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Abstract. Person re-identification, which is to match people across ar-
eas covered by multiple non-overlapping surveillance cameras, has drawn
great research interests in the video surveillance domain. Previous re-
search mainly focus on feature extraction and distance measure, where
the former aims to find robust feature representation while the latter
seeks to learn an optimal metric space. Because of the introduction of
supervised information, metric learning methods can usually achieve bet-
ter performance over feature based methods. As one of the most repre-
sentative metric learning method, the Large Margin Nearest Neighbor
(LMNN) algorithm was recently applied in person re-identification task
and achieved satisfactory results [1]. However, LMNN uses a standard
hinge loss function, which is neither differentiable everywhere nor time-
efficiency due to the usage of all training samples. In this paper, we
propose to replace hinge loss function with the logistic loss function,
which transforms LMNN to a smooth unconstrained convex optimiza-
tion problem easily solved with gradient descent algorithm. Thereafter,
we further design a stochastic sampling scheme to accelerate the opti-
mization process of the above problem with randomly selected training
samples. Extensive comparative experiments conducted on two standard
datasets have shown the effectiveness and efficiency of the proposed al-
gorithm over a series of standard baseline methods.

Keywords: Person re-identification, Surveillance video, Multiple
cameras, Metric learning.

1 Introduction

Recently, increasing number of surveillance camera networks have been set up
for monitoring pedestrian activities over a large public areas, such as airports,
metro stations and parking lots. In these scenarios, matching person across
non-overlapping cameras in a surveillance camera network, a.k.a, person re-
identification, is becoming a hot research spot in the computer vision commu-
nity. During the past five years, a lot of research effort has been devoted to
this field [2–4, 1, 5]. However, due to significant changes of view angles, scales
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Fig. 1. Some typical samples from VIPeR dataset [6] where appearance changes are
mainly caused by variant views and lighting conditions. Each column shows two images
of the same person captured by two different cameras.

and illumination conditions (see Fig. 1), different persons captured by the same
camera usually appear more alike than the same person across different cameras,
making person re-identification remain a unsolved and challenging problem.

Generally speaking, person re-identification can be considered as a visual re-
trieval problem [5], i.e. given a query person image taken in one camera, the
algorithm is expected to search images of the same person captured by other
cameras. Typically, it consists of two stages: feature extraction and distance mea-
sure. The former aims to seek a discriminative and robust feature representation
which can easily separate different persons in various cameras. Wang et al. [7]
used a co-occurrence matrix to capture the spatial distribution of the appearance
relative to each of object parts to modeling the appearance of people. Farenzena
et al. [2] divided the image of person into 5 regions by exploiting symmetry and
asymmetry perceptual principles, and then combine multiple color and texture
features to represent the appearance of people. However, in the condition of
significant intra-object appearance variation cased by severe viewing changes,
computing a set of features that are both distinctive and stable is extremely
difficult [4].

In contrast, distance learning based methods focus on the second stage, dis-
tance measure, and aim to seek a suitable distance metric function through
supervised learning. Gray and Tao [8] transformed the matching problem into
a classification problem, in which they assigned a pair of images belonging to
the same individual with positive sample or negative sample otherwise and learn
the classifier using AdaBoost. The essence of the method is learning a weight
vector assigning higher weight to the more discriminative feature. Recently, met-
ric learning methods targeting for a matrix rather than a vector are exploited
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for person re-identification problem and are reported better performance. Hizer
et al. [1] learned an optimal distance metric through LMNN algorithm, which
was designed for k Nearest Neighbor classification [9]. The core idea of LMNN
algorithm is that the feature distance of the same individual is small while that
of different persons is large under the learned metric. However, standard LMNN
algorithm uses a hinge loss function that is not differentiable everywhere result-
ing in difficulty of solution. Instead, Zheng et al. [4] used a logistic loss function
and got a smooth objective function to learn the metric, in which a probabilistic
relative distance comparison (PRDC) constrain was exploited to learn a low rank
projection matrix. Recently, Kostinger et al. [5] developed a simpler algorithm
to achieve an analytical form of the learned metric with the assumption that all
samples coming from the Gaussian distribution.

In this paper, we focus on the distance learning based methods. Our idea is
motivated from LMNN algorithm, which is known as the-state-of-the-art met-
ric learning algorithm. However, according to the above discussion, LMNN is
difficult to solve due to the usage of a hinge loss function, which is not differen-
tiable everywhere. Instead, we use a logistic loss function, a soft approximation
to original hinge loss function, to improve the standard LMNN algorithm, which
transforms the original problem to a smooth unconstrained convex optimization
problem. In addition, the new model is more flexible and achieves better per-
formance with seeking a suitable approximation parameter. Besides, the LMNN
algorithm is time consuming, even though an active set strategy was exploited
in [9] to improve the efficiency. Motivated by Stochastic Gradient Descent (SGD)
algorithm [10], we further propose a stochastic sampling based gradient descent
algorithm. In particular, for each positive examples, we randomly selected some
negative samples to consist real triple training samples. Extensive experiment
results show that the proposed method is superior than the standard LMNN
method in both accuracy and efficiency.

2 The Approach

This section presents our approach. We begin with terms and notations used
in metric learning based person re-identification. Then, technical details of im-
proved LMNN using logistic loss function is discussed and a stochastic sampling
strategy is given to accelerate the algorithm implementation.

2.1 Person Re-identification Based on Metric Learning

For the convenience of presentation, we consider a pair of cameras Ca and Cb

covering different area without overlapping, and Oa = {o1a, o2a, · · · , oma } and Ob =
{o1b , o2b , · · · , onb } are images of persons captured by Ca and Cb, respectively. The
task of person re-identification is that finding images of the same person from
Ob for each instance oa in Oa. Usually, the algorithm executes as follows: First, a
d-dimensional feature vector is extracted to represent each instance. Second, for
each pair images, a specialized distance function, such as Euclidean distance, is
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defined to computing the distance between the feature vectors. Finally, a ranking
list is obtained with top positions corresponding to more alike the query person
images.

Specially, let x = (x1, · · · , xd) represent the d-dimensional feature vector of of
a person o, then the Euclidean distance between oia and ojb can be formulated as

D(oia, o
j
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where (·)� represents the transpose of a vector or matrix. With the above nota-
tion, the formulation of metric learning can be denoted as:
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where M is a positive semi-definite matrix for the validity of metric. In this case,
M can be factored into real-valued matrices as M = L�L [11], and the Eq. (2)
can be rewritten as
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The purpose of metric learning is to learn the positive semi-define matrix M or
the real-valued matrix L.

2.2 The Smooth LMNN Method

Before going further, we first briefly review the classic LMNN metric learning
algorithm [9]. LMNN learns a real-valued matrix L under two constrain terms.
One pulls the same labeled examples closer together, the other pushes examples
with different labels further apart.

The pull term penalizes large distances between each instance and its target
match, the formulation of which is given by:

εpull(L) =
∑

i,j�i

DL(x
i
a,x

j
b) (4)

where j � i means that xj
b has the same label as xi

a.
The push term penalizes small distances between differently labeled examples.

In particular, the term penalizes the differently labeled examples that invalidate
the inequality in Eq. (5), named as imposter :
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where xi
a and xj

b have the same label (belong to the same person), while xl
b has

another label. The formulation of push term is given by:
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Fig. 2. Explanation for that the logistic loss gives a soft approximation to hinge loss,
where the β is larger, the logistic loss is more near to hinge loss

where yil is an indicator variable that equals to 1 if and only if xi
a and xl

b having
the same label, and 0 otherwise; [z]+ = max(z, 0) denotes the standard hinge
loss function.

Finally, the two terms εpull(L) and εpush(L) are combined into an integrated
loss function for distance metric learning:

ε(L) = (1− μ)εpull(L) + μεpush(L) (7)

where μ ∈ [0, 1] is the balance parameter.
Note that, the hinge loss [z]+ is not differentiable at z = 0, which can be

replaced with a smooth logistic loss function as shown in Fig. 2. The new loss
function can be rewritten as

εLMNN-S(L) = (1 − μ)εpull(L) + με∗push(L) (8)

ε∗push(L) =
m∑
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∑
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where �β(x) =
1
β log(1 + eβx) is the generalized logistic loss function. It is easy

to see from the Fig. 2 that the logistic loss gives a soft approximation to hinge
loss. The parameter of logistic loss β is the approximation parameter. As larger
as the β is, the logistic is more near to hinge loss. The LMNN-S improves the
performance with seeking a more suitable β (see the experiments results in Sec.
3.4).

Since the logistic loss function is convex and differentiable everywhere, Eq.
(9) is a smooth convex optimization problem with respect to L and hence Eq.
(9) is smooth convex optimization problem as quadratic term is smooth convex.
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Algorithm 1. Learning the matrix L

Input: The training set data: Positive samples with pair form Sp = {(xi
p,x

j
p)k},

Negative Samples with triple form Sn = {(xi
n,x

j
n,x

l
n)

′
k}

1: Initialize L0 as identical matrix;
2: for i = 1 to MaxIter do
3: Compute ∇ε(L) = ∇εpull(L) +∇εpush(L) as Eq.(10-12)
4: Choose a proper step λ
5: Compute Li+1 = Li − λ∇ε(L) as Eq.(13)
6: if converge then
7: break;
8: end if
9: end for
Output: The optimal matrix L∗

2.3 Stochastic Sampling Based Optimization Algorithm

As the above discussion, we transform the problem to a smooth convex opti-
mization problem, which can be solved with a simple gradient descent method.
However, it is time consuming with massive training samples. In particular, as-
sume there are N different persons, the size of positive samples is O(N). In
addition, for each positive samples, there are O(N − 1) negative samples and
hence the size of total training samples is O(N2). In [9], an active set strategy
was exploited to improve the efficiency. The active set consists of the imposter
samples which is relatively little. Even so, it is time consuming for using the k
closet within-class samples [12].

SGD algorithm was designed to solve large scale linear prediction [10] where
the gradient was compute on randomly selected samples. Motivated by SGD
algorithm, we propose a stochastic sampling based gradient descent algorithm.
In particular, for each positive examples, we randomly selected k � N negative
samples, with which the size of training set reduce to O(kN) from O(N2).

With stochastic sampling strategy, a simple gradient-descent method is ex-
ploited to learn the projection matrix L. The detail is as follows: The gradient
of the loss function ε(L) is given as

∂εLMNN-S(L)
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where g(x) = (1 + e−βx)−1 is the derivative of logistic loss function �β(x).
With the gradient, an iterative optimization algorithm is used. Starting from

an initial identical matrix, which means no projection, L is optimized iteratively
as follows

Li+1 = Li − λ · ∂ε(Li)

∂Li
(13)

where λ > 0 is a step length automatically determined at each updating step
using a similar strategy in [4]. The iteration is terminated when the updating
times is greater than the maximum iterative times (i.e. 1000 in this work) or the
following criterion is met.

| εi+1 − εi |< ε (14)

where ε is a small positive value and fixed to 10−9 in this paper. The pseudo-code
of algorithm is given in Algorithm 1.

3 Experimental Results

In this section, we evaluated the proposed approach for person re-identification
on two widely used datasets, the VIPeR dataset [6] and the i-LIDS Multiple-
Camera Tracking Scenario (MCTS) dataset [3]. First, we compared our method
with several state-of-the-art person re-identification methods on both datasets,
under the similar experiment settings. Moreover, we validate the influence of
performance with different algorithm parameters on VIPeR dataset.

3.1 Datasets

The VIPeR dataset is collected by Gray et al. [8] and contains 632 persons with
two images for each person taken from two non-overlapping outdoor cameras.
All images of individuals are normalized to a size of 128 × 48 pixels. Example
images are shown in Fig. 1, in which each column contains two images of the same
person under different cameras. As shown, view changes are the most significant
cause of appearance change, and most of the examples contain a viewpoint of
90 degrees. Besides, other variations are also considered, such as illumination
conditions.

The i-LIDS MCTS dataset [3] is taken at a busy airport hall with several
disjoint indoor cameras. There are 119 individuals with 476 images in all. As
VIPeR dataset, all images are normalized to 128× 48 pixels. The differences are
that the light variances are more and some examples subject to large occlusion.

3.2 Image Representation

A combination feature descriptor consisting of color and texture features is used
to represent images of individuals. Specifically, for each image, the RGB and HSV
color histograms and LBP descriptor are extracted from overlapping blocks of
size 16×16 and stride of 8×8, i.e. 50% overlap in both directions. RGB and HSV
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Fig. 3. Comparative results with LMNN algorithm on VIPeR and i-LIDS MCTS
datasets

histograms encode the different color distribution information in the RGB and
HSV color space, respectively. LBP descriptors, encoding the texture feature,
are extracted in grayscale images. All of the features are then put together to
concatenated to a vector. To accelerate the learning process and reduce noise,
we conducted principle component analysis (PCA) to obtain a low-dimension
representation.

3.3 Baselines and Settings

To evaluate the effectiveness of the proposed LMNN-S, we compare with sev-
eral representative person re-identification methods, including the Adaboost
based feature selection method (Adaboost) [8], Rank support vector machine
(RandSVM) [3], symmetry-driven accumulation of local feature (SDALF) [2]
and probabilistic relative distance comparison (PRDC) [4], and metric learn-
ing methods, containing large margin nearest neighbor (LMNN) [9], information
theoretical metric learning (ITML) [13] and KISSME [5]. As LMNN and ITML
are not development for person re-identification, we use codes of these methods
provided by their authors and report their results under the optimal parameter
configurations.

The experiments are conducted as follows: for each dataset, we randomly
selected p people as training set and the rest as testing set. For training set,
positive samples consist a pair of images from the same person, which used to
pull the the same labeled persons together closer, meanwhile, k images with
different label are randomly selected for each positive samples to form a triple
of images making up negative samples, which used to push the different labeled
people further apart. Then, each testing set is divided into a probe and gallery
set. The gallery set consists of one image for each person in testing set, and the
remaining images are set as the probe set. Finally, each image in the probe set
is matched with all images of the gallery set. The procedure was repeated 20
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Fig. 4. Comparative results of different β
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Fig. 5. Comparative results of metric
learning

times, and the average of the Cumulative Matching Characteristic (CMC) curve,
which is suggested in [7], was reported.

The CMC curve is exploited by most papers on the person re-identification
problem [2, 3, 8, 5, 4] as well as. The value of CMC@k indicates the percentage
of the real match ranked in the top k. In particular, let P = {p1, · · · , p|P |} be a
probe set, where |P | is the size of P , and G = {g1, · · · , gn} be a gallery set. For
each probe image pi ∈ P , all gallery images gj ∈ G are ranked based a defined
distance function. The correct match is denoted as gpi , and the rank index of
which is denoted as r(gpi ). The CMC@k is defined as

CMCk =

|P |∑

i=1

1(r(gpi ) ≤ k)

|P | (15)

where 1(·) is the indicator function.

3.4 Results and Analysis

Comparing to LMNN. We first compare LMNN-S with the LMNN method
used in [11] on both VIPeR and i-LIDS MCTS datasets with settings in above
subsection. As can be seen from Fig. 3, obviously, the LMNN-S is outperform
LMNN on both datasets. The maximum improvement achieves 10% at CMC@5
on i-LIDS MCTS dataset. These results empirically validate the previous dis-
cussion in Sec. 1.

In addition, we evaluate the influence of the parameter of logistic loss β. We
change the β from 0.001 to 10 and the results are shown in Fig. 4. The performance
is going straight up when β change from 0.001 to 0.01, then reduce slightly and
nearly stable when β > 1. It is consistent with the discussion in Sec. 1.

Comparing to the State-of-the-art Person Re-identification Methods.
The comparison results with the state-of-the-art methods for person
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Table 1. Comparative results with state-of-the-art person re-identification methods
on top ranked matching rate(%)

Methods
VIPeR Dataset iLIDS MCTS

r=1 5 10 20 50 1 5 10 20

SDALF [2] 20 40 50 65 85 28.5 48.0 57.5 68.0

Adaboost [8] 8.2 24.2 36.6 52.1 90.1 35.6 66.4 79.9 93.2

RankSVM [3] 16.3 38.2 53.7 69.9 85 43.0 71.3 85.2 97.0

PRDC [4] 15.7 38.4 53.9 70.1 87 44.1 72.7 84.7 96.3

KISSME [5] 20.0 46.0 60.1 74.2 90.5 - - - -

ITML [13] 15.0 38.5 53.7 72.8 92.3 36.4 68.0 83.1 95.55

LMNN [9] 18.7 47.4 62.6 77.8 92.3 36.5 64.0 78.2 93.1

Ours 19.9 49.3 64.3 79.8 94.1 39.8 72.9 87.3 97.1

Table 2. Comparative results of computing time with varying numbers of negative
samples on VIPeR dataset

Methods 1 2 3 4 5 6 7 8 9 10 LMNN

Time(s) 1.36 2.89 4.11 5.6 6.72 7.94 9.51 11.66 13.12 14.56 20.1

(STD) (0.53) (1.53) (0.91) (1.19) (1.55) (0.84) (1.15) (1.50) (1.80) (2.24) (0.61)

re-identification are shown in Table 1. For a fair comparison, the results of Ad-
aboost, RankSVM, SDALF, PRDC and KISSME are directly taken from their
original papers. As shown in Table 1, our approach obtains competitive results
across all ranks. Besides, the metric learning based methods, such as PRDC
and KISSME, outperforms the non-metric learning methods, such as SDALF.
As the discussion in Sec. 1, the metric learning seeks a optimal distance func-
tion with the supervise of the training samples. The learned distance function is
more suitable for the problem than standard distance function, such as Euclidean
distance. Moreover, we conducted several experiments with several popular met-
ric learning methods with the same feature representation. The Fig. 5 gives a
summery of comparison results. EL indicates the Euclidean distance without
learning. Obviously, the metric learning significantly improve the performance
and our approach outperform others metric learning methods.

Influence of the Number of Negative Samples. As discussion in Sec. 2.3,
the number of negative samples is much larger than positive samples, and we
use a stochastic sampling based algorithm. Therefore, we conducted experiments
where the number of negative samples is set from one to twenty for each positive
sample. As shown in Fig. 6, the effectiveness is about the same when the number
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Fig. 6. Comparative results with different size of negative samples on VIPeR dataset

is larger than eight. It is very important for the real system, as the total size of
training set can be reduced to O(n) rather than O(n2).

Computational Cost. Finally, we conducted our experiments on Intel dual-
core 2.59GHz CPU PC to evaluate the efficiency of the proposed method, LMNN-
S, and compare it with LMNN as well as. The VIPeR dataset was used to
evaluate, with which the training size is 316 and dimension of feature vector is
50. Then, we count the computation time of the provided algorithm with varying
numbers of negative samples from 1 to 10. For each setting, we repeated 20 times,
and the average time was reported in Table 2. As shown in Table 2, we observed
that LMNN-S is more efficient than LMNN even though we did not employ the
active set method which was designed to improve efficiency of LMNN [9]. Besides,
as increasing negative samples, the computational cost descend significant. It is a
good selection that improve our implementation with the active set technology at
processing large number of training samples. Fortunately, it achieves an enough
good effectiveness selecting relatively little negative samples.

4 Conclusions and Future Work

In this paper, we exploit logistic loss function to improve a popular metric learn-
ing method, LMNN, and hence transform the problem to a smooth convex op-
timization problem. Then, we provide a stochastic sampling based optimization
algorithm to solve the problem motivated by SGD algorithm. Extensive compar-
ative experimental results reported in Sec. 3 show that the proposed approach
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superior than the standard LMNN method in both accuracy and efficiency and
outperforms the state-of-the-art person re-identification methods and several
popular metric learning methods on two challenging public datasets, VIPeR and
i-LIDS MCTS. In the future, we plan to further investigate the metric learning
methods with the environment in which the instance of each person consist of a
sequence of images and metric learning methods can not be directly used.
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