are

rearranged in each subfigure so that the result is non-descending

for bruteforce in (a)-(c) and for ORB+LSH in (d).

the tested scenes. For a specific curve, each point corre-

sponds to the result of a scene. There is one scene that 3D

reconstruction would fail when using some of the evaluated

feature matching methods, thus, it is excluded in Fig. 3. In

other words, Fig. 3 actually gives the results of 57 tested

scenes, for each of which all the evaluated methods could

lead to a 3D point cloud of the scene. The results of OR-

B, FRIF and BRISK are shown in Fig. 3(a)-(c) respective-

ly. Top row shows the mean accuracy of each tested scene

obtained by different feature matching methods, while the

bottom row is the mean completeness. Obviously, HCI per-

forms the worst. LSH has a similar performance to brute-

force. As far as the binary feature is concerned, using ORB

usually leads to worse results than using FRIF or BRISK.

The latter two have a similar performance, with FRIF s-

lightly better. To have a clearer comparison among different

local features, we plot together the results of all the evaluat-

ed features in Fig. 3(d), where binary features use LSH. It is

apparent that ORB is the worst, followed by BRISK. SIFT

performs the best, and closely followed by FRIF. This can

also be read from the average results shown in Fig. 1(a) and

Fig. 1(b).

Combining the results in Fig. 2 and Fig. 3, it is inter-

esting to see that although FRIF does not perform as well

as SIFT in SFM, their final results in 3D reconstruction are

similar. By inspecting Fig. 2(d), we can find that FRIF al-

1131

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8
Mean Accuracy of ORB

scene

m
m

BF
LSH
HCI

0 10 20 30 40 50 60
0

2

4

6

8

10

12
Mean Completeness of ORB

scene

m
m

BF
LSH
HCI

(a)

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8
Mean Accuracy of FRIF

scene

m
m

BF
LSH
HCI

0 10 20 30 40 50 60
0

2

4

6

8

10

12
Mean Completeness of FRIF

scene

m
m

BF
LSH
HCI

(b)

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8
Mean Accuracy of BRISK

scene

m
m

BF
LSH
HCI

0 10 20 30 40 50 60
0

2

4

6

8

10

12
Mean Completeness of BRISK

scene

m
m

BF
LSH
HCI

(c)

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8
Mean Accuracy

scene

m
m

SIFT+CasHash
ORB+LSH
BRISK+LSH
FRIF+LSH

0 10 20 30 40 50 60
0

2

4

6

8

10

12
Mean Completeness

scene

m
m

SIFT+CasHash
ORB+LSH
BRISK+LSH
FRIF+LSH

(d)

Figure 3. 3D reconstruction performance for different local features and their matching methods. The top row shows the mean accuracies

for different scenes, while the bottom row is the mean completeness. (a)-(c) are the results of ORB, FRIF and BRISK respectively by

using different matching methods. (d) gives the comparison results across all the evaluated local features, where LSH is utilized for binary

features due to its good performance.

most has an identical trend as SIFT in terms of the number

of recovered cameras. It just recovers several less cameras

than that recovered by SIFT. Considering the fact that FRIF

has a similar performance in 3D reconstruction as SIFT,

this indicates that some recovered cameras are redundan-

t for PMVS. This explanation is reasonable, because there

are overlaps between the viewpoints of different cameras.

Therefore, in some cases, missing information caused by

one unrecovered camera can be compensated by its neigh-

boring cameras that have been successfully recovered. Con-

sequently, it is not always necessary to recover all cameras

to reconstruct the whole scene. However, a common sense

is that the more recovered cameras, the better for 3D recon-

struction. At least, it will not degrade the performance if

it does not help as shown by our results. To sum up, re-

covering as many cameras as possible is a sufficient but not

necessary condition for a good 3D reconstruction. There

are some key camera positions with respect to the imaged

scene.

Besides the higher discriminative ability of descriptor,

another reason for the superior performance of FRIF over

BRISK and ORB may be lie in its keypoint detector. FRIF

is to detect blob like keypoints as SIFT does, while both

BRISK and ORB detect keypoints based on FAST detec-

tor that responses largely on corners. Due to the fact that

both FRIF and SIFT are consistently better than BRISK and

ORB, we conclude that blob like keypoints could be more

suitable for tasks of SFM and 3D reconstruction.

6.2. Timing

We first examine the timing performance of different fea-

ture matching methods. The feature matching time as a

function of the number of features is plotted in Fig. 4. Here,

the feature matching time is the total time used for match-

ing all image pairs in a scene, and the number of features is

averaged over all images in the scene. Therefore, for a giv-

en feature matching method (e.g., ORB+LSH), each scene

corresponds to a point in this figure. From Fig. 4(a)-(c), it is

clear that bruteforce is inefficient even if its basic computa-

tion is the most efficient Hamming distance. For a number

of N features, the complexity of bruteforce is O(N2) as it
has to linear scan over all features. For ANNmethods, since

it first quickly selects a small number of candidates and then

conducts linear scan among them, its complexity is O(Nd),
where d < 2 and depends on the used method and binary
feature. A good ANN method for a specific binary feature

should have d as close to 1 as possible. We can find from
the results in Fig. 4 that LSH is consistently better than H-

CI for all tested binary features. Meanwhile, LSH is more

efficient when applying to BRISK than to FRIF. The reason

could be that the binary elements in BRISK are scattered

more uniformly in data than those in FRIF. This will lead

to a more uniform size distribution of the hash buckets in

LSH, which further reduces the query time. Fig. 4(d) com-

pares all the evaluated binary features to the baseline SIFT

matching. Due to the superior performance of LSH over H-

CI, only the results with LSH are drawn in Fig. 4(d). It is

interesting to find that SIFT+CasHash is very competitive

in matching time, only inferior to the best BRISK+LSH.

We then study the total running times for different meth-

ods, as well as the timing results in each part of the 3D

reconstruction system. Fig. 5(a) shows the statistic of to-

tal running time by using different binary feature matching

methods. For a specific method, such as ORB+LSH, its

1132

3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000
Timing Performance of ORB

number of features

m
at

ch
in

g
tim

e
(s

)

Bruteforce
LSH
HCI

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

1000

2000

3000

4000

5000

number of features

m
at

ch
in

g
tim

e
(s

)

Timing Performance of FRIF

Bruteforce
LSH
HCI

(b)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

1000

2000

3000

4000

5000
Timing Performance of BRISK

number of features

m
at

ch
in

g
tim

e
(s

)

Bruteforce
LSH
HCI

(c)

0 0.5 1 1.5 2 2.5
x 104

0

500

1000

1500

number of features

m
at

ch
in

g
tim

e
(s

)
SIFT+CasHash
ORB+LSH
BRISK+LSH
FRIF+LSH

(d)

Figure 4. (a)-(c) are the timing results of different matching meth-

ods for ORB, FRIF and BRISK respectively. For a clear compar-

ison among different local features, (d) draws the timing results

across different local features. Since LSH is more effective than

HCI, binary features matched by LSH are chose to depicted in (d).

Note that the recorded times are the total times used for match-

ing all image pairs in a scene, and the number of features is the

average number for all images in the scene.

running time is compared to the baseline SIFT+CasHash.

We count the number of scenes for which the baseline has

more running time and show the results as bars in Fig. 5.

Therefore, a higher bar means there are more scenes that

the tested method is more efficient than SIFT+CasHash. As

can be seen, the most time efficient method is BRISK+LSH,

closely followed by FRIF+LSH. We can also find that when

using HCI instead of LSH, both BRISK and FRIF degrade

a lot in terms of speed. Although SIFT+CasHash takes

less time in matching features than FRIF+LSH and OR-

B+LSH (cf. Fig. 4(d)), its total running time is higher than

theirs because of the fast feature extraction procedures of

FRIF and ORB. This is shown in Fig. 5(b), where the sum-

ming time of feature extraction and feature matching of

SIFT is higher than those of ORB+LSH and FRIF+LSH.

For running time of SFM shown in Fig. 5(c), all binary

methods are faster than SIFT+CasHash. This is due to the

fact that the larger number of feature tracks can be generat-

ed by SIFT+CasHash. Finally, since there are more recov-

ered cameras obtained by SIFT+CasHash, it is reasonable

to spend more time on PMVS than other methods as shown

in Fig. 5(d). Meanwhile, as demonstrated in Fig. 2(d),

FRIF+LSH performs very close to SIFT+CasHash for SFM,

so does it in time usage of PMVS.

LSH HCI
0

10

20

30

40

50

60
scenes (total running time < SIFT)

ORB
FRIF
BRISK

(a)

LSH HCI
0

10

20

30

40

50

60
scenes (feature track generating time < SIFT)

ORB
FRIF
BRISK

(b)

LSH HCI
0

10

20

30

40

50

60
scenes (SFM time < SIFT)

ORB
FRIF
BRISK

(c)

LSH HCI
0

10

20

30

40

50

60
scenes (PMVS time < SIFT)

ORB
FRIF
BRISK

(d)

Figure 5. Running time comparison of different feature match-

ing methods. For a specific feature matching method, e.g., OR-

B+LSH, the number of scenes for which it takes less time than

SIFT+CasHash is given in this figure. (a) shows the total running

time of 3D reconstruction, and (b)-(d) show the running times of

the three steps of 3D reconstruction. They are, (b) running time

of generating feature tracks, (c) running time of SFM, and (d) run-

ning time of PMVS. The dash red line indicates the half size of

the dataset. A bar higher than its position implies there are more

scenes using time less than the baseline method (SIFT+CasHash).

7. Conclusion
In this paper, we conduct a performance evaluation of

binary features for 3D reconstruction. We have tested three

popular ones (ORB, FRIF and BRISK) and two related AN-

N matching methods (LSH and HCI). Based on the ex-

perimental results on a recently proposed 3D reconstruc-

tion dataset, we find that FRIF performs the best among

these binary features. It turns out that the advantage of

using binary features lies in its speed, but the most effi-

cient BRISK achieves this at a large cost of performance

degradation. Meanwhile, although with the most efficient

Hamming distance, bruteforce matching of binary features

is still impractical and requires some kind of ANN meth-

ods, for which LSH is consistently better than HCI in our

evaluations. Overall, FRIF achieves a satisfactory tradeoff

between accuracy and running time, with a slightly worse

accuracy and a little faster running time than SIFT.

8. Acknowledgements
This work is supported by the National Natural Science

Foundation of China (61272394, 61573352, 61472119) and

the Beijing Natural Science Foundation (4142057). Bin Fan

is partly supported by the Chinese Scholarship Council.

1133

References
[1] H. Aanæs, A. L. Dahl, and K. Steenstrup Pedersen. Inter-

esting interest points. International Journal of Computer Vi-
sion, 97(1):18–35, 2012. 2

[2] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,

S. M. Seitz, and R. Szeliski. Building Rome in a day. Com-
munications of the ACM, 54(10):105–112, 2011. 1, 2

[3] A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast reti-

na keypoint. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 510–517, 2012. 1

[4] P. Alcantarilla, A. Bartoli, and A. Davison. KAZE features.

In European Conference on Computer Vision, pages 214–
227, 2012. 3

[5] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. SURF: Speed-

ed up robust features. Computer Vision and Image Under-
standing, 110(3):346–359, 2008. 3

[6] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski,

C. Strecha, and P. Fua. BRIEF: Computing a local binary

descriptor very fast. IEEE Transaction on Pattern Analysis
and Machine Intelligence, 33(7):1281–1298, 2012. 1, 3

[7] J. Cheng, C. Leng, J. Wu, H. Cui, and H. Lu. Fast and accu-

rate image matching with cascade hashing for 3D reconstruc-

tion. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8, 2014. 1, 2, 4, 5

[8] D. Crandall, A. Owens, N. Snavely, and D. Huttenlocher.

SfM with MRFs: Discrete-continuous optimization for

large-scale structure from motion. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(12):2841–
2853, 2013. 2

[9] M. Esmaeili, R. Ward, and M. Fatourechi. A fast approx-

imate nearest neighbor search algorithm in the hamming s-

pace. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(12):2481–2488, 2012. 1

[10] B. Fan, Q. Kong, T. Trzcinski, Z. Wang, C. Pan, and

P. Fua. Receptive fields selection for binary feature descrip-

tion. IEEE Transactions on Image Processing, 23(6):2583–
2595, 2014. 1

[11] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson,

R. Raguram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazeb-

nik, and M. Pollefeys. Building Rome on a cloudless day. In

European Conference on Computer Vision, pages 368–381,
2010. 1, 2

[12] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-

view stereopsis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(8):1362–1376, 2010. 2, 3, 6

[13] A. Gionis, P. Indyk, and R. Motwani. Similarity search in

high dimensions via hashing. In International Conference
on Very Large Data Bases, pages 518–529, 1999. 2, 4

[14] C. Harris and M. Stephens. A combined corner and edge

detector. In Alvey Vision Conference, pages 147–151, 1988.
3

[15] J. Heinly, E. Dunn, and J.-M. Frahm. Comparative evaluation

of binary features. In European Conference on Computer
Vision, pages 759–773, 2012. 2

[16] J. Heinly, J. L. Schonberger, E. Dunn, and J.-M. Frahm. Re-

constructing the world* in six days. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 3287–
3295, 2015. 1, 2

[17] R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, and H. Aanæs.

Large scale multi-view stereopsis evaluation. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2014.
2, 5

[18] S. Leutenegger, M. Chli, and R. Siegwart. BRISK: Binary

robust invariant scalable keypoints. In International Confer-
ence on Computer Vision, pages 2548–2555, 2011. 1, 2, 3

[19] Y. Lou, N. Snavely, and J. Gehrke. MatchMiner: Efficient

spanning structure mining in large image collections. In Eu-
ropean Conference on Computer Vision, pages 45–58, 2012.
2

[20] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision,
60(2):91–110, 2004. 1, 3, 4

[21] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Mul-

tiprobe LSH: Efficient indexing for high-dimensional sim-

ilarity search. In International Conference on Very Large
Data Bases, pages 950–961, 2007. 2, 4

[22] E. Mair, G. Hager, D. Burschka, M. Suppa, and G. Hirzinger.

Adaptive and generic corner detection based on the acceler-

ated segment test. In European Conference on Computer
Vision, pages 183–196, 2010. 3

[23] K. Mikolajczyk and C. Schmid. Indexing based on scale in-

variant interest points. In International Conference on Com-
puter Vision, pages 525–531, 2001. 3

[24] K. Mikolajczyk and C. Schmid. Scale & affine invariant in-

terest point detectors. International Journal of Computer Vi-
sion, 60(1):63–86, 2004. 3

[25] K. Mikolajczyk and C. Schmid. A performance evaluation

of local descriptors. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(10):1615–1630, 2005. 2

[26] O. Miksik and K. Mikolajczyk. Evaluation of local detectors

and descriptors for fast feature matching. In International
Conference on Pattern Recognition, pages 2681–2684, 2012.
2

[27] M. Muja and D. G. Lowe. FLANN: Fast li-

brary for approximate nearest neighbors. [Online].

http://www.cs.ubc.ca/research/flann. 1, 5

[28] M. Muja and D. G. Lowe. Fast matching of binary features.

In Ninth Conference on Computer and Robot Vision, pages
404–410, 2012. 1, 2, 4

[29] M. Muja and D. G. Lowe. Scalable nearest neighbor algo-

rithms for high dimensional data. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 36(11):2227–2240,
2014. 1

[30] R. Mur-Artal, J. Montiel, and J. Tardos. ORB-SLAM: A ver-

satile and accurate monocular SLAM system. IEEE Trans-
actions on Robotics, 31(5):1147–1163, 2015. 1

[31] D. Nistér and H. Stewénius. Scalable recognition with a vo-

cabulary tree. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 2161–2168, 2006. 4

[32] E. Rosten and T. Drummond. Machine learning for high

speed corner detection. In European Conference on Com-
puter Vision, 2006. 3

1134

[33] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:

an efficient alternative to SIFT or SURF. In International
Conference on Computer Vision, pages 2564–2571, 2011. 1,
3

[34] J. L. Schonberger, A. C. Berg, and J.-M. Frahm. PAIGE:

PAirwise Image Geometry Encoding for improved efficiency

in structure-from-motion. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 1009–1018, 2015. 2

[35] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szelis-

ki. A comparison and evaluation of multi-view stereo re-

construction algorithms. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 519–528, 2006. 5

[36] C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast

image descriptor matching. In IEEE Conference on Comput-
er Vision and Pattern Recognition, pages 1–8, 2008. 4

[37] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism:

Exploring photo collections in 3D. ACM Transactions on
Graphics, 25:835–846, 2006. 1, 2

[38] C. Strecha, T. Pylvanainen, and P. Fua. Dynamic and scalable

large scale image reconstruction. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 406–413,
2010. 1

[39] T. Trzcinski, M. Christoudias, and V. Lepetit. Learning im-

age descriptors with boosting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(3):597–610, 2015. 1

[40] T. Trzcinski, V. Lepetit, and P. Fua. Thick boundaries in

binary space and their influence on nearest-neighbor search.

Pattern Recognition Letters, 33(16):2173–2180, 2012. 1
[41] A. Vedaldi and B. Fulkerson. VLFeat: An open

and portable library of computer vision algorithms.

http://www.vlfeat.org/, 2008. 4

[42] Z. Wang, B. Fan, and F. Wu. FRIF: Fast robust invariant

feature. In British Machine Vision Conference, 2013. 1, 2, 3
[43] C. Wu. Towards linear-time incremental structure from mo-

tion. In International Conference on 3D Vision, pages 127–
134, 2013. 2, 3, 6

1135

