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ABSTRACT

In multi-media and social media communities, web topic
detection poses two main difficulties that conventional ap-
proaches can barely handle: 1) there are large inter-topic vari-
ations among web topics; 2) supervised information is rare to
identify the real topics. In this paper, we address these prob-
lems from the similarity diffusion perspective among objects
on web, and present a clustering-like pattern across similar-
ity cascades (SCs). SCs are a series of subgraphs generated
by truncating a weighted graph with a set of thresholds, and
then maximal cliques are used to describe the topic candi-
dates. Poisson deconvolution is adopted to efficiently identi-
fy the real topics from these topic candidates. Experiments
demonstrate that our approach outperforms the state-of-the-
arts on two datasets. In addition, we report accuracy v.s. false
positives per topic (FPPT) curves for performance evaluation.
To our knowledge, this is the first complete evaluation of web
topic detection at the topic-wise level, and it establishes a new
benchmark for this problem.

Index Terms— Web Topic detection, maximal cliques,
unsupervised ranking, Poisson process, similarity cascade

1. INTRODUCTION

Web topic detection is a practical requirement of many to-
day’s applications such as information retrieval and monitor-
ing. It provides a core technology to organize, understand and
analyze the new and interesting trends happening on web.

Web topic detection is totally different from the traditional
topic detection and tracking (TDT) that aims at finding trends
on news [1]. The reason is various: the emergence of new way
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Fig. 1. An illustration of 4 detected topics on MCG-WEBV
(False positives are illustrated in green color). In (a), the n-
odes and the lines represent the objects and their similarity
separately. The darker the lines are, the higher similarities
they are. (b) shows the new objects identified at a new layer.
(c) gives the corresponding video titles.

to transmit information (e.g., twitter, facebook, blog), infor-
mation cascade behaviors on web (e.g., “abandon their own
information in favor of inferences based on earlier people’s
action” [2]), etc. Moreover, supervised information is rare
and expensive to identify the real topics.

Although some existing works have been aware of these
differences, the solution has been quite unanimous: a web
topic is considered as a clustering. For example, many ap-
proaches are based on partition-based clustering [3] [4], such
as Non-negative Matrix Factorization (NMF) [5]. However,
the partition-based methods assign each object (in this paper,
objects mean the elements on web, e.g. the texts, images,
videos, etc.) to a topic, but according to our experience, each
object may belong to several topics. For instance, “Oil pro-
duction” can belong to both “Energy sources” and “Econo-
my”. Moreover, these ideas ignore the fact that topic is rare
– enormous data have been updated on web, but only a few
objects trigger the interests among people and further evolve
into topics.



Motivations: This paper tries to discuss the nature of web
topic detection in terms of similarity diffusion. To reduce the
influence of other factors as small as possible, we get rid of
the auxiliary characteristics on web, e.g., cross media, hyper-
link, time stamp, etc, and try to answer two primitive ques-
tions with text information as a case study.

1)What is the universal scheme to generate topics on
web?

Most of the related work is based on the “close” clustering
assumption. Chen et al. [6] deal with web video topic detec-
tion via the closely interlinked tags. Zhang et al. [7] introduce
graph shift (GS) [8] to find highly similar subgraphs as topic-
s. However, as observed in our study, the “close” clustering
assumption barely reflects the content shift phenomenon a-
mong web topics, where the random and latent factors tend
to shift the content of topics. Fig. 1, for instance, illustrates 4
examples about how human beings organize web videos into
topics. As is unexpected, “Car accident” gradually evolves
into “Plane crash”, “Car news” and “Road safety ads”.

In this paper, we study the scheme to generate topics from
a view of the evolution of information, i.e., the diffusion of
similarity among objects. Based on this, the evolution of in-
formation is first formulated as similarity cascades, and then
topic candidates are identified across the different cascade
layers. A layer (LY) is a subset of objects where the sim-
ilarity among each other is higher than a certain threshold.
The multi-granularity topics across cascade layers naturally
simulate the evolution. In this way, the union of candidates
identified in different layers forms the topic candidate set.

2) How to identify which topic candidate is a real one?
It is a practical requirement to identify which one is real

from a large number of candidates, due to the following two
main reasons: 1) we do not know how many topics really
form on web; 2) web topic is rare. However, previous works
ignore this problem, and just output the topics with a defined
number, e.g., 179 clusterings are considered as topics [7].

In this paper, we assume that the relative importance a-
mong candidates makes them as real topics. As a reasonable
assumption, Poisson process is used to describe the similarity
diffusion process. An unsupervised expectation maximiza-
tion (EM) algorithm is introduced to rank topic candidates by
calculating their weights. Candidates with higher weights can
be considered as real topics than these with lower ones. The
advantage of the unsupervised approach is that the ranking
framework not only handles the rareness problem, but also
deals with the unknown number of topics.

Contributions: To the best of our knowledge, this paper
is the first to investigate the similarity diffusion for web topic
detection, presenting a series of comprehensive experiments
to illustrate the benefits of this novel viewpoint for web topic
detection. The proposed method is simple, yet remarkably
powerful. Simply by finding maximal cliques to represent
topics, with an unsupervised ranking, we develop a web topic
detection method that outperforms the state-of-the-arts.
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Fig. 2. An illustration of similarity cascades. A node corre-
sponds to a text, an image, a video or any object on web.

2. GENERATING TOPIC CANDIDATES

2.1. Representing Correlations as Graph

Given a dataset, we establish a graph to represent the corre-
lations among the objects. The nodes vi represent objects in
a dataset, and edges eij between two nodes vi and vj denote
the correlations. Any similarity between two objects can be
used to represent the correlation into a graph (V,E), where
V = {vi} and E = {eij}. Given any two nodes represent-
ed as feature vectors hi and hj , this paper uses the normal-
ized histogram intersection (NHI) to measure the similarity
as edge G(i, j) = eij :

eij =

{
0 , i = j∑

k min(hi(k),hj(k))∑
k max(hi(k),hj(k))

, i 6= j
(1)

where hi(k) and hj(k) are the k-th bins of the histogram hi
and hj , respectively.

Although NHI similarity is relatively simple, the primary
motivation is to discover an universal scheme to grasp topics
with cues as few as possible. Moreover, graph is a general
tool to represent the correlation among objects. For instance,
the canonical correlation analysis (CCA) between heteroge-
nous media, the learned metrics, or hyperlinks can also be
simultaneously incorporated into graph or hypergraph [9].

2.2. Similarity Cascade and Multi-granularity

Although the diffusion of information can be observed at ev-
ery time stamp, the time stamp can not directly indicate the
topics. In contrast, similarity is a general cue to find topic-
s. Fig. 2 illustrates the similarity diffusion process: a topic
absorbs more objects at a lower similarity level, or a topic
absorbs different objects at different similarity levels to form
different topics, and then this process recursively happens in
or across different similarity layers. We call this process as
similarity cascade (SC).

SC is totally different from information cascade [10]
where the decision of people follows the other’s options, al-
most being independent of their own private information. In
contrast, SC assumes that the evolution of topics has been
driven by weak or even random correlation among objects.



Multiple topics evolve into multi-granularity over a se-
ries of layers in SC. When a topic C propagates over SC, it
leaves a trace, a tree-like cascade, in the form of a set of tuple
(C, V+)l which means that the topic C absorbs a set of nodes
V+ above the similarity l. If we denote the fact that the cas-
cade initially starts from some active topic C at the level l0 as
(Cl0 , V+)l0 , two-granularity topics across SCs are represent-
ed as:

(Clt , V lt+ )lt → (Clt+1 , V
lt+1

+ )lt+1
, (2)

where Clt+1 = (Clt , V lt+ )lt is the topic at the layer above
the similarity lt+1. Therefore, multi-granularity topics can be
represented as {Clt , t = 0, 1, · · · , T} across a set of layers in
SC. For instance, Fig. 2 illustrates that topics propagate from
LY0 to LY3. Now, we only observe that topics evolve across
SCs but do not know how they propagate, and we only know
that V+ is absorbed by topics but do not know which V+ is
involved. Therefore, given an initial topic, we aim to recover
the diffused topics and understand this process.

2.2.1. Similarity Diffusion Process

The topic is represented by the indicator vector bk, bk ∈ ∆N

where ∆ = {0, 1}, and k = 1, 2, . . . ,K is the indicator for
the k-th topic. The i-th bin of the bk is denoted as bki, where
bki = 1 or 0 means that the topic k whether contains the i-th
node or not. The k-th topic can be represented as subgraph:

Ck = bTk bk. (3)

Therefore, a similarity-preserving topic can be approximate-
ly represented as µCk, where the µ is an relative weight to
indicate the similarity among the nodes.

Poisson process is used to describe the similarity diffusion
process among topics:

SGi = Poisson (µCk). (4)

(4) is a reasonable assumption, topics are independently and
randomly focused by people in a time interval.

2.2.2. Generating Topics Across SCs

SCs can be simulated at different similarity levels from the
minimal value of similarity to the maximal value. Given a
similarity graph G built by any method, all the unique val-
ues in graph are theoretically considered as possible thresh-
olds, i.e., L = {l0, l1, . . . , lT } = unique({G(i, j)}), i, j =
1, 2, . . . , N , where T is the number of thresholds, N is the
number of nodes in a graph. At each LY, topic candidates are
generated by any algorithm, and all topic candidates identified
from all LYs are merged into a candidate set (see Alg. 1).

2.3. Maximal Cliques as Clustering-like Pattern

In this paper, rather than using “close” clustering patterns [7],
we adopt the “loose” pattern, i.e., maximal clique (MC), to

Algorithm 1: Generate topic candidates across SCs
Input: A graph G, thresholds L = {l1, l2, · · · , lT }
Output: Topic candidates C

1 Initialize C = ∅;
2 for each l ∈ {l0, l1, · · · , lT } do
3

SGl(i, j) =

{
G(i, j), if G(i, j) > l

0, if G(i, j) < l

Ct = all candidates output by any algorithm on the SGl;
4 C = C ∪ Ct;
5 end

represent topics. The reasons to use loose pattern have two-
folds: 1) it is difficult to design a perfect clustering pattern for
all types of topics; 2) as observed, the objects in topics, espe-
cially at lower layers in SCs, tend to be weakly correlated.

Bron-Kerbosch algorithm [11] is a classical one to find M-
Cs, but it is time consuming. Although some fast algorithm-
s [12] [13] are proposed, it is still too slow in our application
scenario, as we try to find all MCs from all layers in SC. So
how can we overcome the problem when the fact that multi-
granularity topics generated across SCs is available? Next,
we propose an accelerated algorithm by identifying meaning-
ful topic candidates from subgraph.

2.3.1. An Accelerated Algorithm (AA)

The multi-granularity topics are formed at different layers
with a same “seed” topic. Based on this observation, many
candidates that do not include the “seed” topics have been
safely filtered out. First, the similarity between an object and
a topic is defined in Defination 1.

Definition 1. Given a node v and a topic C(x ∈ C),
the similarity between v and the topic C, sim(v, C) =
min
x∈C

(sim(v, x)), where sim(A,B) is any similarity function.

The accelerated algorithm is proposed to generate mean-
ingful candidates with three steps. Firstly, the AA algorithm
divides the thresholds L into two sets LL and LS by a param-
eter τ . That is, LL = {lt ∈ L|lt ∈ τ% highest values of L},
LS = L \ LL. Secondly, Alg. 1 is used at LL to identify
the “seed” topic candidates that are denoted by CL. Given
a “seed” topic CL0 , for each low level LSt , we find a candi-
date node set I = arg sim

v∈V (G)

(
v, CL0

)
> LSt and extract the

subgraph SG induced by I . Thirdly, Alg. 1 is run on SG
at LSt to identify new topic candidates at this layer. Fig. 3
explains this procedure on a toy example. A “seed” top-
ic {2,3,4} is first identified in Fig. 3(a), and then Fig. 3(b)
finds I = {1,2,3,4,5,6}, and the induced subgraph (SG).
Fig. 3(c) shows the expansion of this topic, i.e., {1,2,3,4} and
{2,3,4,5,6}, which are identified from SG, include the “seed”
topic {2,3,4}, and are also maximal cliques of G. Moreover,
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Fig. 3. An illustration of the AA algorithm on a 7-node graph
with two similarity levels. (a) MC (shown in black box) is
identified as the “seed” topic at the high threshold. (b) Set I
is shown in blue box, and the extracted subgraph SG is shown
in green box. (c)Identifies all MCs from SG at low threshold
(shown in black box).
{2,7} is a maximal clique at low threshold but has been fil-
tered out.

2.3.2. Theoretical Justification

In this subsection, we theoretically justify that all candidates
output by the AA algorithm are meaningful.

Theorem 1. 1 ∀C identified from SG, whose corresponding
“seed” topic is CL , we have: 1) CL ⊆ C, 2) C is a maximal
clique of the graph G.

The Theorem 1 theoretically justifies that although the M-
Cs are identified from SG, they are also maximal cliques of
the graph G. More specially, the AA algorithm can find the
weakly correlated objects, and many topic candidates which
don’t include “seed” topics will be filtered out. It can speed
up greatly to find candidates, and also decrease the number of
topic candidates sharply.

3. UNSUPERVISED RANKING TOPIC CANDIDATES

This section introduces an unsupervised method to rank topic
candidates to handle the rareness problem, as a large number
of candidates can be generated across SCs.

3.1. Ranking As Deconvolution
A reasonable assumption for topic detection is that the larg-
er weight a topic candidate has, the higher probability that it
is a real topic. Therefore, the unsupervised ranking can be
formulated as the graph reconstruction task [14]:

G = Poisson

(
K∑

k=1

µkCk

)
. (5)

Given the topic candidates Ck, an EM algorithm is adopt-
ed to estimate the weights µk. This algorithm consistently
estimates the weights by filtering out the weights associated
with the unnecessary candidates.

E-step: P t+1
k,ij = µtk

GijCk,ij

Qk

∑
m µt

mCm,ij
,

M-step: µt+1 =
∑
ij P

t+1
k,ij .

(6)

1We omit the proof because of the limited space.

where Qk =
∑
ij Ck,ij , µ

0
k = 1, k = 1, 2, · · · ,K and

the iteration is terminated when |µt+1 − µt| < ε. This is the
Richardson-Lucy algorithm [15] for Poisson deconvolution.
It originally aims at recovering images that were blurred by a
point spread function.

4. EXPERIMENT AND DISCUSSION

In the experiments, we evaluate our method on two diverse
datasets, MCG-WEBV [16] and YKS [7]. MCG-WEBV is
downloaded from the “Most viewed” videos of “This month”
on YouTube. While YKS is a cross media dataset crawled
from YouKu and Sina, respectively, but we only use news ar-
ticles on YKS in the following experiments. Table 1 lists the
differences between two datasets.

For the MCG-WEBV dataset, we consider the surround-
ing text of each video as a set of words, and filter out the stop-
words. While YKS is tokenized by NLTK package in Python
as pre-processing, and then the TF-IDF is used to measure the
importance of each word. Finally, the bag-of-words (BoW) is
used to represent these text cues into features.

Following the common baselines, we evaluate the perfor-
mance with Top-10 F1 score. That is, every detected topic
Dt is matched with its most similar groundtruth topic, and
then the top-10 F1 scores are averaged to measure the per-
formance [7]: F1 = 2×Pr×Re

Pr+Re , where Pr = |Dt∩Gt|
|Dt| , Re =

|Dt∩Gt|
|Gt| , Dt is a detected topic, Gt is a groundtruth topic, and
| · | denotes the number of objects in a topic.

4.1. Analysis of Our Approach

We first use MCG-WEBV to demonstrate the effectiveness of
different components in our method, i.e., maximal cliques to
represent topics, generating topic candidates across SCs, the
AA algorithm and the unsupervised ranking.

4.1.1. The Analysis of Maximal Cliques

In our experiments, NMF and GS are used as partition-based
method and “close” clustering method to compare with MCs.
Since the input of NMF [5] is a document-term matrix, it’s
meaningless to threshold it at different LYs. Therefore, the
number of topics in NMF is assigned with a series of numbers
from 50 to 1000 with the step size 20, and then all generated
topics are merged into a candidate set. While GS and MC are
provided a series of similarity thresholds L = [0.05 : 0.03 :
0.3, 0.3 : 0.1 : 1]2. After the candidates are generated by
these algorithms, the unsupervised ranking (6) is Applied. 73
highest weighted topics are evaluated with the groundtruth, as
73 is the number of topics in the groundtruth.

As shown in Table 2, the performance of MC is much bet-
ter than GS, and is slightly better than NMF. As is expected,

2It’s a Matlab expression.



Table 1. A comparison between MCG-WEBC and YKS.

Dataset #Topics #Objects
#Objects
in topics Comments (the cues used in our experiments are indicated in bold.)

MCG-WEBV 73 3282 832 Videos and their surrounding titles, tags and descriptions on Youtube from Dec 2008 to Feb 2009
YKS 298 7325 990 News articles on Sina and Web videos on YouKu from May 2012 to June 2012

Table 2. The results of different representation of topics.
Alg. NMF GS MC

Pr 0.957 0.953 0.967
Re 0.943 0.781 0.948

Top-10F1 0.945 0.852 0.953

0.30.350.40.450.50.550.60.650.70.750.8
0

0.05

0.1

0.15

0.2

0.25

0.3

Similarity levels

A
c

c
u

ra
c

y

MC at individual SC

MC across SCs

GS at individual SC

GS across SCs

Fig. 4. The effectiveness of the SC. Each node shows the
accuracy at the corresponding similarity layer, and horizontal
line means the accuracy across all layers in the SC.

NMF is a partition-based method that is difficult to handle
the rareness of topics. On the other hand, GS fails to handle
weakly correlated topics.

4.1.2. The Effectiveness of SCs

In order to demonstrate the effectiveness of SCs, we use 11
layers with the thresholds L ranging from 0.3 to 0.8, and i-
dentify topic candidates in or across layers. To evaluate the
effectiveness of SCs, the detection accuracy is defined as:

Accuracy =
#Successful
#Groundtruth

, (7)

where a topic candidate Dt is recognized as successful detec-
tion, if the matching ratio satisfies that, r = |Dt∩Gt|

|Dt∪Gt| > 0.5.
Although both GS and MC curves increase when the sim-

ilarity level is decreased, the performance of MC increases
faster than GS at the low similarity level (see Fig. 4). It means
that only a few topics have “close” correlation pattern at high
level similarity, and the low similarity level can handle the
“loose” correlation in topics. On the other hand, the accuracy
across SCs is consistently higher than that at each individual
layer, i.e., MC increases 4.55% accuracy rate while GS in-
creases 25.00%. Obviously, detected topics across SCs can
handle the large inter-topic variations.

4.1.3. The Performance of the Accelerated Algorithm

In this subsection, we compare the performances of the AA
algorithm with the Alg. 1 on three aspects, i.e., running time,

Table 3. A comparison be-
tween two algorithms.

Alg. Alg. 1 AA

time(day) 11 0.8
#C 623488 13646

Top-10F1 0.969 0.953

Table 4. Effectiveness of unsu-
pervised ranking.

Alg. No rank Rank

Pr 0.790±0.018 0.967
Re 0.580±0.021 0.948
Top-10F1 0.654±0.013 0.953

Table 5. A comparison between MMG and our method.
Datasets MCG-WEBV YKS

Alg. MMG Our MMG Our
Pr 0.937 0.967 0.975 1.00
Re 0.942 0.948 0.936 0.960

Top-10F1 0.937 0.953 0.952 0.979

the number of topic candidates (#C) and Top-10 F1. In Al-
g. 1, all topic candidates are identified across SCs with the
threshold L. While in AA, we first divide L into two subsets
by setting τ = 0.03.

Table 3 shows clearly that the AA algorithm has greatly
reduced the time of identifying meaningful candidates, be-
cause we only find the “seed”-topic-related candidates from
subgraph. On the other hand, comparing with the Alg. 1,
the performance of the accelerated algorithm only slightly de-
creases. These results indicate that the AA algorithm may fil-
ter out some meaningful candidates, but the multi-granularity
topics are very universal in topic detection.

4.1.4. The Effectiveness of Unsupervised Ranking

We select 73 highest weighted topic candidates as ranked re-
sults. For unranked algorithm, we randomly select 73 topics
from all 13646 topic candidates as detected topics. The ran-
dom selection process is repeated 5 times and their mean and
standard deviation is calculated. The comparison between
ranked and unranked algorithm is shown in Table 4.

As is expected, the Top-10 F1 score has been improved
about 45% after unsupervised ranking. Ranking successfully
returns more meaningful topics, which justifies the correct-
ness of our hypothesis: the similarity diffusion satisfies Pois-
son process.

4.2. Comparisons With Other Algorithms

In this subsection, we compare our method with other algo-
rithms. Table 5 shows that our method performs better than
MMG [7], which uses multiple cues (including texts, videos
and time stamp), and is the state-of-the-art on both datasets.

Top-10 F1 ignores the influence of the number of detect-
ed topics. Therefore, Fig. 5 shows the performance of our
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method at different number of detected topics. Fig. 5 illus-
trates that the curves increase quickly – our method can ac-
curately retrieval the top-10 topics at cost of the slightly in-
creased number of topic candidates. Moreover, at the same
number of detected topics (179 for MCG-WEBV and 443 for
YKS), our method outperforms MMG obviously.

4.2.1. Evaluations With New Measurement

Top-10 F1 ignores the rareness problem in web topic detec-
tion – top-10 makes it impossible to measure the number of
false positives. We therefore propose a more reasonable eval-
uation method, accuracy v.s. false positives per topic (FPPT):
if a topic is successfully detected, how many number of false
positives are introduced by detection systems. Accuracy is
defined as (7) and FPPT = #Detected−#Successful

#Successful , where the de-
tected topic with matching ratio rt > 0.5 is considered as
successful detected topic. The closer to the upper-left corner
the curves are, the better the performances are (see Fig. 6).

Fig. 6 shows the accuracy v.s. FPPT curves of MMG and
our method. The curve shows that our algorithm is consis-
tently better than MMG 3 on both datasets.

5. CONCLUSIONS

In this paper, we have described a method based on repre-
senting web topics as a set of “loose” correlated objects, sim-

3Note that the results of MMG in the previous experiments are directly
copied from their paper. While in this experiment we run the source code
supplied by the authors [7] with the same setting, as the reported results can
not be compared with the new measurement.

ilarity diffusion among topic candidates, and the results out-
perform the state-of-the-arts. Moreover, a new benchmark
on the topic-wise level evaluation is proposed to describe the
rareness problem in web topic detection.

The promising results of this paper motivate a further ex-
amination. First, more efficient “loose” patterns, like random
methods, may scale up well to large-scale problems over MCs
used here. Furthermore, the heterogenous cues should be em-
bedded into graph, as is currently being investigated in multi-
media community.
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