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Cross-Domain Collaborative Learning via
Discriminative Nonparametric Bayesian Model
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Abstract—Cross-domain data analysis has been becoming
more and more important, and can be effectively adopted for
many applications. However, it is difficult to propose a unified
cross-domain collaborative learning framework for cross-domain
analysis in social multimedia, because cross-domain data have
multidomain, multimodal, sparse, and supervised properties. In
this paper, we propose a generic cross-domain collaborative
learning (CDCL) framework via a discriminative nonparametric
Bayesian dictionary learning model for cross-domain data analysis.
Compared with existing cross-domain learning methods, our
proposed model mainly has four advantages: First, to address
the domain discrepancy, we utilize the shared domain priors
among multiple domains to make them share a common feature
space. Second, to exploit the multimodal property, we use the
shared modality priors to model the relationship between different
modalities. Third, to deal with the sparse property of media data
in one domain, our goal is to learn a shared dictionary to bridge
different domains and complement each other. Finally, to make
use of the supervised property, we exploit class label information
to learn the shared discriminative dictionary, and utilize a latent
probability vector to select different dictionary elements for
representation of each class. Therefore, the proposed model can
investigate the superiorities of different sources to supplement and
improve each other effectively. In experiments, we have evaluated
our model for two important applications including cross-platform
event recognition and cross-network video recommendation. The
experimental results have showed the effectiveness of our CDCL
model for cross-domain analysis.

Index Terms—Social media, discriminative non-parametric
Bayesian model, multi-modality.

I. INTRODUCTION

NOWADAYS, more and more social media sites are pop-
ping up, like Facebook and Flickr, and make it workable

for users to create and share rich online social media content.
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Fig. 1. There are two different scenarios in cross-domain analysis: (a) cross-
platform data association (b) cross-network user association.

According to the media report1, Flickr2 has 87 million users
and 8 billion photos, Instagram3 has 100 million users produc-
ing 4 billion photos, Facebook4 has about 1.11 billion users,
and Twitter5 has around 500 million enrolled users with over
200 million active users. As a result, social multimedia data
increase enormously in cross-domain scenarios (different so-
cial media sites), such as cross-platform data association, and
cross-network user association.

For cross-platform data association as shown in Fig. 1(a),
when a popular event, such as United States Presidential Elec-
tion or Syrian civil war, is going on around us, it can spread
quickly and will have large amounts of event content informa-
tion with multi-modality in Internet, such as texts, images, and
videos. Here, we consider the Flickr and Google News as two
different domains in Fig. 1(a), and exploit the shared social
event, such as “United States Presidential Election”, to asso-

1https://www.centillien.com/news/view/415595/the-history-and-evolution-
of-social-media-an-infographic

2http://www.flickr.com/
3http://instagram.com/
4https://www.facebook.com/
5https://twitter.com/

1520-9210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1856-9564
https://orcid.org/0000-0001-8343-9665


QIAN et al.: CROSS-DOMAIN COLLABORATIVE LEARNING VIA DISCRIMINATIVE NONPARAMETRIC BAYESIAN MODEL 2087

ciate with their documents from different domains. Here, for
the same event, there might be few authority reports on Google
News, which can be complemented by many intriguing com-
ments and pictures on Flickr. Besides, the related pictures of
official reports caught by the professional writers can concen-
trate on a particular event on Google News, but most of the
uploaded pictures by users are unprofessional on Flickr. As a
result, if the related data of the same event can be aggregated
across different platforms, we can make the strengths of one
domain supplement the shortcomings of the others.

For cross-network user association as shown in Fig. 1(b),
with the expansion of online networking, it has changed the
way of people to share personal information, and users usu-
ally visit different social networks simultaneously for different
needs. Here, there are many user accounts in the largest video-
sharing YouTube network and the largest tweet-sharing Twitter
network. For the same user, he/she may have tweeting prac-
tices on Twitter and video-related practices on YouTube, and
the behavior of the same user in one network will be inevitably
affected by the track of another social network. If we aggregate
rich cross-network behavior information of the users across dif-
ferent social networks, they can supplement and improve each
other, particularly for a new user with only little information in
social network.

Based on the above discussions in two different cross-domain
scenarios, it is clear that, to better know what happens among
multiple domains, it is important to utilize the superiorities of
multiple sources via collaborative learning methods, such as
Google news, Filckr, Twitter, and YouTube. The cross-domain
collaborative learning is useful in many cross-domain applica-
tions, like cross-domain event analysis [1]–[3], cross-domain
collaboration recommendation [4], and cross-domain multiple
event tracking [5], [6]. However, cross-domain data are innately
heterogeneous and noisy, it is difficult to explore the helpful
information across multiple domains.

Most existing cross domain learning methods could be cate-
gorized into two categories including (1) making multiple do-
mains share a common feature space by introducing a cross-
domain constraint for cross-domain feature learning [2], [7],
[8]. (2) utilizing some cross-domain methods to model cross-
network user behaviors with social links to conduct person-
alization recommendation tasks [9], [10]. However, few efforts
have been made to propose a unified cross-domain collaborative
learning framework because the media data have multi-domain,
multi-modal, sparse and supervised properties. Specifically,
the media data on different domains (e.g., Flickr, Google News,
YouTube, and Twitter) are heterogenous, and they can supple-
ment each other, but also have domain discrepancy. Each data
instance can be represented with images and texts. Moreover,
these texts and images can supplement each other, as shown
in Fig. 1(a). In reality, the behavior information of users might
be sparse in the media site, because only small part of photos
and videos can be browsed by users. If a new user enrolls on
YouTube, the system does not know anything about his/her asso-
ciations on Youtube and cannot make effective video recommen-
dations. In Fig. 1(a), data instances are about two types of events
“United States Presidential Election” and “Syrian civil war”

from different social media sites. The class label information
can be exploited in the cross-domain learning to obtain discrim-
inative feature representation.

To overcome the above issues, we design a novel unified
Cross-Domain Collaborative Learning (CDCL) framework via
the proposed discriminative non-parametric Bayesian dictio-
nary learning model for cross-domain multi-modal data analy-
sis. The proposed model can jointly utilize the multi-domain,
multi-modality, sparse, and supervised properties. Here, we just
show one example of cross-platform data association for so-
cial event. In the left panel of Fig. 2, we show two different
social events “United States Presidential Election” and “Syr-
ian civil war” frow two different domains (Flickr and Google
News) with two modalities (texts and images). In the middle
panel of Fig. 2, it shows that our model can learn the shared
discriminative feature representation by using the supervised
information, together with the domain and modality priors from
cross-domain data. In the right panel of Fig. 2, we apply the
proposed model for two different applications including cross-
platform event recognition and cross-network video recommen-
dation. Here, the cross-platform event recognition is to utilize
multi-modal information among multiple domains to recognize
the social event. The cross-network video recommendation is
to exploit rich cross-network behavior information of users to
gauge their preferences on other social networks. For example,
by using the overlapped user account linkage between Twitter
and YouTube, and considering both the Twitter tweeting activ-
ities and historical interactions with YouTube videos, we can
design a cold-start recommendation task for the new YouTube
user by the proposed CDCL method. We evaluate our model on
two applications and the experimental results demonstrate its
effectiveness for cross-domain data analysis. The contributions
are as follows.

� We propose a generic cross-domain collaborative learning
framework for cross-domain data analysis such as cross-
platform data association and cross-network user asso-
ciation, which can effectively utilize the superiorities of
multiple resources to supplement and improve each other.

� The proposed discriminative non-parametric Bayesian dic-
tionary learning model is able to not only use the shared
modality and domain priors to consider the multi-modal
property and overcome the domain discrepancy, respec-
tively, but also exploit supervised information of media
data to obtain the discriminative dictionary.

� We evaluate the proposed model on two different appli-
cations, and the extensive experimental results show that
our model can perform the best with comparison the exist-
ing methods. Besides, we collect a large-scale social event
dataset for cross-domain analysis, and will release it for
academic use.

A preliminary version of this paper was published in [11].
The extension includes the following four aspects: (1) In [11],
an unsupervised non-parametric Bayesian dictionary method
is proposed for cross-domain collaborative learning. Differ-
ent from [11], we propose a novel discriminative model for
multi-modal cross-domain data analysis by considering super-
vised information. The model in [11] is only a special case of
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Fig. 2. Description of our cross-domain collaborative learning. For simplicity, we only show one example of cross-platform data association for social event.
Here, the events have 2 classes (Event 1 and Event 2), and are from two domains (Flickr and Google News) with two different modalities (texts and images).

our model without considering supervised information. (2) In
Section III, we present the details of the supervised cross-
domain collaborative learning algorithm. (3) We introduce a
more comprehensive survey of the related work about the dis-
criminative dictionary learning method in Section II. (4) More
quantitative results are shown to verify the effectiveness of our
model, including: (a) The experimental results are added in
Section V-A3. (b) A more focused investigation on discrimina-
tive level of the proposed model with different πc is added in
Figs. 6 and 7(c) We have added different feature representations
of users with the users’ social network and content information
on Twitter in Section IV-B, and shown the detailed analysis in
Section V-B and Fig. 11.

II. RELATED WORK

Over the past few years, researchers have proposed various
methods to cope with the problem of cross-domain collabora-
tive learning. These studies can be generally classified into two
categories as follows.

Cross-domain Feature Learning: In cross-domain feature
learning, many algorithms use the prior knowledge of the aux-
iliary domain to help improve the task on target domain, and
make multiple domains share the latent space by introducing
some cross-domain constraints [2], [7], [8], [12]–[17]. In [7], a
novel structural correspondence learning method is proposed to
induce correspondences among features from different domains.
Pan et al. [8] introduce a latent feature space to measure the
domain similarity and reduce the distance among multiples do-
mains. With the rapid development of multi-media information
in Internet, more and more researchers have paid attention to the
cross-media leaning in the past few years [18]–[26]. In [21], the
CM-LDA method is proposed to adopt a shared latent variable
to learn the relations of different media data. Chang et al. [14]
propose a novel event search system by using concept classi-
fiers collected from other sources to deal with the semantic event
search and few-exemplar event detection. In [15], a bi-level se-
mantic representation analyzing framework is proposed to deal
with multiple semantic representations of MED videos learned
from different sources. In [25], a novel deep feature learning

paradigm is proposed to conduct cross-model feature learning
by using social images and tags based on social collective intel-
ligence. Liu et al. [26] propose a novel hierarchical clustering
multi-task learning (HC-MTL) method for joint human action
grouping and recognition, and this work assumes that all actions
are either independent for individual learning or correlated for
joint modeling.

Different from the above methods, the proposed CDCL
method can associate with multiple domains by utilizing
a shared dictionary learning strategy. Many existing dictio-
nary learning approaches have been proposed [27]–[31]. Yang
et al. [27] adopt the coupled dictionary model to associate the
low resolution with high resolution patches for image super res-
olution. Here, the sparse coefficient can be learned by using the
reconstructed residual error for the above dictionary learning
methods. However, we cannot know the real value of the recon-
structed residual error, and the performance might essentially
degrade if the setting value is inconsistent with the ground truth.
Instead, a new non-parametric Bayesian model is proposed to
deal with the above problems [29], [30]. Zhou et al. [29] adopt
a dictionary learning method by considering the beta process
prior, where the appropriate dictionary size can be inferred nat-
urally. The non-parametric Bayesian learning methods have a
excellent performance in compressive sensing, image denoising,
and human action recognition. However, the above methods only
focus on unsupervised dictionary learning, and do not consider
the supervised information to learn discriminative dictionary for
feature representation. Wang et al. [32] introduce a novel super-
vised class-specific dictionary learning model to conduct action
recognition, and the model can make dictionaries connected
with various classes be independent via a dictionary disjointed-
ness strategy for better targets classification. In [33], a novel K-
SVD method based on the label consistent strategy is proposed
to obtain the discriminative dictionary. Akhtar et al. [34] extend
the unsupervised non-parametric Bayesian model to the super-
vised model, where the model deduces probability distributions
of the dictionary elements to obtain the discriminative Bayesian
dictionary by adopting the Beta Process prior. Inspired by
their methods, we propose a novel cross-domain collaborative
learning method via a discriminative non-parametric Bayesian
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dictionary learning model for cross domain feature learning by
use of the shared domain, modality and supervised information.

Cross-Network Collaborative Learning: Cross-network
collaborative learning has attracted wide attentions in the past
few years. Most of the existing methods mainly adopt multiple
social networks’ information for collaborative applications.
In [35], a novel transfer learning framework via a real-time
strategy is proposed to help solve some multimedia problems.
In [36], the authors explore tag profiles of multiple social
networks to help users find some consistent characteristics.
However, how to utilize the shared content to bridge different
domains to help complement each other is still a challenging
problem. In many cross-network collaborative learning meth-
ods, our work is relevant to [10] and [37] in social media.
Yan et al. [10] adopt cross-domain social relation data to
conduct the friend recommendation task for the new users. Our
work is different from [10], and mainly focuses on utilizing
cross-network collaborative learning method to address the
cold-start video recommendation problem. In [37], the authors
propose a novel YouTube video promotion idea by using the
dictionary learning strategy. In this work, we adopt a novel
non-parametric Bayesian dictionary learning model to learn the
shared dictionary collaboratively rather than utilize the coupled
dictionary learning method. Furthermore, our model is also
a generic framework for cross-domain analysis, and can be
applied for many different applications in social multimedia.

III. OUR APPROACH

In this section, we first show the details of our CDCL algo-
rithm, and then introduce the model inference.

A. Cross-Domain Collaborative Learning

The cross-domain collaborative learning is to investigate the
superiorities of multiple resources to supplement and improve
each other. To achieve this goal, we propose a generic collabo-
rative learning framework via a discriminative non-parametric
Bayesian dictionary learning model. For multi-modal cross-
domain data, we assume that data have J domains with M
modalities from C classes. Let X = [x1 , . . . ,xj , . . . ,xJ ] rep-
resent all data instances of the J domains. Specifically, xj =
[{x1

j,1 , · · ·,xMj,1},..., {x1
j,c , · · ·,xMj,c},..., {x1

j,C , · · ·,xMj,C }] de-
note M modalities of data instances from C classes in the j-th
domain. xmj,c ∈ Rnmj denotes the m-th modality sample of data
instance from the c-th class in the j-th domain, and the nmj de-
notes the feature dimensionality of them-th modality sample in
the j-th domain. Here, data instances X could be either social
event data or user information, such as social events described
by images and texts or the user account linkages between Twitter
and YouTube.

We use the traditional sparse representation which has shown
encouraging performance [38] to model these data instances.
When given an data instance xmj , we use the dictionary Dm

j

and the reconstructed error term εmj to represent this instance,
as shown in (1).

xmj = Dm
j wm

j + εmj (1)

where xmj denotes the m-th modality sample of data instance
in the j-th domain, the columns of the matrix Dm

j ∈ Rnmj ×K

denote the K dictionary elements, wm
j denotes the sparse co-

efficient of feature, and εmj denotes the reconstructed noise.
Equation (1) uses the sparse representation to only consider the
single modality of the instance in one domain, and cannot uti-
lize the multi-domain, multi-modality, sparse, and supervised
properties jointly.

In [11], we have proposed a unsupervised non-parametric
Bayesian dictionary learning model in [11] to investigate the
multi-domain and the multi-modality property of cross-domain
data. However, this model does not consider the supervised
information of data instance to learn discriminative feature
representation. In this work, based on the method [11], we
propose a novel generic cross-domain collaborative learning
method via a discriminative non-parametric Bayesian dictionary
learning model by considering the supervised information of
data instances to learn the discriminative dictionary for feature
representation, which can effectively boost the classification
performance, as shown in Fig. 3.

In the traditional non-parametric Bayesian dictionary learning
model, they usually consider the beta process prior to obtain the
dictionary Dm

j , which can non-parametrically infer the number
of dictionary elements among multiple domains and obtain their
relevant importance levels. Therefore, we can introduce the beta
process priors to make the obtained results sparse instead of
traditional �1 norm constraint. In [39], the authors develop the
Beta process (BP) in details, and the BP with parameters a0 > 0,
b0 > 0, and the base measureH0 is denoted asBP (a0 , b0 ,H0).
The stick-breaking construction process H ∼ BP (a0 , b0,H0)
is denoted as:

H(ψ) =
K∑

k=1

πkδψk
(ψ) (2)

where πk ∼ Beta(a0/K, b0(K − 1)/K) and ψk ∼ H0 . The
H(ψ) denotes the vector form of K probability values, where
each value is related with a individual element ψk , and ψk de-
notes the element distribution according to the H0 . When the
value of K is close to infinite, H(ψ) can have an infinite di-
mensional vector representation of probability values, and each
probability value will have a related element ψk drawn i.i.d.
from H0 .

Let wm
j,c denotes the sparse feature coefficient of the m-th

modality sample of data instance of the c-th class in the
j-th domain. Mathematically, xmj,c = Dm

j wm
j,c + εmj,c , where

xmj,c ∈ Rnmj denotes an data instance of the c-th class with
the m-th modality, Dm

j ∈ Rnmj ×K denote the K dictionary el-
ements shared by all the classes, wm

j,c denotes the sparse feature
coefficient, and εmj,c denotes measurement noise. We can set
the sparse coefficient as wm

j,c = zmj,c � smj,c , where � denotes
the Hadamard multiplication (element-wise) form of these two
vectors. The zmj,c ∈ {0, 1}K represents a binary vector, and can
show which element of the dictionaryDm

j is utilized to conduct
the representation of the instance. The smj,c ∼ N(0, γ−1

c,sIK ) rep-
resents the weight values, and is used to ensure that the obtained
sparse reconstruction values are not always binary. The γc,s
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Fig. 3. The graphical representation of the proposed model is shown. Here, the red circles and the gray circles are represented as the shared priors and the
observation data, respectively.

represents the inverse variance or the precision. Specifically, let
the elements ψk be connected with the candidate members of
the dictionary Dm

j , and the k-th element of the binary vector
zmj,c can be drawn by zmj,c,k ∼ Bernoulli(πc,k ). The shared pri-
ors πc, γc,s , γc,ε can be used to obtain the shared dictionary for
feature representation among multiple domains in the c-th class,
as shown in Fig. 3.

The hierarchical form of our method could be denoted as:

xmj,c = Dm
j wm

j,c + εmj,c

Dm
j = [dmj,1 , · · · , dmj,K ]

wm
j,c = zmj,c � smj,c

εmj,c ∼ N(0, γ−1
c,εInmj ), (3)

where m = 1, . . . ,M, j = 1, . . . , J, c = 1, . . . , C, dmj,k ∼ N

(0, nm (−1)
j Inmj ) is shared by all classes, zmj,c ∼

∏K
k=1

Bernoulli(πc,k ), πc,k ∼ Beta(a0/K, b0(K − 1)/K), smj,c ∼
N(0, γ−1

c,sIK ), γc,s ∼ Γ(c0 , d0), and γc,ε ∼ Γ(e0 , f0). The
gamma hyper-priors over γc,s , γc,ε are non-informative. Here,
independent conjugacy Gaussian priors for dmj,k , smj,c , and εmj,c
are adopted for simplicity. As a result, a latent probability vector
πc with πc,k as its elements are connected with the dictionary
elements in the feature representation of data instances from the
c-th class. Therefore, our method is able to not only utilize the
knowledge of each domain, but also combine superiorities of
other domains to supplement and improve each other by using
the shared domain and modality priors. Moreover, the model can
utilize the learned dictionary which is shared by all classes and
the learned latent probability vector πc of each class to obtain
the discriminative dictionary for feature representation.

B. Model Inference

The full likelihood probability of the proposed CDCL method
is factorized as:

P (X,D,Z, S, π, γs , γε) =

J∏

j=1

M∏

m=1

C∏

c=1

N
(
xmj,c ;D

m
j (smj,c � zmj,c), γ

−1
c,ε Inmj

)

N(smj,c ; 0, γ
−1
c,s IK )

J∏

j=1

M∏

m=1

K∏

k=1

N
(
dmj,k ; 0, n

m (−1)
j Inmj

)

J∏

j=1

M∏

m=1

C∏

c=1

K∏

k=1

Bernoulli
(
zmj,c,k ;πc,k

)

C∏

c=1

K∏

k=1

Beta(πc,k ; a0 ,b0)

C∏

c=1

Γ(γc,ε ; e0 f0)Γ(γc,s ; c0 ,d0). (4)

There are many latent variables, namely D, Z, S, π, γs , γε , to be
estimated, and we utilize popular Gibbs sampling [40] strategy
to estimate latent parameters. In a traditional Gibbs sampler,
new assignments of latent variables will be iteratively sampled
based on the distributions conditioned on the previous state
of the model. This process is analogous to the atom-by-atom
dictionary update step of K-SVD [41]. The derivation rules are
listed for the latent variables D, Z, S, π, γs , γε as follows:
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Sampling Dm
j : Firstly, we sample the dictionary variable

Dm
j = [dmj,1 , . . . , d

m
j,K ] based on the posterior probability in (5).

P (dmj,k |−) ∝
C∏

c=1

N
(
xmj,c ;D

m
j (smj,c � zmj,c), γ

−1
c,ε Inmj

)

N
(
dmj,k ; 0, n

m (−1)
j Inmj

)
(5)

Here, the dmj,k is shared by all classes and is updated using
the complete training data, we can draw the dmj,k from a normal
distribution p(dmj,k |−) ∼ N(udmj . k ,Σdmj . k

).
Sampling zmj,c : We sample the binary vector zmj,c =

[zmj,c,1 , . . . , z
m
j,c,K ] based on the following posterior probabil-

ity, as shown in (6).

P (zmj,c,k |−) ∝ N
(
xmj,c ;D

m
j (smj,c � zmj,c), γ

−1
c,ε Inmj

)

Bernoulli(zmj,c,k ;πc,k ) (6)

Here, when zmj,c,k = 1, we can write its posterior probability:

P1 ∝ N(xmj,c ;D
m
j (smj,c � zmj,c), γ

−1
c,ε Inmj ) · πc,k (7)

when zmj,c,k = 0, the posterior probability can be written as:

P0 ∝ N
(
xmj,c ;D

m
j (smj,c � zmj,c), γ

−1
c,ε Inmj

)
· (1 − πc,k ) (8)

We can draw zmj,c,k according to the Bernoulli distribution

zmj,c,k ∼ Bernoulli ( P1
P1 P0

).
Sampling smj,c : We sample the weight variable smj,c =

[smj,c,1 , . . . , s
m
j,c,K ], as shown in (9).

P (smj,c,k |−) ∝ N
(
xmj,c ;D

m
j (smj,c � zmj,c), γ

−1
c,ε Inmj

)

×N(smj,c ; 0, γ
−1
c,s IK ) (9)

Here, like dmj,k , we can draw the smj,c,k from a normal distribution
p(smj,c,k |−) ∼ N(usmj , c , k ,Σsmj , c , k

).
Sampling πc : Based on the discriminative model, we

can obtain the posterior probability distribution over πc =
[πc,1 , . . . , πc,K ] as:

P (πc,k |−) ∝ Beta(πc,k ; a0 , b0)
J∏

j=1

M∏

m=1

Bernoulli(zmj,c,k ;πc,k )

(10)

due to the conjugacy between the two distributions, it can be
easily shown that πc,k can be drawn from a Beta distribution as:

P (πc,k |−) ∝ Beta

(
a0

K
+

J∑

j=1

M∑

m=1

zmj,c,k ,

b0(K − 1)
K

+ |I|c −
J∑

j=1

M∑

m=1

zmj,c,k

)
(11)

Sampling γc,s: The posterior probability distribution over γc,s
is:

P (γc,s |−) ∝ Γ(γc,s ; c0 , d0)
J∏

j=1

M∏

m=1

N(smj,c ; 0, γ
−1
c,s IK ) (12)

Sampling γc,ε : Like γc,s , the posterior probability distribution
over γc,ε is written as:

P (γc,ε |−) ∝ Γ(γc,ε ; e0 , f0)

J∏

j=1

M∏

m=1

N
(
xmj,c ;D

m
j (smj,c � zmj,c), γ

−1
c,ε Inmj

)

(13)

The j,m, c denote the corresponding j-th domain, m-th
modality, and c-th class, respectively. The priors πc, γc,s , γc,ε
are shared among multiple domains and modalities.

IV. APPLICATIONS

In this section, we introduce the details of our model for
two different cross-domain applications including (A) cross-
platform event recognition and (B) cross-network video recom-
mendation.

A. Cross-Platform Event Recognition

The cross-platform event recognition is to utilize multi-modal
information from multiple domains for event recognition. When
a popular event is going on around us, it can spread quickly and
will generate large amounts of event content information with
multi-modality in Internet, such as texts, images, and videos.
As a result, it is important and necessary to automatically detect
and recognize the interesting and popular social events from
large amounts of media data. How to effectively utilize the
cross-domain multi-modality data is a key challenge. In the
traditional event recognition task, textual features are usually
adopted. However, event data also contain rich visual informa-
tion. For the same event from different social media sources,
it might have different types of textual information because of
different users, such as tags and comments. However, its visual
information may be similar, such as similar images or videos.
For instance, for the event “Syrian civil war”, the images of the
Asad in different sites are extremely related. Aa a result, it is
helpful to use a multi-modality combination strategy for event
recognition. Moreover, different platforms also supplement and
improve each other. Specifically, media data of most event are
usually official on Google News, while they are casual on Flickr
like some personal comments or interesting pictures. Therefore,
if we can aggregate the related data of an event among multiple
domains, we can make the strengths of one domain supplement
the shortcomings of the other and improve each other.

Next, we will introduce how to take two different domains into
consideration for cross-platform event recognition by the pro-
posed CDCL method. Here, we consider the Flickr and Google
News as two different domains. For each social event, it has
many documents and we consider each document including texts
and images as an event instance. Our target is to use the data
information from different domains to classify each document.
Specifically, we can view these two domains as the auxiliary do-
main and target domain, and consider the prior knowledge of the
auxiliary domain to help improve the task of the target domain.
When there are not large enough training samples, this will be
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Algorithm 1: The proposed CDCL method for cross-
platform event recognition

1 Input: The data of the auxiliary domain Da ; The
training and testing data of the target domain Dt ; The
iteration number of Gibbs sampling method TGibbs ;

2 Output: Conduct the prediction of the class labels for
the testing documents in the target domain Dt .

// Learn the shared domain priors in the auxiliary
domain Da .

1: Initialize the dictionary variable via the K-SVD, and
latent variables z, s, π, γs , γε

2: for t := 1 → TGibbs do
3: Run the Gibbs sampling method for all instances

in the auxiliary domain Da based on the
Eq. (5) ∼ Eq. (13)

4: end for
// Predict the class labels for the testing documents
in the target domain Dt

5: Initialize the domain priors with the learned values
of the auxiliary domain Da

6: Learn the sparse representation w of all instances in
the target domain Dt

7: Conduct the prediction of the class labels for the
testing data using Linear SVM.

useful to boost the performance of target domain. We show the
overall process in Algorithm 1 for cross-domain event recogni-
tion. Firstly, we use the proposed CDCL model to alternately
sample data of the auxiliary domain, which can learn shared
domain priors. Specifically, we utilize the data information of
the auxiliary domain to deduce the shared domain and modality
priors π, γs, γε . Then, the learned priors can be utilized to learn
the CDCL model, and obtain the feature representation w of all
data instances in the target domainDt . Next, we train the Linear
SVM [42] to conduct the prediction of the testing data.

B. Cross-Network Video Recommendation

The cross-network video recommendation is to use rich cross-
network behavior information of the users across different social
networks to help conduct users’ preference estimation, particu-
larly for the new user with only few records in the new social
network. In this paper, the social activity behaviors of users
are obtained from the auxiliary social network. This informa-
tion can be utilized to assist another network to deal with the
cold-start video recommendation by the proposed CDCL. Here,
we consider the YouTube and Twitter as the two different net-
work platforms, and these two platforms can be associated by
the overlapped user account link information between YouTube
and Twitter. When a user enrolls on YouTube, we do not know
anything about his/her association on Youtube, and cannot con-
duct video recommendation. In this work, we use the proposed
CDCL model to conduct a YouTube video recommendation ap-
plication by leveraging both the tweeting behaviors of Twitter
and historical video records of YouTube, which can cope with
the cold-start video recommendation task.

In cross-network video recommendation, there are a set of
the overlapped users U , and we represent each user u ∈ U as
a 2-dimensional tuple 〈uT ,uY 〉. Here, we consider the user
u as an instance, and the variables uT ,uY are denoted as the
user’s feature representation on Twitter and on YouTube, respec-
tively. For Twitter users, we conduct user topic modeling with
tweeting formation and the friend-following behaviors to ob-
tain user’s feature representation, respectively. Content-Based
Topic modeling: Since our task is to recommend YouTube
videos to users on cross-domain semantic level, we describe
user’s feature in the semantic topic space [43]. Specifically,
tweet behaviors of each user can be considered as the document.
Then, we use the standard Latent Dirichlet Allocation to learn
the users’ topic distribution from the dataset composed by all
Twitter users. The learned topic space of Twitter users may con-
tain some co-occurred semantic concepts that are also learned on
YouTube user semantic space. Network-Based Topic model-
ing: On Twitter, users follow each other and have their social link
networks. As in [44], each user’s friends (words) can be consid-
ered as one document, and we can also use the standard Latent
Dirichlet Allocation to obtain the feature representation of each
user. Because the topic modeling method utilizes co-occurrence
associations, the learned Twitter topic space can capture some
user interest shared by a subset of the Twitter friends. After
topic modeling, the feature description of the Twitter user uT

can be denoted as (1) Content-based tweet topic distribution,
uTt = {uTt1 , · · ·, uTtKT

}, as well as (2) Network-based friend

topic distribution, uTf = {uTf1 , · · ·, uTfKT
}. For YouTube users,

we first obtain the feature representation of each video inter-
ested by users. Here, each video v ∈ V can be described as
v = {v1 , · · · , vK Y } by using the modified iCorr-LDA model
to model the visual and tag information of videos as in [43].
Then, the feature representation of the YouTube user uY is
learned by his/her interested video set. Here, for each user uY

of the YouTube, we can obtain the interested video set Vu ⊂ V
from his/her uploaded videos, favorite videos, and videos of
the playlists. When given the YouTube video v ∈ Vu and its
feature representation v, we use the commonly max-pooling
to obtain the feature representation of the YouTube user. Then,
we represent uY as uY = {uY1 , · · ·, uYKY

}, where KY is the
topic number of the YouTube video. For a new user u ∈ U on
YouTube, the goal of cross-network video recommendation is
to recommend a ranking list of videos Vu based on the user’s
behaviors by considering the user’s tweet activities uT .

Our proposed cross-network video recommendation solution
has two stages, as shown in Algorithm 2. Firstly, we investigate
the proposed CDCL model to discover the shared latent informa-
tion from different networks by considering the obtained Twitter
and YouTube user feature representation uT ,uY . Here, when
given the user feature representation uT = {uT1 , · · ·, uTKT

} and
uY = {uY1 , · · ·, uYKY

}, the shared dictionary variables, DT =
{dT1 , · · ·, dTK } and DY = {dY1 , · · ·, dYK }, can be learned on
Twitter and YouTube, respectively. By the obtained shared dic-
tionary DT and DY , we can conduct the transform of feature
representation of different social networks for users. As a result,
we can deal with the video recommendation task for the new
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Algorithm 2: The proposed CDCL method for cross-
network video recommendation

1 Input: The feature representation of the user uT ∈ U on
Twitter; The feature representation of the user uY ∈ U
on YouTube; The candidate YouTube video set vt ∈ V ;
The feature representation of the test user ut ∈ Ut on
YouTube.

2 Output: A ranked list of videos Vu for the test user ut .
// Conduct the cross-network dictionary learning

1: Learn the shared dictionary DT = {dT1 , · · ·, dTK } on
Twitter based on the Eq. (5) ∼ Eq. (13)

2: Learn the shared dictionary DY = {dY1 , · · ·, dYK }
on YouTube based on the Eq. (5) ∼ Eq. (13)
//Conduct the video recommendation for the new
YouTube user ut

3: Learn the feature representation of the user
uT ∈ RKT ×1 by the user’s tweet history
information on Twitter

4: Estimate the corresponding sparse coefficient w by
Eq. (14)

5: Learn the feature representation of the user uY on
YouTube by Eq. (15)

6: Recommend a ranked list of videos Vu for ut by
Eq. (16)

user of the YouTube by adopting his/her tweet history behaviors.
Secondly, given new user on YouTube, based on the obtained
DT and DY , we need to recommend a ranking list of videos
Vu . Here, we can learn the feature representation of each user
uT ∈ RKT ×1 on Twitter by using his/her tweet behavior infor-
mation. Then, we can obtain the sparse feature coefficient of the
user w via (14) for uT .

uT = DT w + εj (14)

The common user among multiple domains has the shared dic-
tionary (DT , DY ) and the corresponding sparse feature coef-
ficient (w), and these obtained parameters can be exploited to
conduct the transform of feature distribution of different social
networks for users. As a result, we can represent the feature
representation of the new user on YouTube as:

uY = DY w (15)

Therefore, when given the new user uY and candidate YouTube
videos vt ∈ V which are represented in the same feature space,
we can rank the recommended videos from YouTube by (16).

sim(uY ,vt) = 〈uY ,vt〉 =
KT∑

k=1

uTk · vk,t (16)

V. EXPERIMENTS

In this section, we conduct experimental evaluations of the
proposed CDCL algorithm on two different applications: cross-
platform event recognition and cross-network video recommen-
dation. The experimental results show the effectiveness of our

CDCL method for cross-domain collaborative learning in social
multimedia.

A. Cross-Platform Event Recognition

1) Dataset Collection: In this paper, we construct the eval-
uation dataset from online social platforms for social event
recognition. There is one publicly available event dataset called
MediaEval social event detection (SED) [45]. However, event
data in the SED dataset do not have multi-modality cross-
domain information. Besides, this dataset does not contain social
events happening currently. To better analyze event data with
the multi-domain and the multi-modal properties, we concen-
trate on 8 complex social events which happened in the past
couple of years, and gather a large amounts of event documents
from Flickr and Google News. The collected 8 social events
cover a wide range of topics including politics, economics, mil-
itary, society, and so on. Therefore, the collected dataset has very
rich types including multiple social events from a wide range of
topics. For these 8 events, we manually create the introduction
page of each event or download it from the Wikipedia page6,
which contains the whole stories of each event. Then, based
on the whole timeline of each social event, we seek and down-
load related content information including text and images from
Flickr and Google News using these keywords. The detail of
our collected dataset is given in Table I. Here, each social event
has around 2000 to 8000 documents which contain texts and
the corresponding images. We adopt simple rules to delete the
unnecessary documents without including the queried keywords
of the event, and ensure the reliability of the most of documents.
In the collected dataset, some events are very similar, such as
“North Korea nuclear program” and “Senkaku Islands dispute”,
“War in Afghanistan” and “Syrian civil war”. Due to the similar
topics in those events, it brings great challenges for social event
analysis.

2) Feature Extraction: For textual representation, we adopt
the stemming method and stop words elimination strategy to
obtain clean data, and save words with the word frequency not
less than 15 in the whole dataset. Then, textual information can
be represented by the traditional vector space model. For visual
representation, we use the popular sparse coding method [46],
[47]. Specifically, we first conduct SIFT points sampling for
images. Then, a simple K-means method is used to obtain a
codebook. Next, we adopt Localized Soft-assigment Coding
(LSC) method to acquire their descriptors, and the final image
representation can be obtained by adopting the Spatial Pyramid
Matching (SPM) and max pooling methods.

3) Results and Analysis: For our experiment setting, we set
the hyperparameter values as c0 = d0 = e0 = f0 = 10−6 , and
the beta-distribution parameter values as a0 = K, b0 = 1, as
in [29]. We initially set the topic numbers to beK = 100. Here,
we do not use all K dictionary elements, and decide the fi-
nal number of the shared dictionary elements by the shared
priors. We set the iteration number to be Tgibbs = 100. In our

6http://www.wikipedia.org
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TABLE I
DESCRIPTION OF THE EVENT NAME, DURATION TIME, AND NUMBER OF DOCUMENTS FOR EACH SOCIAL EVENT IN OUR COLLECTED DATASET

Event ID Event Name Start Time End Time Google News Flickr

#Images #Text #Images #Text

1 Senkaku Islands dispute 2008.06 2012.12 3743 2495 6617 6617
2 Occupy Wall Street 2011.09 2012.09 5601 3108 7151 7151
3 United States Presidential Election 2009.10 2013.01 5169 3446 7352 7352
4 War in Afghanistan 2001.10 2012.08 5373 2915 7172 7172
5 North Korea nuclear program 2000.01 2012.04 3969 2640 8635 8635
6 Greek protests 2011.05 2012.04 3900 2630 7385 7385
7 Mars Reconnaissance Orbiter 2005.04 2012.08 3901 2600 7188 7188
8 Syrian civil war 2011.01 2013.01 4899 3266 7426 7426

experiment, we select half of the dataset as the training data and
the left as the testing data.

We compare the proposed model with four baseline methods
including BOW, CCA, SRC-L1, SRC-L1-DL, and LC-KSVD1.

� BOW: The text and image features are concatenated to
conduct the representation of each document, as introduced
in Section V-A2.

� Canonical Correlation Analysis (CCA) [48]: The repre-
sentation of each document is obtained by using maxi-
mally correlated subspace constraint to learn a latent fea-
ture space in the multi-modal data.

� SRC-L1: The representation of each document is learned
by using the traditional sparse representation method,
and we use the traditional K-SVD method to learn the
dictionary.

� SRC-L1-DL: The representation of each document is
learned by using the traditional sparse representation
method, and we use the proposed non-parametric model to
learn the dictionary, as shown in Algorithm 1.

� LC-KSVD1 [33]: The representation of each document is
learned by a label consistent K-SVD (LC-KSVD) algo-
rithm with a discriminative dictionary for sparse coding.

In this experiment, our target is to classify the data instances
on Google News/Flickr domain with the assistance of the aux-
iliary domain Flickr/Google News, respectively. There are 4
methods CDCL*, CDCL-c, CDCL-s, and CDCL in different
experimental settings. The CDCL* is a special case of the
CDCL without considering the supervised information in [11].
The CDCL-c is learned with the assistance of the auxiliary
domain, which only concatenates the text and image features
rather than adopts the fusion of multi-modal information. The
CDCL-s is learned without the assistance of the auxiliary do-
main, but adopts the fusion of multi-modal information in the
single domain. The CDCL is learned with the assistance of the
auxiliary domain, and adopts the multi-modal property and su-
pervised property. Once data feature representation is obtained,
we utilize the Linear SVM to learn the classifier.

We show all classification results and give the performance
comparison for each class, as show in Table II, Figs. 4 and 5.
From the results, we can have the following conclusions. (1)
The BOW model obtains worse performance than other meth-
ods. This shows that the BOW cannot effectively distinguish the
relationships of the multi-modal data in modeling textual and

TABLE II
THE EVENT CLASSIFICATION RESULTS WITH DIFFERENT METHODS

Methods Accuracy

#Google News #Fickr

BOW 0.803 0.853
CCA 0.764 0.859
SRC-L1 0.825 0.858
SRC-L1-DL 0.839 0.865
LC-KSVD1 0.857 0.869
CDCL* 0.862 0.881
CDCL-s 0.879 0.883
CDCL-c 0.888 0.884
CDCL 0.915 0.899

Fig. 4. The classification results for each event with different methods on
Flickr.

Fig. 5. The classification results for each event with different methods on
Google News.

visual words. (2) The CCA and the proposed CDCL methods
obtain better performance, this shows that the fusion of the text
and image information is helpful for social event analysis. (3)
The SRC-L1-DL obtains much better results than the SRC-L1
and LC-KSVD1. This shows that the better feature representa-
tion can be obtained in the dictionary learning process with the
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Fig. 6. The Dictionary weights πc for each event on Google News.

Fig. 7. The Dictionary weights πc for each event on Flickr.

assistance of the auxiliary domain. (4) The CDCL has better
performance than the CDCL*. This shows that the discrimina-
tive Bayesian dictionary learning can use the cross-domain data
information to learn discriminative representation, which can
boost the classification performance. (5) Overall, our CDCL
method consistently outperforms other existing methods. The
major reason is that the proposed model can expliot the shared
domain, modality and supervised properties to jointly learn the
feature representation. Therefore, the proposed model can in-
vestigate the superiorities of different sources to supplement and
improve each other effectively.

Then, we conduct the parameter analysis of the proposed
model in details. We visualize the dictionary weight πc, c ∈ C
of each class, as shown in Figs. 6 and 7. Here, πc,k is followed
by all the k-th components of the feature representation jointly
for the c-th class. Because the learned dictionary is shared by

all c classes, if the training data are commonly represented by
the k-th dictionary element, we should expect a high value of
πc,k . From Figs. 6 and 7, we can observe that the high values
appear at different locations in the dictionary weight πc, c ∈
C for different classes, which shows the learned dictionary is
discriminative. For example, for the dictionary weights of two
different classes (event 6 and event 7), the maximum top-5
element indexes of the two classes on the Google News are 20,
5, 39, 75, 14 and 84, 20, 45, 34, 57 respectively, and most of
them are different. Similarly, for two similar events, such as
event 2 and 3, the maximum top-5 element indexes of the two
classes on the Google News are 20, 10, 23, 75, 22 and 29, 20,
35, 52, 36 respectively. We can observe that most of them are
also different, which demonstrates the discriminative character
of the learned dictionary. We also see that some non-zero values
appear with similar locations in different classes. These results
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Fig. 8. The comparison of dictionary weights πk by CDCL-s and CDCL on Flickr and Google News, respectively. (a) Dictionary weights πk (Flickr).
(b) Dictionary weights πk (Google News).

Fig. 9. The statistics results of binary vector z by CDCL-s and CDCL on Flickr and Google News, respectively. (a) Statistics of binary vector z (Flickr).
(b) Statistics of binary vector z (Google News).

show these dictionary elements are shared among the feature
representation of different classes. Therefore, it is useful and
effective to apply our discriminative dictionary learning method
for the event classification task.

The comparisons of the dictionary weights πk are visual-
ized in Fig. 8(a) and (b), where the results are ordered with the
learned probability and can be obtained by CDCL-s and CDCL
on Google News and Flickr, respectively. The results show that
the CDCL model obtains the low probability values in most
of the dictionary elements. But the probability values of the
CDCL-s model are more than 0.2. Therefore, our CDCL can
obtain more sparse feature representation. This further verifies
that the proposed model can exploit the auxiliary domain as the
prior knowledge to help improve the shared dictionary learn-
ing. We also visualize the statistics results of binary vector z
in Fig. 9(a) and (b), where the results are obtained by figuring
the expected value of binary components on Flickr and Google
News, respectively. We observe that the obtained binary vec-
tor z is coherent with the obtained dictionary weights πk , and
this verifies that our model is sensible. In Fig. 10, we give the
classification performances with different Gibbs sampling itera-
tions on Google News and Flickr, respectively. We observe that
accessible results can be obtained with 20 iterations. We run
100 Gibbs sampling iterations, and this process takes around
15 minutes on the Flickr, and around 22 minutes on the Google
News on average. Results are produced on an Intel Core i7 CPU
at 3.6 GHz with 16 GB RAM running Matlab.

B. Cross-Network Video Recommendation

1) Dataset Collection: In this paper, the cross-network user
dataset is used as in [37]. This dataset contains 143,259 Google+
users with user account linkage between the YouTube and
Twitter, where there are 38,540 users in the YouTube account,

Fig. 10. The classification results with the numbers of different iteration in
the Gibbs sampling method on Flickr and Google News, respectively. (a) On
Flickr. (b) On Google News.

39,400 users in the Twitter account, and 11,850 common users
both YouTube and Twitter accounts. In this public dataset, Twit-
ter users have no tweet activity information. Based on the users’
account information provided by [37], we download the latest
1,000 tweets created by each user through the Twitter APIs. In
the experiment, only users having both the Twitter and YouTube
accounts are used, and we also only keep the users who are inter-
acted with no less than 8 unique video recordings on YouTube.
Finally, 1,655 cross-network users and 5,105 YouTube videos
are obtained for the experimental evaluation.

In our experiment setting, we expect the proposed video rec-
ommendation method to help improve cold-start recommenda-
tion problem for the new user of the YouTube. We first randomly
choose 900 active users to build the training dataset and learn the
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Fig. 11. The Precision and MAP results of cross-network video recommen-
dation for the new YouTube users. (a) Precision@K. (b) MAP@K.

shared dictionary. Then, we consider the remaning 755 users as
the cold-start test users, which are represented asUnew . For each
testing user ut ∈ Unew , we hide all the watched video-related
associations in the testing step and take them as the ground truth
for experimental evaluation.

2) Evaluation Metrics: The top-ranked recommendation
results are concerned by users in the practical video
recommendation task. The goal of the customized video rec-
ommendation is to give each user a video ranking list. In the
experiment evaluation, we utilize Precision@K, and Mean Av-
erage Precision (MAP@K) to quantify the performance of rec-
ommended videos, which are similar to traditional information
retrieval task. We represent Precision@K as Precision@K =∑K

k=1 rk/K. The MAP@K is the mean of average precision
scores over test users Unew , and is denoted as:

MAP@K =
1

Unew

U n e w∑

u=1

∑K
k=1 Precision@uk ∗ ru,k

Lu
,

(17)

where rk denotes the relevant level at the index k, if the
value is zero, it represents “Not Relevant” otherwise repre-
sents “Relevant”. And, ru,k denotes the relevant level of the
user u at index k. Precision@uk denotes the precision of
the user u at index k. The result can be acquired by testing
whether the recommended videos are in the interested video
recordings of the user u. We set different truncation levels K,
K ∈ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 in our experiment.

3) Results and Analysis: In the experiment, we compare our
models (CDCL-c, CDCL-n) with three baseline methods:

� Popularity (POP): It is to adopt the video’s popularity to
conduct the same recommendation list of the YouTube
videos for new users, and the view counts of the videos are
considered as their popularity.

Fig. 12. Four examples are shown on cross-network video recommendation
from Twitter to YouTube users.

� KNN: It is to adopt user’s Twitter information to acquire
most relevant Twitter users by the KNN method for a new
YouTube user. Then, based on the most relevant users we
can obtain the related videos.

� Cross-network Association (CNAS) [37]: It is to adopt
a coupled dictionary sparse learning method to learn the
common dictionary space based on the same users among
multiple networks.

In our experiment setting, we have 2 variant methods includ-
ing CDCL-c and CDCL-n with different feature representation
on Twitter. The CDCL-c and CDCL-n methods are the same
as our model, but are conducted to obtain Twitter users’ fea-
ture representation by the content-based topic modeling and the
network-based topic modeling, respectively. We visualize the
experimental results with different methods in Fig. 11. From
the results, we can have the following observations: (1) The
POP model obtains worse performance, and it is because this
method is lack of the ability to learn user’s personalized de-
mands, and does not consider cross-network user behavior infor-
mation. (2) The KNN and CNAS methods obtain better results
than the POP model, and this shows that it is helpful to utilize
the cross-network user behaviors for the cold-start video rec-
ommendation. (3) The proposed CDCL-c and CDCL-n meth-
ods obtain the best recommendation performance. This shows
the proposed model can effectively exploit cross-network ac-
tivity behaviors of the users to collaboratively learn the shared
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dictionary, and can deal with the user cold-start recommenda-
tion problem. (4) The proposed CDCL-n achieves much better
performance than the CDCL-c, which shows the effectiveness
of the network-based feature representation. And, a possible
reason is that network-based topic modeling by user interest
indicator is more stable than noisy tweet content information on
Twitter, which can obtain better feature representation.

We show the results of four new YouTube users recommended
by the proposed model in Fig. 12. Here, we show their tweet his-
tory data and the related recommended video list. We consider
the user of the Fig. 12 for instance, and the user’s name is Daniel
“Rodriguez”. We can see that the user is a software engineer, and
likes science and music on Twitter. From the results, the related
recommended video list from YouTube contains some promi-
nent music, science innovation and game outline, which can
make the new YouTube user obtain a good experience. There-
fore, these results demonstrate the effectiveness of the proposed
cross-network video recommendation solution.

VI. CONCLUSION

In this paper, we have proposed a generic cross-domain data
analysis framework based on the discriminative non-parametric
Bayesian dictionary model. The proposed discriminative learn-
ing model is able to not only introduce the shared domain and
the modality priors to cope with the domain gap as well as con-
sider the multi-modal property, but also exploit the class label
information of data to obtain the discriminative dictionary for
feature representation. We evaluate the proposed model on two
different applications, and shows that it achieves the best per-
formance. In the future, we will apply the proposed model to
more different applications, like cross-domain event association
and cross-domain user representation.
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