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Abstract

Object detection and tracking are basic tasks in video
surveillance and have been an active research area. Using
a standard Gaussian Mixture Model (GMM) based method,
nearby objects could be merged into a single foreground
object. This causes difficulties in foreground segmentation,
especially when objects in the foreground have similar in
color, texture and shape.

This paper proposes a novel method for segmenting
merged objects into individual ones. First, an unsupervised
co-training framework is proposed for the detection of fore-
ground containing multiple vehicles. The co-training based
approach is to simultaneously train two disparate classi-
fiers based on independent features. One is a naive Bayes
classifier based on scene context features, such as direction
of motion and width of vehicles; the other is an appear-
ance classifier based on Multi-block Local Binary Pattern
(MB-LBP) features. Unlabeled examples which are confi-
dently labeled by one classifier are added, with labels, to
the training set of the other classifiers. The trained clas-
sifiers are then used to classify detected foregrounds into
containing either a single vehicle or multiple vehicles. As
the second step, foreground containing multiple vehicles is
further segmented into individual vehicles by means of pro-
jection histogram analysis. Experimental results show the
effectiveness and efficiency of the proposed framework.

1. Introduction

Object detection and tracking are basic tasks for intel-
ligent video surveillance. When using stationary cameras,
background subtraction is a widely used technique for ex-
tracting moving pixels (foreground). If there are several ob-
jects in the scene, each connected component of the fore-
ground (blob) usually corresponds to an object, such a blob
is denoted as single-vehicle blob. However, it can happen
that several objects form one enlarged blob, which we call

Figure 1. Some examples of single-vehicle
blobs and multi-vehicle blobs. The red boxes
are the results of GMM detector. The blue
boxes segment the multi-vehicle blobs into
single-vehicle blobs using our algorithm.

a multi-vehicle blob, caused by view at an angle, shadow
and nearby moving vehicles. Since a multi-vehicle blob is
detected as one foreground, it is difficult to obtain the ap-
pearance feature of each single vehicle. Thus it is difficult
to classify and track the vehicles. Our goal in this paper is
to segment a multi-vehicle blob (a binary mask) into some
single-vehicle blobs. Fig. 1 illustrates an example.

To solve this problem we take two steps. First, a clas-
sifier is used to classify the foreground into either a single-
vehicle blob or a multi-vehicle blob. The second step is to
segment the multi-vehicle blob into single-vehicle blobs.

Currently the popular method for training the image clas-
sifier is to adopt a semi-supervised learning algorithm from
a combination of both labeled and unlabeled data. Semi-
supervised learning provides a general framework to learn a
classifier for different types of objects which may not have
enough labeled data. Some examples of semi-supervised
learning algorithms include: the Expectation-Maximization
(EM) algorithm [2], co-training [1], tri-training [22], and
transductive support vector machine [8].

One typical algorithm is the co-training approach pro-

in
ria

-0
03

25
62

6,
 v

er
si

on
 1

 - 
29

 S
ep

 2
00

8
Author manuscript, published in "The Eighth International Workshop on Visual Surveillance - VS2008, Marseille : France (2008)"

http://hal.inria.fr/inria-00325626/fr/
http://hal.archives-ouvertes.fr


posed by Blum and Mitchell [1]. The basic idea is to train
two classifiers on two independent “views ”(features) of
the same data, using a relatively small number of exam-
ples. Unlabeled examples are then fed to these classifiers
and labeled (classified). The most confidently labeled ex-
amples from one classifier are then added to the labeled set
of the other classifier. In other words, the classifiers train
each other using the unlabeled data. Blum and Mitchell
prove that co-training can find a very accurate classification
rule, starting from a few labeled examples if the two feature
sets are statistically independent. However, the assump-
tion therein is found unlikely to hold in most real world
cases [13]. On the other hand, Levin et al. [9] build boosting
classifiers for gray-image and background difference fea-
tures which co-train each other to improve the overall de-
tection performance. Note that the features used by Levin
et al. [9] are closely related. Nonetheless, their approach
empirically proves that co-training is still possible even in
the case the independence assumption does not hold.

Other work on learning using co-training framework fol-
low subsequently. Nair et al. [11] proposed an unsupervised
learning approach for human detection which uses motion
information as an “automatic labeler” to supply labeled
training examples. Such an algorithm only works under re-
stricted conditions. Javed et al. [7] proposed to improve
an off-line learned object detector using co-training based
on Principal Component Analysis (PCA) features. A con-
straint is that it needs a pre-trained classifier which limits its
capability to be generalized to arbitrary object types.

On the other hand, this work also deal with segment-
ing a multi-vehicle blob into individual ones. Some works
have been proposed to solve the crowd segmentation prob-
lem, which emphasize on locating individual humans in a
crowd. In [6, 20], head detection is used to help locate the
position of humans. Rittscher et al. [14] have developed
a method based on partitioning a given set of image fea-
tures using a likelihood function that is parameterized on
the shape and location of potential individuals in the scene.
They use a variant of the Expectation Maximization (EM)
algorithm [2] to perform global annealing based optimiza-
tion and find maximum likelihood estimates of the model
parameters and the grouping. Dong et al. [3] propose a
novel example-based algorithm which maps a global shape
feature by Fourier descriptors to various configurations of
humans directly and use locally weighted average to inter-
polate for the best possible candidate configuration. In ad-
dition, they use dynamic programming to mitigate the in-
herent ambiguity. Zhao and Nevatia [20] use human shape
to interpret foreground in a Bayesian framework. How-
ever, these mentioned methods are not appropriate for seg-
menting a group of vehicles into individual. Because direc-
tions of motion of vehicles are different, their postures will
change, which cause these features are not feasible. In ad-

Figure 2. The proposed framework for multi-
vehicle blob segmentation.

dition, vehicles in a group may have similar color, texture
and shape features.

This paper proposes a novel method for segmenting
merged objects into individual ones. This is accomplished
in two steps: (1) classifying each foreground blob into ei-
ther multi-vehicle blob or single-vehicle blob, and (2) seg-
menting a multi-vehicle blob into individual ones. Figure 2
illustrates the framework. A simple background subtraction
based on on-line Gaussian Mixture Model (GMM) [15] is
used to detect the moving objects. Then the moving pixels
are connected to obtain blobs. For each blob, a classifier
is adopted to classify it into single-vehicle blob or multi-
vehicle blob. If the blob is multi-vehicle blob, it will be
segmented into some single-vehicle blobs based on scene
context features. Then the single-vehicle blob is tracked
and classified at the next step.

For the first step, we propose an unsupervised method
for learning two classifiers for the classification of a fore-
ground into a single-vehicle blob or a multi-vehicle blob,
inspired by the idea of co-training learning. Two sets of
features are predefined and they are relatively independent
of each other: (1) scene context features, such as direction
of motion and width of vehicles; and (2) appearance fea-
tures based on Multi-block Local Binary Pattern (MB-LBP)
[10, 19]. Two labeled sets are then prepared based on them,
each for training one of the classifiers. A currently trained
classifier classifies unlabeled examples to obtain their labels
and add those newly labeled examples which are confident
enough to update the other training set for a new classifier
training. In applications, the outputs of the two classifiers
are combined to give the final classification decision. Ex-
periments demonstrate that co-training can generate an ac-
curate classifier conveniently and effectively.

For the second step, we propose a method based on scene
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context features to solve this problem. These features reflect
motion rules of vehicle. Once these features are obtained,
direction of motion and size of vehicle at a certain location
can be estimated. Experiments demonstrate efficiency of
our method.

The rest of the paper is organized as follows: Section 2
introduces the method to learn the scene context features.
The proposed unsupervised learning framework based on
co-training is presented in section 3. A simple method to
segment multi-vehicle blob into single-vehicle blobs is in-
troduced in section 4. Section 5 shows some results. Fi-
nally, we conclude the paper in section 6.

2. Learning Scene Context Features

Scene context features reflect the properties of objects in
the scene image, they can be used to distinguish objects. it
is time-consuming and needs a lot of storage space to obtain
these features for each pixel in the scene image. Adjacent
pixels in scene image have similar scene context features,
therefore, it is viable to cut the scene image into R × C
fixed blocks, R is the number of row and C is the number of
column. The size of each block is relatively small, hence the
direction of motion and size of a moving object in a certain
block is viewed to be constant. Therefore, the method to
learn scene context features based on each block is feasible.

Direction of motion of vehicles can be obtained by ana-
lyzing their trajectories, then the direction of motion in each
block can be learnt by using direction of vehicles. After
obtaining the direction in each block, width distribution in
each block can be learnt by using width of vehicle which
is extracted by projecting its binary mask onto the direc-
tion that is perpendicular to the direction of motion in each
block.

2.1. Learning Direction of Motion

A trajectory can be obtained by tracking the centroid
of an object, in the 2-D image coordinates, whose ori-
gin is on the bottom left corner, it can be described as
T = {(x1, y1), (x2, y2), · · · , (xn, yn)}. In general traffic
scenes, trajectory of a vehicle is not complicated, thus it is
reasonable to use quadratic curve (y = a×x2+b×x+c) to
describe the trajectory. The parameters (a, b, c) are its fea-
tures. For a tracked object, all points from start point to end
point are collected to calculate the parameters (a, b, c) by
least squares fit to the y values. Therefore, the parameters
(a, b) which express the motion direction of the vehicle are
obtained. Fig. 5(b) shows the parameters in each block.

Because there are many clutter trajectories, the distribu-
tion of parameters (a, b, c) in each block are represented by
multiple Gaussian models, which can be described as fol-
lows:

Each block in the scene is modeled by a mixture of K
Gaussian distributions for trajectory parameters. For a cer-
tain block at position (x0, y0) of the scene image, the series
of trajectories {Tt = (at, bt, ct)}N

t=1 are obtained. Here
(at, bt, ct) are parameters of a trajectory Tt. They are used
to learn the parameters distribution of blocks which the ob-
ject has passed. The probability that a certain block has a
value of Tt at time t can be written as

P (Tt) =
K∑

i=1

wi,t × η(Tt, ui,t,Σi,t) (1)

where wi,t is the weight parameter of the ith Gaussian com-
ponent at time t, η(Tt, ui,t,Σi,t) is the ith Normal distri-
bution of component with mean ui,t and covariance Σi,t.
Here Σi,t is assumed to be diagonal matrix. While this is
certainly not the case, the assumption allows us to avoid a
costly matrix inversion at the expense of some accuracy.

ui,t = (ua
i,t, u

b
i,t, u

c
i,t)

T (2)

σi,t = (σa
i,t, σ

b
i,t, σ

c
i,t)

T (3)

Σ
1
2
i,t =




σa
i,t 0 0
0 σb

i,t 0
0 0 σc

i,t


 (4)

The K distributions are ordered based on the fitness value
wi,t. Parameters u and σ for unmatched distributions re-
main the same. The first Gaussian component that matches
the test trajectory will be updated by the following update
equations,

wi,t = (1− α)wi,t−1 + α(Mi,t) (5)

where Mi,t is 1 for the model which matched and 0 for the
remaining models.

ui,t = (1− ρ)ui,t−1 + ρTt (6)

σ2
i,t = (1− ρ)σ2

i,(t−1) + ρ(Tt − ui,t)T (Tt − ui,t) (7)

ρ = αη(Tt|ui,t, σi,t) (8)

where wi,t is the ith Gaussian component, 1/α defines the
time constant which determines change. If none of the K
distributions match that trajectory value, the least proba-
ble component is replaced by a distribution with the cur-
rent value as its mean, an initially high variance, and a low
weight parameter. In our experiments, K is 3, α is 0.1, the
initial high variance of (a, b, c) are (0.05, 0.2, 20), the low
weight is 0.05.
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2.2. Learning Width Distribution

After obtaining motion direction for each block, width
distribution for each block can be learnt. For a foreground
with width wt in block (x0, y0) at time t, the width of the
foreground is used to learn the width distribution for the
block.

In practice, a foreground may be a single-vehicle blob or
a multi-vehicle blob, their width may have significant dif-
ference. Therefore, in each block, the probabilistic distribu-
tion of the width is modeled as a Gaussian Mixture Model
(GMM). We take each of the Gaussian components as one
of the underlying width distribution and update the GMM
parameters with adaptive weights in an online way just as
the process of learning motion direction for each block. The
parameters (mean wu and variance wσ) of Gaussian com-
ponent with the maximum weight are considered as the fea-
tures of each block.

3. Moving Vehicle Classification

3.1. Naive Bayes Classifier

The width of a foreground at time t is denoted by xt.
The naive bayes Classifier is to decide if the foreground
belongs to multi-vehicle (MV) blob or single-vehicle (SV)
blob. Bayesian decision L is made by:

L =
P (MV |xt)
P (SV |xt)

=
p(xt|MV )P (MV )
p(xt|SV )P (SV )

(9)

In a general case we do not know anything about the
foreground objects that can be seen nor when and how often
they will be present. Therefore we set P (MV ) = P (SV ).
We decide then that the foreground belongs to a multi-
vehicle blob if:

p(xt|MV ) > L× p(xt|SV ) (10)

We will refer to p(x|MV ) and p(x|SV ) as the models.
The models are estimated from a training set denoted as X
and Y respectively. The estimated models are denoted by
p̂(x|X ,MV ) and p̂(x|Y, SV ) which depend on the train-
ing set as denoted explicitly. We assume that the samples
are independent and the main problem is how to efficiently
estimate the density function and to adapt it to possible
changes.

In order to guarantee the performance of Bayes classifier,
We use GMM with M components:

p̂(x|X ,MV ) =
M∑

m=1

ŵmη̂(x; ûm, δ̂2
mI) (11)

p̂(x|Y, SV ) =
M∑

n=1

ŵnη̂(x; ûn, δ̂2
nI) (12)

where û1, · · · , ûM are the estimates of the means and
δ̂1, · · · , δ̂M are the estimates of the variances that describe
the Gaussian components. In our experiment, M is 2. The
covariance matrices are assumed to be diagonal and the
identity matrix I has proper dimensions. The parameters
are updated as the same as the Equ.( 5), ( 6) and ( 7).

3.2. Appearance Based Classifier

The Bayes classifier is constructed by using scene con-
text features, however, a single-vehicle blob with large
width may be misclassified into a multi-vehicle blob. There-
fore, An appearance classifier based on Multi-block Local
Binary Pattern (MB-LBP) [10, 19] features is adopted to
improve the performance of classification.

MB-LBP is extended from the original LBP feature [12],
which has been proven to be a powerful appearance de-
scriptor with computational simplicity. Besides, this feature
is also successfully applied in many low resolution image
analysis tasks [5]. However, it is limited to calculate the
information in a small region and has no ability to capture
large-scale structures of objects. MB-LBP is developed on
image patches divided into sub-blocks (rectangles) with dif-
ferent sizes. This treatment provides a mechanism for us to
capture appearance structures with various scales and aspect
ratios. Intrinsically, MB-LBP is to measure the intensity
differences between sub-blocks in image patches. Calcula-
tion on blocks is robust to noises, lighting changing. At the
same time, MB-LBP can be computed very efficiently by
using integral images [17].

The feature set of MB-LBP feature is large and con-
tains much redundant information. AdaBoost algorithm
is used to select significant features and construct a bi-
nary classifier. The gentle adaboost [4, 16] is adopted
for the reason that it is simple to be implemented and
numerically robust. Given a set of training examples as
{(x1, y1), ..., (xN , yN )}, where yi ∈ {+1,−1} is the class
label of the example xi ∈ Rn. Boosting learning provides
a sequential procedure to fit additive models of the form
F (x) =

∑M
m=1 fm(x). Here fm(x) are often called weak

learners, and F (x) is called a strong learner. Gentle ad-
aboost uses adaptive Newton steps for minimizing the cost
function: J = E[e−yF (x)], which corresponds to minimiz-
ing a weighted squared error at each step.

3.3. Classifier Co-Training

To train the classifiers, labeling a large training set by
hand can be time-consuming and tedious. The difficulty is
the high cost of acquiring a large set of labeled examples to
train the two classifiers. Of course, gathering a large num-
ber of unlabeled examples in most applications has much
lower cost, as it requires no human intervention. One typi-
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cal algorithm is the co-training method which has two clas-
sifiers that train each other using unlabeled data. In our al-
gorithm two relatively independent features are used: scene
context features and MB-LBP features as the object repre-
sentation. Each feature is used to train an classifier, and
their outputs are combined to give the final classification
results.

For a data set, the Bayes classifier is initialized on-line
using scene context features. For a foreground with width
xt at block (x0, y0) in scene image, scene context features
(the mean wu and variance wσ of width) of this block can
be used to classify the foreground into multi-vehicle blob
or single-vehicle blob. In practice, a foreground is usually
a single-vehicle blob. Therefore, the primary distribution
of width in each block reflects width distribution of single-
vehicle blob. if xt−wu

wσ
> Th is right, the foreground is a

multi-vehicle blob, then update the parameters of the model
p̂(x|X ,MV ), otherwise update the model p̂(x|Y, SV ). Th
is a given threshold. Once these models are learned, they
can be used to label samples to train the appearance-based
classifier, then add these examples to the training set and re-
train the Bayes classifier. New models are then estimated.
This process can be repeated many times.

The main advantages of this scheme are: (1) It is a col-
laborative approach that uses the strength of different views
of the object to help improve each other, hence a more ro-
bust classification. (2) Manual labeling is not necessary.

Experiments demonstrate that co-training can generate
accurate classifiers. After training the two classifiers, the
final classification results of their outputs follow the rules
in Table 1.

Bayes Classifier Appearance Classifier final result
SV SV SV
SV MV SV
MV SV SV
MV MV MV

Table 1. Decision rules of the two classifiers.

4. Multi-Vehicle Segmentation

Shape feature has been used to segment and localize in-
dividual humans in a crowd [3, 6, 14, 20]. However, it is
difficult to simply use shape feature to segment vehicles in
video surveillance. For example, Fig. 3(b) explains the rea-
son. If we do not know the motion direction of vehicle, we
are not sure whether a square shaped blob contains multiple
vehicles or not. as for a vehicle, its length is longer than
its width. If the direction of motion is the direction of the
green line, the foreground like a single-vehicle blob. If the
direction of motion is the direction of the red line, the fore-
ground likes a multi-vehicle blob. In addition, vehicles in

a blob may have similar color, texture and shape features,
therefore, it is difficult to segment a blob into individual ve-
hicles using these features. In a fixed scene, scene context
features (such as direction of motion and width distribution
of vehicles)are stable. These features are helpful to segment
multi-vehicle blob. Therefore, this paper proposes a novel
method based on scene context features to improve vehicle
detection accuracy.

(a) (b) (c) (d)

Figure 3. (a) The results of GMM detector. (b)
The binary mask of the blob. The red and
green line indicate two different directions of
motion separately. (c) Vertical projection his-
togram of the blob. (d) The multi-vehicle blob
is segmented by blue boxes using our algo-
rithm.

For a multi-vehicle blob, its vertical projection his-
togram [6, 21] h(x) can be obtained by projecting its binary
mask onto the direction that is perpendicular to the direction
of motion. To obtain the junctions of vehicles conveniently,
the vertical projection histogram is smoothed to construct
f(x).

f(x) =
1
N

N∑

i=1

(h(xi)× exp(−(
x− xi

wu
)2)) (13)

where wu is the mean width of vehicle in the block which
the foreground is inside.

Table 2 is our algorithm framework. For each scene,
scene context features are learnt in each block by the GMM
algorithm. the learnt context features are used to initialize
the Bayes classifier. Then two classifiers based on indepen-
dent features are trained using co-training framework. For a
foreground, if it is classified as a multi-vehicle blob, the seg-
mentation module will run. Finally, each of single-vehicle
objects is segmented from the foreground blob.

5. Experimental Results

5.1. Learning Scene Context Features

Direction of motion and width of vehicle are adopted to
learn scene context features for each block. As showed in
figure 4, tracking a vehicle from the entry point to exit point,
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For each scene

1. Learn scene context features for each block (Section 2)

(a) Use vehicle’s trajectory learning direction of motion of

vehicle for each block.

(b) Use vehicle’s width learning width distribution of vehicle

for each block.

2. Classify moving vehicle (Section 3)

(a) Initialize the Bayes classifier using scene context features.

(b) Train the Bayes classifier and the appearance classifier

using co-training.

(c) Classify each blob using the two classifiers.

3. If the blob is a multi-vehicle blob:

Run the segmentation module (Section 4).

Table 2. Algorithm Framework

then fit the trajectory to get direction of motion for each
block which the vehicle has passed. As for the blocks the
vehicle has passed, the direction of motion in the each block
is used to get width of the vehicle, then the width is used to
learn the width distribution for the block. These context
features for each block are learnt by the GMM algorithm.

Some results are illustrated in Fig. 5. The scene image
is cut into multiple blocks in Fig. 5(a) to learn those con-
text features. In our experiments, R and C are both set 8
for a 320 × 240 image resolution. The direction of mo-
tion and mean width of vehicle in each block is displayed
in Fig. 5(b) and 5(c) respectively. For blocks which vehicle
has not passed, their features are 0. The GMM algorithm
updates weight in an online way, which guarantees the pri-
mary distribution for each block can be learnt. This results
suggest that our approach is effective.

(a) (b) (c)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

(d)

Figure 4. Motion features of a vehicle. (a) A
vehicle is detected. (b) The direction of mo-
tion of the vehicle. (c) The binary mask of the
vehicle. (d) Vertical projection histogram of
the vehicle, the number of bins is the width
of the vehicle.

Figure 6. Some examples of training sam-
ples. The training set contains single-vehicle
blobs and multi-vehicle blobs, which are col-
lected in diverse camera viewing angles.

5.2. Object Classification

We implemented real-time background subtraction and
tracking as [15, 18], so that moving objects can be reason-
ably separated from background and blobs can be obtained.
For each scene, scene context features are learnt and the
Bayes classifier is initialized on-line, then we use the clas-
sifier labeling the unlabeled samples to enlarge the training
set of the appearance classifier. These samples are obtained
by normalizing blobs to 20× 20. We collected samples per
10 frames in order to reduce the correlation between vehi-
cles. Then these samples are adopted to train the appear-
ance classifier. Once the appearance classifier is trained,
we use each classifier’s prediction on the unlabeled sam-
ples to enlarge the training set of the other. The learning
process is applied to different scenes and a great number of
samples are collected. The sample set consists of 79, 175
single-vehicle blobs and 12, 808 multi-vehicle blobs. Some
samples are showed in Fig. 6, which represent multi-view
vehicles.

To test the performance of the classifiers, we collect 988
vehicle tracked sequences from 8 different scenes shown
in Fig. 8. The vehicles in these test sequences are all not
included in the training set. A simple voting method to the
tracked sequence is used to get a final class label. Table 3
shows the classification results. This results suggest that
our approach achieves considerable performance in diverse
scenes.

Tracks Correct Classification Correct Rate
M-Vehicle 785 719 91.59%
S-Vehicle 203 191 94.09%

Table 3. The classification results on test.
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(a) (b) (c)

Figure 5. (a) The scene is cut into 8 × 8 blocks. (b) The value of direction of motion b in each block.
Because the road is straight line, the parameter a is 0. (c) The mean of width in each block.

5.3. Object Segmentation

For a foreground, once it is classified as a multi-vehicle
blob, the segmentation module will be started up. Sup-
posing the foreground is inside a certain block, and the di-
rection of motion and width distribution of vehicles in the
block are used to obtain the vertical projection histogram
of the foreground. Segmented boxes (blue boxes) could be
obtained by finding troughs of the vertical projection his-
togram together with making use of the direction of motion
in corresponding block.

Some results about vertical projection histogram h(x)
and f(x) are given in Fig. 3(c), 7(c) and 7(f). We test
our algorithm in eight scenes, and collect video images ran-
domly. There are 11365 multi-vehicle blobs in these im-
ages, and 10797 of them have been segmented into single-
vehicle blobs correctly. The segmentation correct rate is
about 95.0%. Some results of segmentation are showed in
Fig.8. In these figures, red boxes are detected by the GMM
algorithm, and blue boxes are the results of our segmenta-
tion. they validate the performance of segmentation.

6. Conclusions

In video surveillance, it is desirable to segment each
multi-vehicle blob into single-vehicle blobs. We have pro-
posed an effective unsupervised learning framework for
solving this problem. First, classifier is adopted to classify
the foreground into multi-vehicle blob or not. Then scene
context features are used to segment multi-vehicle blob into
individual vehicles. To train classifiers, a co-training based
framework is proposed, different features of vehicle have
been adopted. The segmentation framework is real-time for
a 320 × 240 image resolution on a P4 3.2GHz PC, and the
processing time is less than 0.1s/frame. Experimental re-
sults validate the effectiveness and efficiency of our frame-
work. Currently, some disturbances (such as shadows) af-
fect the performance of the segmentation. This will be im-
proved through object detection in the future work.
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