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Abstract

The activation function for neurons is a promi-
nent element in the deep learning architecture for
obtaining high performance. Inspired by neuro-
science findings, we introduce and define two types
of neurons with different activation functions for
artificial neural networks: excitatory and inhibitory
neurons, which can be adaptively selected by self-
learning. Based on the definition of neurons, in
the paper we not only unify the mainstream acti-
vation functions, but also discuss the complemen-
tariness among these types of neurons. In addi-
tion, through the cooperation of excitatory and in-
hibitory neurons, we present a compositional ac-
tivation function that leads to new state-of-the-art
performance comparing to rectifier linear units. Fi-
nally, we hope that our framework not only gives
a basic unified framework of the existing activa-
tion neurons to provide guidance for future design,
but also contributes neurobiological explanations
which can be treated as a window to bridge the gap
between biology and computer science.

1 Introduction
Convolutional neural networks (CNNs) [Krizhevsky et al.,
2012] have recently been widely used in different computer
vision tasks. Deep CNNs not only significantly improve
the image recognition accuracy [Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014b], but also play important
roles in variety of vision tasks such as object detection
[Girshick et al., 2014], text detection [Shi et al., 2016;
Liao et al., 2016], human activity recognition [Simonyan and
Zisserman, 2014a], and air pollution [Zhang et al., 2016]. To
improve the performance of CNNs, there are so many tech-
niques advancing in CNNs performance improvements which
can be roughly divided into network structure design (e.g.
, depth [Simonyan and Zisserman, 2014b], modified non-
linear activation functions [Nair and Hinton, 2010]) and over-
fitting preventing techniques(e.g. , normalization [Ioffe and
Szegedy, 2015]).

∗Corresponding author.

Among these techniques, one key factor leading to the
recent success of deep neural networks is the invention of
the rectifier functions to model the neuron activation, i.e.
Rectified Linear Unit (ReLU) [Nair and Hinton, 2010;
Glorot et al., 2011]. It accelerates the learning process [Nair
and Hinton, 2010] and significantly improves the overall
network performance compared with traditional sigmoid or
tanh units [Glorot et al., 2011] by suppressing the vanish-
ing/exploding gradient problem in training deep networks.
Due to the importance of the activation function, many re-
searchers have proposed elaborate activation functions for
improving the network performance. These works can be
coarsely summarized as two categories: (1) modified ReLUs
(e.g. , Leaky ReLU (LReLU) [Maas et al., 2013], Paramet-
ric ReLU [He et al., 2015], Random ReLU (RReLU) [Xu et
al., 2015], Exponential Linear Units (ELU) [Clevert et al.,
2015], Parametric ELU (PELU) [Trottier et al., 2016], Mul-
tiple Parametric Exponential Linear Units (MPELU) [Li et
al., 2016]) which remove zero gradients with various func-
tions in negative input, and (2) ensemble activation functions
(e.g. , Maxout [Goodfellow et al., 2013], Adaptive Piecewise
Linear (APL) [Agostinelli et al., 2014], Network in Network
[Lin et al., 2013], S-shaped ReLU (SReLU) [Jin et al., 2015],
Concatenated ReLU (CReLU) [Shang et al., 2016]) which
take advantage of the ensemble power.

Despite the prevalence of the activation functions, there are
rarely proposals paying attention to their common properties
in the perspective of neurological evidence. In the neuro-
science domain, there are two main types of neurons in cere-
bral cortex (i.e. , the surface of the brain): the primary neuron
is excitatory neuron and the relay neuron is inhibitory neuron
[Markram et al., 2004]. Under normal circumstances, two
types of cells regulate themselves each other to keep brain
in dynamic equilibrium of excitement and inhibition state [Pi
et al., 2013]. Therefore, they both play important roles in
the neural network of brain. Inspired by the neurological
knowledge, in this paper we propose two types of neurons
with different activation functions for artificial neural net-
works: excitatory and inhibitory neurons, which are learned
for the neuron type selection. Based on the proposed neu-
rons, we not only unify the mainstream activation functions,
but also discuss the complementariness among these neuron
types in the view of neuroscience. Additionally, through the
cooperation of excitatory and inhibitory neurons, experiments
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demonstrate that the proposed activation functions work well
for training neural networks and achieve state-of-the-art per-
formance on several image recognition benchmarks.

2 Related Works
We review the existing works related to activation functions,
which are the focus of our research in this paper. They can
mainly be divided into two categories: rectified unit family
and ensemble activation function.

2.1 Rectified Unit Family
Since activation functions help to bring non-linearity, they
play an important role in deep neural networks for their sig-
nificant effect on the overall performance. ReLU [Nair and
Hinton, 2010] used linear activation function to replace the
saturated counterpart of the convolutional sigmoid or tanh-
like units for positive inputs and set the output of negative
inputs as zeros, i.e. , f(x) = max(0, x). It alleviated the
exploding/vanishing gradient problem and expedited the con-
vergence rate. Different from ReLU, LReLU [Maas et al.,
2013], PReLU and RReLU incorporated a positive slope pa-
rameter for negative input in activation units to remove zero
gradients. They are different from each other in the ac-
quisition methods for the slope parameter, where LReLU is
pre-defined before the training process, PReLU is adaptively
learned and RReLU is randomly sampling based on stochas-
tic regularization in the training process. ELU [Clevert et al.,
2015] was defined as an identify function for positive inputs
and exp(x)−1 for negative ones, which can handle the largen
variance and bias shift problems by allowing the mean acti-
vations closer to zeros. Similar to PReLU, MPELU [Li et al.,
2016] introduced a non-zero slope parameter for the negative
parts of ELU and proposed a weight initialization strategy for
ELU series. PELU [Trottier et al., 2016] introduced several
slope parameters in positive/negative parts and adjusted them
in training by modifying ELU with differentiability near zero.

2.2 Ensemble Activation Function
Ensemble activation functions have powerful approximate
ability for any smooth functions in theory. Maxout [Good-
fellow et al., 2013] used the maxout activation unit to output
the maximum over several learned transformation functions
for each neuron input. Adaptive Piecewise Linear (APL)
[Agostinelli et al., 2014] was a weight sum of parameterized
hinge-shaped functions whose parameters are learned during
training. Network in Network [Lin et al., 2013] approximated
the nonlinear rectified activation function in convolution net-
works with a multilayer perceptron in which the parameters
are learned from data. S-shaped Rectified Linear Activa-
tion Units (SReLU) [Jin et al., 2015] formulated three piece-
wise linear functions with four learnable parameters which
can imitate complex convex and non-convex functions in psy-
chophysics and neural sciences. With the observed property
of filters with opposite phase in lower layers, Concatenated
ReLU (CReLU) [Shang et al., 2016] was designed by mak-
ing an identical copy of the output values of the convolution
layer, negating them, concatenating both the negated part and
the original one, and then applying ReLU altogether.
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Figure 1: Four simple excitatory activation functions.

3 Excitatory and Inhibitory Activation
Function

In this section, we first give the definitions of excitatory and
inhibitory neurons for artificial neural networks. Then we
propose the compositional activation function of the two neu-
rons. Finally, we discuss the intrinsic relationships among the
mainstream activation functions and give some explanations.

3.1 Two Types of Neurons
Inspired by the neuroscience [Markram et al., 2004], we can
define two types of neurons for artificial neural networks. Not
every signal is useful for a particular task in human decision-
making, therefore, there exit two types of different neurons.
The first is “excitatory neuron” which is a function preserv-
ing the input signal well. The second is “inhibitory neuron”
that will suppress the input signal. In this way, the neural
networks can select the signals dynamically according to the
requirement of the task in a data-driven manner. In previous
researches, most widely-used neurons are excitatory, and the
inhibitory neuron is not well-studied in the literature. In this
paper, we will show that both of these two types of neurons
are important and complementary for neural networks.
Actually, the excitatory and inhibitory neurons can be de-

fined in many different formulations. In this paper, inspired
from the Occam’s razor theory (i.e., entities should not be
multiplied unnecessarily), we give simple and straightfor-
ward definitions for them. Excitatory neuron: The neuron
can be defined as:

x → +∞ or x → −∞, |f(x)| → +∞ (1)

which means the output f(x) preserves the absolute value of
the input x without suppression under some conditions.
For an excitatory neuron, the simplest linear activation

function is f(x) = x. However, it can not make an arti-
ficial neural network possess the ability of nonlinear map-
ping property. For better nonlinear data fitting, the simplest
non-linear activation function is f(x) = max(x, 0), i.e. ,
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Figure 2: Four simple inhibitory activation functions.

ReLU [Nair and Hinton, 2010]. Because it satisfies the con-
dition of Eq. (1), we think it is a representative case of ex-
citatory neuron. Since there are more than one excitatory
neurons in neural networks, here we only present four ex-
citatory activation neurons in different quadrants as shown
in Fig. 1. They are: f1(x), f2(x), f3(x) and f4(x) where
f1(x) = max(x, 0) in the first quadrant as shown in Fig.
1(b), f2(x) = max(−x, 0) in the second quadrant as shown
in Fig. 1(a), f3(x) = −max(−x, 0) in the third quadrant
Fig. 1(c) and f4(x) = −max(x, 0) in the forth quadrant as
shown in Fig. 1(d), respectively. These activation neurons are
excitatory because they all satisfy Eq. (1).

Inhibitory Neuron: Not only are the excitatory neurons
important, but also the inhibitory neurons play a key role
in neural network [van Vreeswijk and Sompolinsky, 1996].
With the inhibitory neurons, one neural network can keep in
equilibrium by restraining various neuron responses in differ-
ent layers. Here we also give the definition of the inhibitory
neuron as:

x → +∞ or x → −∞, |f(x)| → const (2)

which means that the output of inhibitory neuron f(x) does
not exceed a “constant” or tend towards stability even though
the absolute value of the input signal x tends to infinity.

There are many inhibitory neurons with different activa-
tion functions. To simulate the inhibitory activation neu-
rons which restrain the input signal, in this paper we just
introduce four inhibitory activation functions in each quad-
rant as shown in Fig. 2 corresponding to the excitatory
neurons. They are: f5(x), f6(x), f7(x) and f8(x) where
f5(x) = tanh(max(x, 0) in the first quadrant as shown in
Fig. 2(b), f6(x) = tanh(max(−x, 0)) in the second quad-
rant as shown in Fig. 2(a), f7(x) = exp(−max(−x, 0))− 1
in the third quadrant as shown in Fig. 2(c) and f8(x) =
exp(−max(x, 0)) − 1 as shown in Fig. 2(d), respectively.
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Figure 3: Diagram of the compositional excitatory and in-
hibitory activation (EIA) function. EIA: (e1(x), e2(x)), where
e1(x) = tanh(max(x, 0)) in the first quadrant, e2(x) =
αexp(min( x

β
, 0))− 1 in the third quadrant.

3.2 Composition of Excitatory and Inhibitory
Neurons

Excitatory neuron preserves the input signal while the in-
hibitory neuron suppresses the signal. They play different
roles in neural networks. There are three most possible com-
positions among excitatory and inhibitory neurons: (1) exci-
tatory and excitatory neurons; (2) excitatory and inhibitory
neurons; (3) inhibitory and inhibitory neurons.
Excitatory and Excitatory Neurons: CReLU [Shang et

al., 2016] is the representative one which is concatenated by
the excitatory neurons or activation functions with Fig. 1(a)
and Fig. 1(b) in parallel. Meanwhile, the importance of the
ways to combine excitatory neurons is different. Specially,
not any two excitatory neurons to combine is a good choice
because of their relevance. If they are independent, they
help each other; otherwise, the coupling relationship between
them may lead to the oscillation of the learning process, e.g. ,
the composition of Fig. 1(b) and Fig. 1 (d).
Excitatory and Inhibitory Neurons: We need to explore

which composition between excitatory activation function
and inhibitory activation function has the best complemen-
tariness. After investigating the well-known rectifiers, e.g. ,
LReLU [Maas et al., 2013], PReLU [He et al., 2015], ELU
[Clevert et al., 2015] and PELU [Trottier et al., 2016], we ar-
gue that the parallel composition of the excitatory neuron in
Fig. 1 (b) and the inhibitory neuron in Fig. 2 (c) has better
complementariness with each other.
Following the complementary direction of neuron com-

positions, we design an excitatory and inhibitory activation
(EIA) function with different neurons as shown in Fig. 3,
represented by δn : Θ → Θ2 activation as follows: ∀x ∈
Θ, δn , (e1(x), e2(x)). Here, e1(x) = max(x, 0), e2(x) =
αexp(min( xβ , 0))− 1. The optimization algorithm of the pa-
rameters α and β is back-propagation similar to [Trottier et
al., 2016]. The motivation of our EIA method is not only to
reduce the bias shift of layer-wise convolution, but also keep
the filter to be activated in an adaptive way. (e.g. , in the pos-
itive and negative direction or the antipodal inhibited way).

Inhibitory and Inhibitory Neurons: There exists the
composition of inhibitory and inhibitory neurons [Kvitsiani
et al., 2013]. Tanh [Hinton et al., 1986], i.e. , f(x) = e2x−1

e2x+1 ,
is the addition of two inhibitory neurons f5(x) and f6(x).
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Figure 4: Diagram of fractal assumption. The original activa-
tion function is divided into two sub-activation functions with dif-
ferent quadrants. For example, (a) AVR, f(x) = max(x, 0) +
max(−x, 0), is transformed into the composition of f1(x) (i.e.
ReLU) and f2(x). (b) ELU generates the parallel structure of f1(x)
and f7(x).

Neurological Guess: The proportion of inhibitory neurons
in total neurons is almost 10% [Markram et al., 2004] while
the other is mainly excitatory neurons. Suppose the negative
input needs to be suppressed by inhibitory neurons and the
positive output transmitted by the excitatory activation, the
weight ratio between them should be 1 : 9. Given an input
signal x after preprocessing of batch normalization [Ioffe and
Szegedy, 2015], it satisfies the normal gaussian distribution
x ∼ N(µ, δ2). We introduce a general activation function:

g(x) =

{
g1(x), if x >= 0, excitatory

g2(x), if x < 0, inhibitory
(3)

According to the ratio of excitatory activation and in-
hibitory activation, we guess there exists the expression as
follows,∫ 0

−∞
|g2(x)|p(x)dx :

∫ +∞

0

|g1(x)|p(x)dx ≈ 1 : 9 (4)

where
∫
is the integral operator, | · | gets the absolute value

and p(x) is the probability density function. According to Eq.
(4) and numerical integration algorithm, given g1(x) = x and
g2(x) = αx, the parameter α is optimally initialized as 1

9 .
To make the excitatory neurons play a leading role, we

need to penalize the inhibitory neurons with adaptive slope.
In the literature, to handle the zero gradient problem during
optimization, Maas et al. [Maas et al., 2013] proposed the
non-zero slope for the activation function of the negative in-
put counterpart which is potentially more robust. Inspired
by PReLU [He et al., 2015], ELU [Clevert et al., 2015] and
PELU [Trottier et al., 2016], the parameter with adaptive
learning is a good strategy which reduces the overfitting risk
of human interventions and alleviates the dynamic gradient
propagation. More punishment reduces the noise effect of
smaller negative input. In addition, the adaptive slope can be
learned itself through the end-to-end network training.
Fractal Assumption: Divide an activation function into

different quadrants and then conquer them as shown in Fig.
4, which are complementary.
The objectives of deep neural networks [Bengio, 2009;

Glorot et al., 2011] is learning to disentangle and represent

the factors of variation in the data. While concatenating
with independent and appropriate quadrant functions, there
are many advantages of sparsity (e.g. , information disentan-
gling, efficient variable-size representation, linear separabil-
ity and distributed but sparse) [Glorot et al., 2011] for the
deep neural networks. The importance of different quadrants
is statistically mining the collective knowledge in the litera-
ture and our empirical experiments.

3.3 Neurological Explantation
We will introduce the advantages of excitatory and inhibitory
neurons from three aspects: using only one type of excitatory
neuron, the collaboration of two types of excitatory neurons
and the complementariness of excitatory and inhibitory neu-
rons. Since excitatory neurons take a dominant role for neu-
roscience, only one type of excitatory neuron can still work
very well in the neural networks for multiple tasks, such as the
most widely used ReLU activation function [Nair and Hin-
ton, 2010]. On the other hand, there are a variety of neurons
which can construct different activation functions. For exam-
ple, since CReLU [Shang et al., 2016] is the collaboration
of two types of excitatory neurons, its performance is satis-
factory. In fact, we know that there are also many inhibitory
neurons in the neural networks from neurological knowledge.
Although the excitatory neuron is very important, it is better
to add inhibitory neurons into excitatory neurons for the high-
level semantic cognition task where the different neurons are
complementary. Therefore, we propose the compositional ex-
citatory and inhibitory activation (EIA) function which leads
to much better performance in the following experiments.

4 Experiments
To evaluate the effects of our proposed activation func-
tions, we conducted experiments on three datasets including
CIFAR-10 and CIFAR-100 [Krizhevsky and Hinton, 2009]
with the most common used deep neural network VGG [Si-
monyan and Zisserman, 2014b] and the ImageNet benchmark
dataset [Deng et al., 2009] with the AlexNet [Krizhevsky et
al., 2012] network architecture. The adopted VGG was mod-
ified with 19 layers and batch normalization for implement-
ing on CIFAR-10/100. We chose VGG and CIFAR-10/100 to
perform an in-depth investigation because the computational
cost of a large network on the datasets is moderate and about
ten hours on a K40 GPU. Note that the implementation of
the VGG architecture was following to [Zagoruyko and Ko-
modakis, 2016] who had released their source code. Except
only changing the types of the activation functions for fair
comparison, we kept all the hyperparameters remaining the
same for all experiments. Additionally, we selected AlexNet
with batch normalization using Torch for evaluating our pro-
posed EIA activation function in ImageNet.

4.1 Datasets
The CIFAR-10/100 datasets [Krizhevsky and Hinton, 2009]
contain 50, 000 training and 10, 000 testing samples with size
of 32×32 color images from 10 and 100 classes, respectively.
The data preprocessing techniques follow the method used in
[Goodfellow et al., 2013] ImageNet includes 1.3M training
and 100K testing images for 1000 categories with one crop.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3563



Table 1: Comparison of one type of neurons.

Excitatory Neuron Type Inhibitory Neuron Type
Name CIFAR-10/100 Name CIFAR-10/100
E1 93.95/73.17 I1 93.58/72.42
E2 93.67/72.5 I2 93.83/72.09
E3 93.13/71.17 I3 93.09/70.65
E4 93.26/71.29 I4 92.91/70.64

4.2 Evaluation on Single Neuron Type
To evaluate different kinds of excitatory neuron types, we
designed several experiments with these neurons. First, we
tested four types of excitatory neurons. ReLU [Nair and Hin-
ton, 2010] was treated as the first type of excitatory neuron
E1. E2, E3, and E4 were the remaining types of excita-
tory neurons corresponding to the activation functions f2(x),
f3(x) and f4(x) respectively. Similarly, four types of in-
hibitory neurons (i.e. , I1, I2, I3, and I4 corresponding to ac-
tivation functions f5(x), f6(x), f7(x) and f8(x) were also
compared. However, these inhibitory neurons were not con-
vergent with the original VGG model. Even with batch nor-
malization, their performance still had significant difference
and worse than the excitatory neurons. As shown in Table 1,
the first type of excitatory neuron achieved the best perfor-
mance in these neuron types.

4.3 Evaluation on Coupling Excitatory Neurons
To investigate the cooperation with excitatory and excitatory
neurons, we compared various compositions with different
types of excitatory neurons. These compositions are as fol-
lows: AVR is f(x) = f1(x) + f2(x), EE-1-2 is f(x) =
(f1(x), f2(x)), EE-1-3 is f(x) = (f1(x), f3(x)), EE-1-4 is
f(x) = (f1(x), f4(x)), EE-2-3 is f(x) = (f2(x), f3(x)),
EE-2-4 is f(x) = (f2(x), f4(x)) and EE-3-4 is f(x) =
(f3(x), f4(x)). As shown in Table 2, we found that the per-
formance of compositions with Index 2-7 was all better than
AVR which meant that the concatenated structure in parallel
was better. That was because the concatenated structure in
parallel not only utilized the advantage of sparsity, but also
explored the complementary information among independent
quadrants which consisted of the phase information. While
evaluating the compositions with Index 2-7, we found that
concatenations with independent quadrant functions in the di-
agonal line (e.g. , EE-1-2, EE-1-3, EE-3-4) were better than
the coupling quadrant functions at only one side of axis (e.g.

Table 2: Comparison among different excitatory neuron composi-
tion. EE: excitatory and excitatory. EE-1-2 is CReLU.

Index Quad. Name CIFAR-10 CIFAR-100
1 1, 2 AVR 92.62 65.44
2 1, 2 EE-1-2 93.98 73.22
3 1, 3 EE-1-3 93.84 73.16
4 1, 4 EE-1-4 93.69 72.96
5 2, 3 EE-2-3 93.68 73.08
6 2, 4 EE-2-4 94.08 72.73
7 3, 4 EE-3-4 93.92 73.03

Table 3: Comparison among compositions of different excitatory
and inhibitory neurons. EI: excitatory and inhibitory.

Name CIFAR-10 CIFAR-100
EI-1-3 93.76 73.16
EI-2-4 93.51 73.32
EIA 94.22 73.86

, EE-2-3 and EE-1-4). Additionally, the best composition ex-
citatory and excitatory neurons was better than the best type
of neuron in Table 1 which showed their collaboration.

4.4 Evaluation on Pairs of One Excitatory Neuron
and One Inhibitory Neuron

To evaluate the complementariness of excitatory and in-
hibitory neurons, we conducted several compositions among
them. They were EI-1-3, EI-2-4 and EIA where EI-1-3
was constructed by the first type of excitatory neuron f1(x)
and the third inhibitory neuron f7(x), EI-2-4 was f(x) =
(f2(x), f8(x)) and EIA was our proposed activation function.
The main difference between EI-1-3 and EIA was that we
penalized the inhibitory neurons with adaptive slopes from
self-learning. Table 3 showed that EIA got the best perfor-
mance which verified the importance of diverse neuron type
selection coming from self-learning in the end-to-end convo-
lutional neural network structure.
Besides, we also compared paired inhibitory and inhibitory

neurons with EIA. Their performance was also not as good as
EIA. For simplicity, we did not give the results here.

4.5 Evaluation of Fractal Assumption
In commercial applications, we need to consider the limita-
tion of device memory and time complexity. With the fractal
assumption of different excitatory and inhibitory neurons, we
can select various neurons to design new activation functions.
For example, AVR can be constructed by two excitatory neu-
rons, i.e. , f1(x) and f2(x), Linear can be generated by f1(x)
and f3(x) and ELU can be divided into one excitatory neu-
ron f1(x) and one inhibitory neuron f7(x). There are the
fractal and concatenated structures among them. Specifically,
AVR, f(x) = max(x, 0)+max(−x, 0), equals to the inverse
composition result of EE-1-2. There was the same relation
between Linear, f(x) = max(x, 0) + min(x, 0), and EE-
1-3, f(x) = (max(x, 0),min(x, 0)). As show in Table 4,
we found that the fractal activation functions (i.e. , CReLU
and EE-1-3) had a significant improvement over their corre-
sponding original activation functions (i.e. , AVR and Linear).
Therefore, the fractal and concatenated structure played an
important role in activation functions.

Table 4: Comparison for fractal assumption.

Index Quad. Name CIFAR-10 CIFAR-100
1 1, 2 AVR 92.62 65.44
2 1, 2 CReLU 93.98 73.22
3 1, 3 Linear 88.36 56.37
4 1, 3 EE-1-3 93.84 73.16
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Table 5: Evaluation on the recognition performance with different
ratio of excitatory and inhibitory neurons.

Name α CIFAR-10 CIFAR-100
ELU 0.11 93.97 73.68
ELU 0.2 93.67 73.49
ELU 0.3 93.42 73.09
ELU 0.5 93.01 72.18
ELU 0.6 92.56 70.85
ELU 0.7 92.21 63.16
ELU 1 91.32 67.28

To further evaluate the effects of excitatory and inhibitory
neurons with different rations, we adopted the addition of
the first excitatory neuron and the third inhibitory neuron,
i.e. , ELU [Clevert et al., 2015] whose activation function
is f(x) = f1(x) + αf7(x), for the baseline. Here, the adap-
tive penalized parameter α was set to different values. As
shown in Table 5, we found that as the parameter α changes,
ELU had significant performance differences in CIFAR-10
and CIFAR-100 datasets. While α = 0.11, ELU achieved the
best performance. This was corresponding with the neurolog-
ical guess in Section 3.2. In some extent, it showed the rele-
vance between computer science and neurological evidences.

4.6 Comparison with other State-of-the-Art
Activation Functions

We compared the excitatory and inhibitory activation (EIA)
function with other state-of-the-art activation functions, i.e.
, ReLU [Nair and Hinton, 2010], PReLU [He et al., 2015],
CReLU [Shah et al., 2016] and PELU [Trottier et al., 2016].
VGG-Large-2 was increased the filter number as fair base-
line for comparison with CReLU and EIA. From Table 6, we
found that the EIA function achieved the best performance.
Specifically, EIA not only took advantage of the phase in-
formation and modulus information of different fractal quad-
rants, but also utilized the complementarity of excitatory and
inhibitory neurons.

4.7 ImageNet Challenge Dataset
To evaluate the performance of our proposed activation func-
tions in large dataset benchmark, we performed the activation
function of EIA on the 1000-class ImageNet dataset, which
consists of about 1.3M training color images. For this task,
we adopted AlexNet [Krizhevsky et al., 2012] with batch
normalization for test. In Table 7, we found that our pro-
posed activation function achieved the best performance (i.e.

Table 6: Comparison of different activation functions. (.) corre-
sponds to the denoted name in the paper.

Model CIFAR-10 CIFAR-100
ReLU(E1) 93.95 73.17

PReLU(adaptive EE-1-3) 93.97 73.06
PELU(adaptive EI-1-3) 93.61 73.16

CReLU(EE-1-2) 93.98 73.22
VGG-Large-2 94.05 73.14

Ours 94.22 73.86

Table 7: Comparison of different activation functions in the large
ImageNet benchmark dataset. The filter number of PELU-large is√
2 times as more as PELU’s.

Model ReLU CReLU PELU PELU-large Ours
Top-1(%) 58.05 58.64 59.55 61.32 62.35

, the highest testing accuracy) compared with the state-of-the-
art activation functions ReLU [Nair and Hinton, 2010] and
CReLU [Shang et al., 2016] in the large ImageNet benchmark
dataset. The experiments also demonstrated the effectiveness
of the proposed EIA function.

5 Discussion
In this section, we discussed the relationship between our
findings and neuroscience. For parallel and distributed bio-
logical neurons, the expected firing rate is simulating the ac-
tivation function while there are signals at synapse incoming
[Dayan and Abbott, 2001; Glorot et al., 2011]. The biological
activation function consists of features: unilateral inhibition,
sparse activation, and antisymmetric inhibitory or symmet-
ric excitatory states. Inspired by biological knowledge, the
proposed EIA function had relations with the above features.
Fractal assumption was similar to unilateral inhibition, while
the concatenated structure in parallel used sparse activation
and inhibitory/excitatory states potentially. In some extent,
the compositional activation functions provided understand-
ing and guidance for future neurological findings.

6 Conclusion
In this paper, we proposed two types of neurons with differ-
ent activation functions for artificial neural networks: excita-
tory and inhibitory neurons. With the help of different types
of neurons, we designed the excitatory and inhibitory activa-
tion function which enabled the networks to be more sparse
and alleviated the bias shift and vanishing gradients prob-
lems. Comprehensive experiments were not only in agree-
ment with neuroscience findings, e.g. , the importance of ex-
citatory and inhibitory neurons, but also demonstrated the
proposed method had achieved state-of-the-art performance.
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