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Abstract. With the rapid development of multimedia technology and
vast demand on video investigation, long-term cross-camera object track-
ing is increasingly important in the practical surveillance scene. Because
the conventional Paired Cameras based Person Re-identification (PCPR)
cannot fully satisfy the above requirement, a new framework named
Camera Network based Person Re-identification (CNPR) is introduced.
Two phenomena have been investigated and explored in this paper. First,
the same person cannot simultaneously appear in two non-overlapping
cameras. Second, the closer two cameras, the more relevant they are, in
the sense that persons can transit between them with a high probability.
Based on these two phenomena, a probabilistic method is proposed with
reference to both visual difference and spatial-temporal constraint, to
address the novel CNPR problem. (i) Spatial-temporal constraint is uti-
lized as a filter to narrow the search space for the specific query object,
and then the Weibull Distribution is exploited to formulate the spatial-
temporal probability indicating the possibility of pedestrians walking to
a certain camera at a certain time. (ii) Spatial-temporal probability and
visual feature probability are collaborated to generate the ranking list.
(iii) The multiple camera relations related to the transitions are explored
to further optimize the obtained ranking list. Quantitative experiments
conducted on TMin and CamNeT datasets have shown that the proposed
method achieves a better performance to the novel CNPR problem.

Keywords: Person re-identification -+ Spatial-temporal constraint
Camera relation - Ranking optimization - Camera network

1 Introduction

Person re-identification is a task of visually matching person images, obtained
from different cameras deployed in non-overlapping surveillance scenes [1-3] with
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Fig. 1. Examples of the difficulties in exploiting visual features. The first
column stands for the probe images, and the other two columns represent the candidates
in the gallery. All the images have their color histograms in right boxes. The person in
the second column is not the one in the first column but has the similar color histogram
profile based on appearance information; the person in the third column is the ground
truth but might be overlooked due to the large difference in the color histogram. (a)
illustrates the difficulty caused by the different illuminations and (b) illustrates the
difficulty caused by similar wearing.

place and time difference. The existing person re-identification problem is mainly
regarded as a retrieval task on a pair of cameras [4,6,7,14,15,18,20]. With the
rapid development of multimedia technology and vast demand for video investi-
gation, camera networks have become increasingly deployed in public spaces such
as airports, road intersections and campuses [14-18], which calls for the long-
term cross-camera object tracking and human behavior analysis. However, the
conventional Paired Camera based Person Re-identification (PCPR) methods
cannot well solve this problem [11-13]. To achieve the retrieval task on multiple
cameras, we introduce a new framework named Camera Network based Person
Re-identification (CNPR).

As we know, some of the existing PCPR approaches focus on constructing
visual features which are both distinctive and stable under various conditions
[4-7], while others focus on learning an optimal metric [8-10], in which images
of the same person are closer than those of different persons. All these meth-
ods mainly depend on the visual information, which faces intrinsic challenges
caused by various changes in viewpoints, poses and illumination conditions (see
Fig. 1(a)) in the practical surveillance environment [11,12]. To be worse, for spe-
cial conditions where different persons wear highly similar clothes (see Fig. 1(b)),
it is difficult to provide sufficient identity discrimination power when purely rely-
ing on visual information. According to the characteristic of CNPR, the spatial-
temporal information exists among the images of persons, which motivates us to
combine original visual features with it together to assist person re-identification.
The distance of these two types of information cannot be simply fused and mea-
sured. Then, the proposed method introduces a spatial-temporal probability,
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Table 1. Contrast between CNPR and PCPR.

CNPR PCPR
Characteristic | Multi-camera network Pair of cameras
Method 1. Spatial-temporal information | 1. Appearance-based
+ Visual information
2. Probabilistic model 2. Distance measurement
Evaluation mAP [21] CMC [19]

converts the distance of visual features to visual probability, and combines them
together as a joint probability.

Meanwhile, we find two phenomena in the CNPR (the details will be illus-
trated in Sect.2), that can be utilized to optimize the re-identification perfor-
mance in the camera network. (i) Spatial-Temporal Constraint. A person of
interest who appears in one camera cannot appear in another non-overlapping
camera at the same time or in a certain time period. Based on this phenom-
enon, Hinge loss function is exploited to construct a filter model to reduce the
query scope, and the Weibull Distribution is utilized to formulate the spatial-
temporal probability model. Probabilities of probe-to-gallery images are all cal-
culated, then the initial ranking lists are generated. (ii) Multiple Cameras
Relations. Inspired by the idea of image retrieval re-ranking methods [18], the
probe-to-gallery ranking list is influenced by the relationships of different gallery-
to-gallery images from different cameras. However, the relationships are different
originated from different relations of cameras. We consider that if two cameras
are more relevant according to deployed locations and transition time, it reveals
that the probability of the corresponding person should be elevated. Exploiting
the gallery-to-gallery probabilities and camera relations, the initial ranking list
is optimized.

We summarize the differences of CNPR and PCPR in Table 1, and further
explain in the following: (i) PCPR, only focuses on a pair of cameras in the net-
work, neglecting the relationships among different cameras, while CNPR involves
a camera network which includes many cameras deployed in different places.
(ii) It is distinctly different to solve CNPR and PCPR problems. PCPR meth-
ods [8,10,22,23] regard PCPR as a ranking problem and solve it by measuring
the differences among visual features, while the proposed CNPR exploits spatial-
temporal information besides visual features. In order to solve the CNPR prob-
lem, a probabilistic model, instead of the distance metric, is used to compute the
similarity of two images. (iii) The Cumulated Matching Characteristics (CMC)
curve [20] is typically used in PCPR to evaluate the performance. This evalua-
tion measurement is valid only if there is only one ground truth for a probe. For
the CNPR problem, there may be more than one cross-camera ground truth for
each query. Therefore, we adopt the mean average precision (mAP) [21] as the
metric to evaluate the overall performance.
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Fig. 2. Spatial-temporal constraint. There are always noises in the candidates in
the gallery, especially in the case of ever increasing surveillance videos. Spatial-temporal
constraint can effectively remove a number of noises in the non-overlapping camera
network. That is to say, if the probe appears in camera Cy at a certain time %o, the
images of candidates observed in camera C7 at time t with the interval of T'Ming—1
can be filtered out. Here, T"Mino—1 is the minimized walking time which is related to
the distance between Cy and C;.

Technical contributions of this paper are three-fold, as follows: (1) This paper
puts forward CNPR as a new approach for the person re-identification prob-
lem. (2) Two phenomena, spatial-temporal constraint and camera relations, are
exploited by a probabilistic model. (3) This paper adopts mAP as a new perfor-
mance criterion particularly designed for CNPR. It considers both precision and
recall, thus providing a more comprehensive evaluation than CMC widely used
for PCPR.

2 Observations

In order to acquire additional information such as the time stamps and make
full use of the captured videos, the association of the information of each camera
can be explored since there are relations among a large number of videos. In this
work, spatial-temporal constraint and relations of cameras in the network are
investigated.

Spatial-Temporal Constraint. Spatial-temporal information represents more
strict constraint to limit the query scope. It could help to improve the query
efficiency and matching rate. There is a common sense that a person of inter-
est appeared in a camera cannot be in another non-overlapping camera at the
same time. In addition, significant spatial-temporal gaps exists since there is
a distance interval between two cameras in a non-overlapping camera network.
Based on the statement, it can describe when and where the target had stayed
in the entire camera network. Therefore, we can reduce the confusing images
which are in different places at the same time of interests. Figure 2 illustrates
the phenomenon.

Multiple Cameras Relations. We assume that the walk of pedestrian is con-
tinuous, then a person will have a high appearance probability in two adjacent
cameras. In CNPR, problem, a person may appear in multiple cameras in the
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Table 2. Proportion (%) of the ground truth appearing in the returned results with
considering multiple cameras relations.

Camera pairs with strong relation | Camera pairs with weak relation
top 1|17.64 10.53
top 3 |64.71 26.32
top 5 | 88.24 36.84
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Fig. 3. Multiple cameras relations. There are relations of Cy, C1, Cy and C,,
where the degree of thickness of lines represents how the relations are. The numbers
in the triangle and circle reveal the ranking number of the candidates. The numbers
under the triangle and circle indicate the matching probabilities of the candidates. Left
box indicates the situation of regular ranking and right box indicates the situation of
the new ranking list after considering relations of cameras. Since the relation of C'y and
C5 is closer than that of C; and C,,, the matching probabilities of C' rises.

network. In this assumption, the matching probability of the person is affected
by the distance relations of cameras. A preliminary experiment conducted to
explain this phenomenon. Two adjacent pairs of cameras and two furthest pairs
of cameras in TMin [13] were selected respectively as the pairs with strong rela-
tion and the pairs with weak relation. For each pair, we choose one as the probe,
and the other as the retrieval candidate. We performed statistical analysis on
these data and the statistical result is illustrated in Table 2. We can find that a
person will have a high appearance probability in cameras with strong relations.
In the initial ranking list, the persons in the top results have high matching
probabilities to be the probe person. For each top result, he can also obtain
the corresponding pedestrians with high probabilities in other gallery cameras.
These corresponding pedestrians may be highly possible to be the probe per-
son. Therefore, the ranking number of these pedestrians in the initial ranking
list should be elevated. The degree of elevation depends on the relation between
the gallery camera of the top result and that of the selected pedestrian. Figure 3
reveals that if the relation of camera is closer, the evaluation will be higher. How-
ever, the selected pedestrians may have multiple relations with different cameras,
then the elevation is related to multiple cameras relations.

In brief, the core idea of solving the CNPR problem is that we construct a
probabilistic framework based on the whole camera network, further optimizing
with spatial-temporal constraint and multiple cameras relations.
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Fig. 4. Framework of the proposed method in CNPR

3 Owur Approach

3.1 Problem Definition

This subsection gives a brief definition of the CNPR problem. We consider a
camera network C' = {Cy, Cy,Cy, ...,Cpr}, which is composed of M + 1 cameras
with non-overlapping field of views. Here, Cy denotes the probe camera, and M
is the number of gallery cameras.

We denote the representative image of person j, captured by camera C,, as
2, 2l € R" and 0 < m < M. Here, n represents the dimension of the visual
feature of the image. The time of each observation is recorded as well. Then, an
observation O, can be described as a combination 07, = (z7,,tJ.), where #J,
denotes the time person j walks into the view of camera C,,

In PCPR, merely the visual feature is exploited. That is to say, the distance
d(z},xJ)) is calculated between the probe image i and an image j in the gallery,
where the gallery images are all from camera C,,,. Then, a ranking list is obtained
depending on the calculated distances. In comparison, for the CNPR, problem,
we exploit the probability theory instead of a distance metric to represent not
only the similarity of visual features but also the similarity of spatial-temporal
relationship. If the observation OJ, gets a high conditional probability p(O7,|Of)
based on the probe O}, it will obtain a high ranking number. Besides, the prob-
ability is also related to the relations of cameras, as a result, we can exploit the
relations of cameras to refine the observations under the entire camera network.
The framework is shown in Fig. 4.

plady ) = e~ 0 n) (1)
Equation 1 converts the visual distance into a probability. Here, the distance can
be obtained by any existing algorithm for PCPR.
3.2 Probabilistic Model with Spatial-Temporal Constraint

In a fixed camera network, the minimum walking time between each pair of
cameras is given. It is assumed that the minimum walking time between Cy and
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Cp, is TMing.m,. As discussed in Sect. 2, if |t} — t§| < TMing,, the spatial-
temporal probability p(tJ,|t§) will be zero for the person i appearing in C,,. In
other words, if the person i appears in camera Cj, within the minimum walking
time TMing—m, he cannot appear in camera C,,. In this situation, we do not
need to calculate the probability p(O7,|0}) any more. Here, we introduce hinge
loss acting as a filter described in Eq. 2.

h(ty, t),) = max(0, [t], — to| = TMinge.m) (2)

Considering the process of pedestrian’s walk, when [t —t{| = T Ming.m, the
matching probability equals to zero; when [tf, — ti| > T Ming.,, the matching
probability increases at first and then reaches the peak value. As the time inter-
val gets too long, the matching probability will get down and tend to zero with
the assumption that the person is continuously walking. We assume the time
for the transition between cameras follows a Weibull distribution [26], which
has been successfully applied to nearly all scientific disciplines, such as biologi-
cal, environmental, health, physical and social sciences. By fitting time data to
Weibull distributions, Weibull analysis enables risk assessment and planning of
corrective actions. Then, if we have two observations between the probe camera
and another one in the fixed camera network, the conditional probability of the
transition from Cy to Cy, is described as following:

p(thltg) = 5 (ML) yims =it ©

where k > 0 is the shape parameter and A > 0 is the scale parameter of the
distribution.

Joint Probability Model. The visual distance between the image from a cam-
era in the gallery and the probe image can be formulated as a conditional prob-
ability in Eq. 1. It is assumed spatial-temporal relations, independent of visual
features, could assist to increase the ranking number. Then the conditional prob-
ability is obtained as shown in Eq.4. The ranking list could be obtained after
repeating the process on all the images in the gallery from the cameras in the
network. Through this way, the ranking is related to both visual features and
spatial-temporal constraint.

P(0},105) = p(a,|g)p(t),|th) (4)

3.3 Optimization with Multiple Camera Relations

Optimization includes two aspects: (i) We exploit the relations between two
cameras which are related to the spatial-temporal interval to construct spatial-
temporal probabilities, and combine them with visual features probabilities to
get the probabilistic model. (ii) We utilize the relations of entire camera network
to improve the matching probability of candidates in the gallery. The optimiza-
tion of the ranking can be concluded as follows: (i) By constructing the joint
probability model, the initial ranking lists are obtained. (ii) With each image
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Fig. 5. Example of maP. This example indicates the value of AP. For all three
persons, the CMC curve remains 1, which is not proper for CNPR but AP shows the
differences. mAP is the mean average precision of the three persons which is (1 + 1 +
0.41)/3 = 0.803.

in top-k of the initial ranking list as a probe, we find its top-k similar images
from the gallery. (iii) The relevance of two cameras which is related to spatial-
temporal interval in the network can be obtained by the spatial-temporal differ-
ence as r(m,m’) (r(m,m’) > 1), and the closer the cameras are, the larger the
value of r(m,m’) is. The matching probability of the candidates in the initial
ranking list can be adjusted to Y-, c ke n () P(O5,100) * 7(m,m’). Here, for an
image in the initial ranking list, m is its camera ID, and m’ is the camera ID of
an image in its KNN. Finally, the new ranking list is achieved, which involves
the relationship between cameras.

4 Experiments

4.1 Baselines

mAP. The CMC curve is exploited by most papers on the person re-
identification problem [4,8-10,19]. The value of CMC which tells the rate of
the correct match indicates the identification results for every pair of camera
views [7]. As each probe image may correspond to multiple ground truths in
the gallery, precision and recall over entire camera network should be considered
as a metric while evaluating the CNPR problem. In this case, we adopt a met-
ric named mean average precision (mAP) to indicate the percentage of the real
matches over the camera network. There is an example of mAP shown in Fig. 5.

4.2 TMin Data Set

Our task requires a number of cameras, walking time between pair of cameras
and the topology of cameras. As far as we know, there is no appropriate public
database in non-overlapping multi-camera person re-identification field. Thus,
we utilize two public databases, TMin [13] and CamNeT [24], often used in the
multi-camera tracking field which can satisfy our requirements. The version 1
of the TMin database contains 1680 images from 30 subjects. All the images
are extracted from 6 cameras and the video acquisition time starts at twenty
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Fig. 6. Performance of different methods on the TMin dataset AP_ feature,
AP_joint and AP_ global represent the matching accuracy of each probe which are cal-
culated by visual features, probabilistic model of combined spatial-temporal and visual
features and optimization approach. Most of the results reveals that there is evident
improvement after introducing spatial-temporal probabilistic model and relations of
multiple cameras.

to twelve in the morning and ends at a quarter to two in the afternoon. Each
pedestrian of TMin appears in at least two different cameras.

We employed camera 1# of TMin database which contains 17 of 30 pedes-
trians as our probe set in this paper. First, the noisy images were filtered out
based on a filter introduced above. Then, we exploited Local Maximal Occur-
rence (LOMO) [25] as the feature representation which is effective and robust to
illumination and viewpoint changes. We calculated the visual appearance prob-
ability of Cy and C), respectively, and unified them in a matrix. After that,
spatial-temporal probability which was calculated according to hinge loss was
joined with the appearance probability to construct the overall probability of an
observation in the entire camera network compared with probe camera 1#. At
last, we used the relations between cameras to refine the ranking. The results
of visual features, joint probability and optimization are shown in Fig. 6. More-
over, in Table 3 we compare the performance of visual features, joint probability
and global optimization in the range of the first 10, 20, 30, 40, 50, 75 ranks
respectively. As can be seen, our approach greatly improves mAP compared
with conventional methods, and the improvements are evident after introducing
spatial-temporal probabilistic model and global optimization respectively®.

4.3 CamNeT

CamNeT [24] is the database of non-overlapping camera network tracking data
set for multi-target tracking, it consists of 5 to 8 cameras which cover both
indoor and outdoor scenes at a university. The paths of around 10-25 people
are predefined while several unknown persons move through the scene. There
are 6 scenarios in which every scenario lasts at least 5 min with 5 to 8 cameras.
We employed camera 1# of CamNeT database which contains 11 pedestrians as
our probe set in this paper. To evaluate our method, the experimental process
mainly followed the way for the TMin data set. The result is presented in Fig. 7.

! Here, we set @ = 0.5, A = 75, 8 = 2.5, and K = 5, when evaluating on TMin data
set.
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Fig. 7. Performance of different methods on the CamNeT dataset AP_ fea-
ture, AP_ joint and AP_ global represent the matching accuracy of each probe which
are calculated by visual features, probabilistic model of combined spatial-temporal and
visual features and optimization approach. Most of the results reveals that there is evi-
dent improvement after introducing spatial-temporal probabilistic model and relations
of multiple cameras.

Table 3. Comparing mAP value (%) with different methods on top K (TMin).

K 10 20 30 40 50 75

mAP_ feature | 2.39 | 2.28 | 2.39 | 2.36 | 2.46 | 2.57
mAP_ joint 50.08 |49.10 |48.44 |47.97 147.83 |47.73
mAP_ global |53.96|51.92 | 51.06 50.50|50.33 | 50.20

Our approach improves evidently. And we compared the performance of visual
features, joint probability and optimization in the range of the first 10, 20, 30,
40, 50, 75 ranks respectively in Table 42.

However, we found that the joint probability of person 9 and person 11 which
combined spatial-temporal and features had been decreased in Fig. 7. The reason
is that there is excess layover time during the pedestrians’ walk among cameras,
which is beyond our assumption that the walk is continuous in this paper. For
another unexpected situation, we also found that the optimization results of
person 5 and person 16 had been decreased in Fig. 6. These two persons appeared
only twice in other cameras, in other words, negative samples appears more
which influenced the optimization effect. Although there are few disharmonious
members, the overall results are still evident improved by the proposed method.

4.4 Running Time

In this subsection, we test the running time of each procedure. The additional
running time, when compared with the running time of the baseline method using
the distance of visual features, is no more than 1 ms even though we add the
processes of calculating spatial-temporal probability and optimization. In fact,
we use spatial-temporal constraint to filter 2.6 % and 27.35 % images of gallery
of TMin and CamNeT, it somehow increases the efficiency. The experimental

2 Here, we set @ = 0.5, A = 50, 3 = 1.5, and K = 10, when evaluating on CamNeT
data set.
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Table 4. Comparing mAP value (%) with different methods on top K (CamNeT).

K 10 20 30 40 50 75

mAP_ feature| 6.35 | 5.13 | 4.99 | 498 | 4.85 | 4.59
mAP_ joint 13.66 [11.02 | 9.72 | 9.14 | 9.00 | 8.94
mAP_ global |24.41|23.1021.71|21.01|20.80 20.58

environment is as follows [18]: our computer includes a dual core 2.80 GHz CPU
and 2GB RAM.

5 Conclusion

This paper puts forward a new framework CNPR as a fresh person re-
identification solution. While solving the CNPR problem, two phenomena of
spatial-temporal constraint and the relations among cameras in the network are
investigated and leveraged in this work. On this basis, this paper proposes an
approach of optimization, based on a probabilistic model taking into account
spatial-temporal constraint and visual probability. The experiments, conducted
on two public databases TMin and CamNeT, show significant improvement in
efficiency and accuracy compared with conventional methods.
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