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Abstract. In multi-agent scenarios such as sports videos, multiple ac-
tions are played by different players. Such actions do not necessary ap-
pear strictly sequentially but can happen in parallel. Approaches which
only consider a single stream of actions are not competent to handle
such scenarios. The temporal and causal relationships between the ac-
tion streams such as “concurrence”, “mutually exclusion” and “trigger-
ing” need to be captured so as to correctly recognize the actions. In this
paper, a novel method is presented for action recognition in multi-agent
scenarios leveraged by analyzing the relationships among the temporal
contextual actions. The multi-streams of actions are modeled by a Dy-
namic Baysian Network (DBN) containing several temporal processes
corresponding to each type of action. Comparing to the Coupled Hid-
den Markov Model (CHMM), only the necessary interlinks between the
temporal processes are built by a structure learning algorithm to cap-
ture the salient relationships. Empirical results on real-world video data
demonstrate the effectiveness of our proposed method.

Keywords: Multi-agent action recognition, graphical model, structure
learning.

1 Introduction

Recognizing human actions from videos is a task of obvious scientific and practi-
cal importance. In this paper we consider the problem of recognizing actions in
multi-agent scenarios, which is challenging due to that the interactions between
actions would lead to large state spaces and complicate the already uncertain
low-level visual processing. In multi-agent scenarios, group or interactive actions
from multiple players may occur sequentially or in parallel. It is not uncommon
to have primitive actions with parallel streams. One action does not need to
be completed before continuing on to the later one. For example, in the case of
basketball, “the offensive player is shooting while the defender is blocking him”
(shown in Fig. 1), which includes parallel actions. However, most of the existed
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Fig. 1. Interactive actions in multi-agent scenario. The action shooting and blocking are
highly likely to co-occur together. The frame is captured from the OSUPEL basketball
dataset [2].

approaches such as Finite State Machines (FSMs) [5] or Hidden Markov Mod-
els (HMMs) [8] consider the scenario as a temporally ordered single stream of
actions.

In multi-agent scenarios such as sports videos, one action could maintain cer-
tain relationships with the contextual ones which are governed by the domain
knowledge and certain rules of thumb. These relationships may impose a tempo-
ral structure on constituent primitives, which can be leveraged to correctly rec-
ognize the actions. Besides the “concurrence” relationship between the parallel
actions described above, there are two other important relationships: “mutually
exclusion” and “triggering”. If two actions are mutually exclusive, it means that
their concurrence is inhibited. For example, “if one player is dribbling, he cannot
be holding the ball at the same time”. The “triggering” relationship indicates
that one action is caused by another, such as “one player passing the ball leads
to the other one catching the ball”.

To capture these kinds of relationships, we propose to use a Dynamic Baysian
Network (DBN) to represent the temporal structure on top of the actions. A
DBN is a directed acyclic graphical model, which models the temporal evolution
of a set of random variables X over time. In the DBN, each variable corresponds
to one type of action, and its evolution forms a temporal process. To model the
interactions between the actions, instead of being fully connected between the
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temporal processes, the interlinks are discovered by a structure learning algo-
rithm so as to capture the salient temporal relationships while still controlling
the complexity of the network.

Our main contribution is providing a system that efficiently and robustly
recognizes actions in multi-agent scenarios by using (1) temporal context analy-
sis for capturing meaningful temporal and causal relationships to disambiguate
amongst noisy visual observations and (2) structure learning for discovering
salient interlinks in the DBN model instead of fully connected and make it
computationally tractable.

2 Related Work

There has been considerable research exploring how to represent and model mul-
tiple action interactions. The typical representations are Finite State Machines
(FSMs) [5] or Hidden Markov Models (HMMs) [8], in which actions cause state
transitions in a strictly sequential order and a successful transition through the
stream implies the recognition of the action. Unfortunately, these type of ap-
proaches may not handle the scenarios with multiple streams of actions. A main
difficulty with these approaches are that the system can only be in one state
at a time, they cannot well represent parallel actions. Coupled Hidden Markov
Model (CHMM) [1,7] was presented by Brand et al., which factorize the actions
into two parallel transition processes to deal with the complexity in highly cou-
pled T’ai Chi hand movements. However, the transition model structure of the
CHMM is fully connected. Direct extensions of this model to multi-agent scenar-
ios which contains multiple transition precesses may encounter computationally
tractability issues.

Expert domain knowledge can be leveraged to create models for multi-agent
actions. Ryoo and Aggarwal [9] model two person interactions by a context-free
grammar (CFG), where high-level interactions are defined hierarchically using
logical spatial and temporal predicates on sub-actions. The CFG parsing is not
probabilistic and can be sensitive to low-level failures. Brendel et al. proposed
Probabilistic event logic (PEL) [2] to capture temporal relationship between
actions based on confidence weighted formulas. However, the temporal relation-
ships must be known in advance in order to manually encode them into the event
logic formulas.

Based on the limitations of the approaches mentioned above, we need to find a
method which can automatically discover interactive relationships so as to model
multiple streams of actions. In addition, it should be a probabilistic model which
can handle the uncertainty brought by the low-level visual processing.

3 Relationships Modeling Using a DBN

We propose to use a DBN to model and learn the relationships among the actions.
Let Xt represent a set of random variables at a discrete time slice t. A DBN is
defined as B = (G,Θ), where G is the model structure, and Θ represents the
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model parameters, i.e., the conditional probabilistic distributions for all nodes.
A DBN is a time-sliced model, as shown in Fig. 2(a), where each time slice
is used to represent the snapshot of certain evolving temporal processes at a
time instant. The neighboring time slices are interconnected by the links joining
certain temporal nodes from two consecutive slices. Hence, to specify a DBN, we
need to define the intra-slice topology (within a slice), the inter-slice topology
(between two slices), as well as the parameters for the first two slices. Such a
two-slice temporal Bayesian network is often called a 2TBN, as shown in Fig.
2(b). A 2TBN is used as a template which can be unrolled to the whole DBN.
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Fig. 2. (a) The DBN for T + 1 time slice, and (b) the corresponding 2TBN represen-
tation

Given a DBN model, the joint probability over all variables X0, ..., XT is
computed as follows:

P (x0, ..., xT ) = P (x0)
T−1∏

t=0

P (xt+1|xt), (1)

where xt represents the sets of values taken by the random variables X at time
t, P (x0) captures the joint probability of all variables in the first slice, and
P (xt+1|xt) represents the transition probability.

3.1 Structure Initialization

The DBN model learning is started by structure initialization. An initial 2TBN
structure is derived by analyzing the relationships among temporal contextual
actions in the training data. Based our definition, there are mainly three types
of relationships for actions at two adjacent time slices: concurrence, mutually
exclusion and triggering. Concurrence and mutually exclusion can be captured
in the intra-slice topology, while triggering can be captured in the inter-slice
topology.

In the training data, the “concurrence” relationship is discovered by the statis-
tic of the concurrences between each pair of actions. The pairwise concurrence
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dependency between two actions is computed as follows:

P (At
i = 1|At

j = 1) =
NAt

i+At
j

NAt
j

, (2)

where NAi+Aj is the total number of concurrences of action Ai and Aj in the
same time slice, and NAj is the total number of occurrences of Aj in the whole
database.

The “mutually exclusion” relationship is captured by the statistic of the ab-
sence of one action given the presence of the other one. The pairwise negative
dependency between two actions is computed as follows:

P (At
i = 0|At

j = 1) =
N¬At

i+At
j

NAt
j

, (3)

where N¬At
i+At

j
is the total number of absences of At

i given the presence of At
j ,

and NAt
j
is the total number of occurrences of At

j in the whole database.

The “triggering” relationship indicates that one action’s presence at the cur-
rent time slice is caused by another one’s presence at the previous time slice. We
obtain the statistic of such situation in the training data. The pairwise causal
dependency between two actions is computed as follows:

P (At
i = 1|At−1

i = 0, At−1
j = 1) =

NAt
i+¬At−1

i +At−1
j

N¬At−1
i +At−1

j

, (4)

where NAt
i+¬At−1

i +At−1
j

is the total number of the presences of Ai at the current

time slice given its absence and the presence of Aj at the previous time slice,
and N¬At−1

i +At−1
j

is the total number of the absence of Ai and the presence of

Aj at the same time slice in the database.
We have obtained the three types of pairwise dependency for each pair of

actions by temporal contextual analysis. The first two types of dependency are
represented within a time slice. If they are higher than predefined thresholds, we
assume that the two actions have strong dependency and build a link between the
two nodes in the intra-slice topology. The last type of dependency is represented
between two adjacent time slices. Similarly, if it is higher than a predefined
threshold, we build a link between the two nodes in the inter-slice topology.
This way, an initial 2TBN structure has been constructed.

3.2 Model Learning

After analyzing the contextual relationships, we obtain an initial DBN structure.
Although it is our best guess based on the contextual analysis, it is necessary to
use training data to refine it with a structure learning algorithm. The structure
learning algorithm first defines a score that describes the fitness of each possible
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structure G to the observed data, and then, the best fitted network structure is
identified with the highest score. The fitness score is defined as:

Score(G) = logP (D,G) = logP (G) + logP (D|G), (5)

where logP (G) is the log prior probability of the DBN structure. We do not give
an equal prior to all possible structures. Instead, we assign a higher probability to
the prior structure we initialized. logP (D|G) is the log likelihood of the training
data which can be approximated by the Bayesian information criterion (BIC) as
follows:

logP (D|G) ≈ logP (D|G, Θ̂)− d

2
log(K), (6)

where Θ̂ is the set of parameters of G which maximizes the likelihood of the
training data D, d is the number of free parameters in G, and K is the number
of training data D. The first term is used to measure how well the model fits the
data, and the second term is a penalty term to punish the structure complex-
ity. To obtain the model parameters Θ̂, we maximize the posterior distribution
p(Θ|D,G) (MAP), given the training data D and the current structure G:

p(Θ|D,G) =

n∏

i=1

mi∏

j=1

p(θij |D,G), (7)

where n is the number of variables in G, and mi is the number of all the par-
ent instantiations for variable Xi. Since the training data set is complete, each
parameter θij can be calculated by a counting process. After we define the fit-
ness score of the model, we can use an iterative way to learn the structure and
parameters of the DBN. We firstly start with the initial DBN structure G0,
learn the parameters based on G0 and compute the fitness score. Secondly, we
generate the nearest neighbors of G0 by adding, deleting, or reversing a single
link, subjecting to the acyclicity constraint. Then we update G0 with the struc-
ture which has the maximum score among the neighbors. The iteration process
will be terminated until the score converges or the maximum iteration time is
reached.

3.3 DBN Inference

Once the DBNmodel has been learned, each node is attached with an observation
node so as to form a two-layer model. The top layer encodes the actions and
their temporal and causal relationships. The bottom layer comprises a set of
observation nodes that ingest the preliminary detection from low-level features.
During action recognition, the node in the top layer are hidden and must be
inferred from the observations in the bottom layer. The inference is conducted
by finding the most probable explanation (MPE) of the evidence.

Let At
1:n represents all the nodes for actions at time t, where n is the num-

ber of action nodes. Given the available evidence until time t: O1:t
A1:n

, the action
nodes are inferred over time by maximizing the probability p(At

1:n|O1:t
A1:n

). The
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probability can be factorized by performing the DBN updating process as de-
scribed in [6], and the inference can be solved by the widely used junction tree
inference algorithm.

By DBN inference, we can employ the contextual information and mutual
dependencies in a holistic way to refine the isolated preliminary detection results,
and thus correctly recognize the actions in the multiple action streams.

4 Experimental Results

To evaluate the performance of our action recognition methods in multi-agent
scenario, we choose the OSUPEL basketball dataset [2]. The OSUPEL basketball
dataset is publicly available and it consists of multiple players playing against
each other in a real basketball court. There are six primitive actions in the
dataset: Pass, Catch, Hold Ball, Shoot, Jump and Dribble. This dataset is suit-
able for evaluating localization and recognition of multiple primitive actions
characterized by rich spatiotemporal constraints.

Before discussing the recognition results in the multiple action streams, we
first briefly describe the method on how to get the visual evidence of the actions
from low-level features. The computed tracks of the players in the videos have
been already provided in the dataset. We extract features from the bounding
box of the computed tracks and use an HMM to detect each action separately.
The features are derived from the histogram of oriented gradients (HOG)[3] and
histogram of oriented optical flow (HOF) [4]. We train HMMs for each action
class and use them to detect actions in the video separately. Please note that the
preliminary detection results are not satisfying. The performance of the noisy
detectors on the OSUPEL basketball data are summarized in Table 1. They can
only be considered as noisy evidences to infer the true occurrence of each action.

Table 1. Preliminary action detection performance

Dribble Jump Shoot Pass Catch Hold
Recall 0.52 0.33 0.20 0.25 0.24 0.49
Precision 0.86 0.63 0.43 0.74 0.67 0.64

We feed the preliminary detection results as the observation values into the
bottom layer of the DBN model so as to infer the state of the hidden nodes in the
top layer. Fig. 3 shows the inference results on an example sequence with 10000
frames in the the OSUPEL basketball dataset. It contains 6 plots corresponding
to 6 action classes. In each plot, the ground truth of the action occurrences is
shown in the first row; the inference results are shown in the second row; the
observations from the low-level detectors are shown in the third row. It is clear
that using the holistic inference based on the contextual information, our model
can correct the missing errors and false alarms in the preliminary detection
results, and thus improve the action recognition accuracy.
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Fig. 3. Comparison of inference results with ground truth and observations from low-
level detector on an example sequence in the OSUPEL basketball dataset

The performance of our model on the whole dataset is demonstrated in Table
2. Comparing to Table 1, we can find that both the precision and recall have been
improved. To compare with our method, we also implement a CHMM [1,7] model,
the structure of which is fully connected between all the temporal processes. The
performance of CHMM model on action recognition is also shown in Table 2.
Since the CHMM model cannot learn an adequate transition model, it performs
worse than our model as expected. This demonstrates that the structure learning
reduces the number of unnecessary parameters and caters for better network
structure discovery.

5 Conclusions

We have proposed a DBN model for action recognition in multi-agent scenarios.
Three kinds of mutual relationships between the interactive actions, concurrence,
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Table 2. Inference performance using CHMM and our method

Dribble Jump Shoot Pass Catch Hold
CHMM Recall 0.53 0.32 0.23 0.29 0.36 0.53

Precision 0.83 0.61 0.44 0.72 0.69 0.66
Our Recall 0.54 0.36 0.27 0.32 0.34 0.56

method Precision 0.86 0.60 0.44 0.73 0.70 0.67

mutual exclusion and triggering, can be successfully captured in our model, so as
to compensate the limitation of the low-level visual detectors. An advanced struc-
ture learning algorithm has been presented to discover meaningful and salient
dependencies in order to construct a computationally tractable network. Cur-
rently, our model is time slice based. In the following work, we intend to extent
our model to temporal interval based to make it more expressive and be able to
capture more complex relationships.

Acknowledgement. This work was supported in part by the National Natural
Science Foundation of China under Grant No. 61202325, the President Fund of
UCAS, the Open Project Program of the National Laboratory of Pattern Recog-
nition, China Postdoctoral Science Foundation:2012M520434, 2013T60156.

References

1. Brand, M., Oliver, N., Pentland, A.: Coupled hidden markov models for complex
action recognition. In: CVPR Conference Proceedings (1997)

2. Brendel, W., Fern, A., Todorovic, S.: Probabilistic event logic for interval-based
event recognition. In: CVPR Conference Proceedings (2011)

3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR Conference Proceedings, pp. 886–893 (2005)

4. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of
flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006.
LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006)

5. Hongeng, S., Nevatia, R.: Multi-agent event recognition. In: ICCV Conference Pro-
ceedings, pp. 84–91 (2001)

6. Korb, K., Nicholson, A.: Bayesian Artificial Intelligence. Chapman and Hall/CRC
(2004)

7. Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-
temporal motion pattern models. In: CVPR Conference Proceedings (2009)

8. Lv, F., Nevatia, R.: Recognition and segmentation of 3-D human action using HMM
and multi-class adaBoost. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006.
LNCS, vol. 3954, pp. 359–372. Springer, Heidelberg (2006)

9. Ryoo, M.S., Aggarwal, J.K.: Recognition of composite human activities through
context-free grammar based representation. In: CVPR Conference Proceedings
(2006)


	Temporal Context Analysis for Action Recognition in Multi-agent Scenarios
	1 Introduction
	2 Related Work
	3 Relationships Modeling Using a DBN
	3.1 Structure Initialization
	3.2 Model Learning
	3.3 DBN Inference

	4 Experimental Results
	5 Conclusions
	References




