
Chapter 5
Occlusion Detection via Structured
Sparse Learning for Robust
Object Tracking

Tianzhu Zhang, Bernard Ghanem, Changsheng Xu
and Narendra Ahuja

Abstract Sparse representation based methods have recently drawn much attention
in visual tracking due to good performance against illumination variation and occlu-
sion. They assume the errors caused by image variations can be modeled as pixel-wise
sparse. However, in many practical scenarios, these errors are not truly pixel-wise
sparse but rather sparsely distributed in a structured way. In fact, pixels in error
constitute contiguous regions within the object’s track. This is the case when signif-
icant occlusion occurs. To accommodate for nonsparse occlusion in a given frame,
we assume that occlusion detected in previous frames can be propagated to the
current one. This propagated information determines which pixels will contribute
to the sparse representation of the current track. In other words, pixels that were
detected as part of an occlusion in the previous frame will be removed from the
target representation process. As such, this paper proposes a novel tracking algo-
rithm that models and detects occlusion through structured sparse learning. We
test our tracker on challenging benchmark sequences, such as sports videos, which
involve heavy occlusion, drastic illumination changes, and large pose variations.
Extensive experimental results show that our proposed tracker consistently outper-
forms the state-of-the-art trackers.

T. Zhang (B)

Advanced Digital Sciences Center of Illinois, Singapore, Singapore
e-mail: tzzhang10@gmail.com

B. Ghanem
King Abdullah University of Science and Technology, Thuwal,
Saudi Arabia
e-mail: bernard.ghanem@kaust.edu.sa

C. Xu
Institute of Automation, Chinese Academy of Sciences, CSIDM,
People’s Republic of China
e-mail: csxu@nlpr.ia.ac.cn

N. Ahuja
University of Illinois at Urbana-Champaign, Urbana, IL, USA
e-mail: n-ahuja@illinois.edu

© Springer International Publishing Switzerland 2014
T.B. Moeslund et al. (eds.), Computer Vision in Sports,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-3-319-09396-3_5

93

94 T. Zhang et al.

5.1 Introduction

For sports video analysis, knowing the location of each player on the field at each
point of the game is crucial for sports experts (e.g., coaches, trainers, and sports ana-
lysts) to better understand complex player formations and trajectory patterns, which
ultimately depict the effectiveness of their teams ‘strategies as well as their oppo-
nents.’ Being able to effectively track players can enable the development of reliable
activity recognition and higher level processing modules for sports video analysis.
Such a tracking building block will have a positive impact on how sports experts ana-
lyze game footage, how content providers identify/display particular sports events
and highlights accompanied with relevant advertisements, and how end users browse
and query large collections of sports video. Moreover, visual tracking is a classical
problem in computer vision; it is a core task for many applications [44, 48, 50]
e.g., automatic surveillance, robotics, human computer interaction, action recogni-
tion, etc. It is also very challenging due to appearance variations such as occlusion,
illumination change, significant motion, background clutter, etc. Over the years, a
significant amount of effort has been made to overcome these challenges. To survey
many of these algorithms, we refer the reader to [32, 41].

A truly robust tracking method must be able to handle occlusion. However,
modeling occlusion is not straightforward. There exists a significant amount of work
that addresses this issue through statistical analysis [16, 34], robust statistics [1, 7],
patch matching [39], the use of multiple cameras [12, 31], context information [40],
model analysis [13], and learning occlusion with likelihoods [20]. Recently, sparse
representation has been successfully applied to visual tracking [29, 46, 47, 49] under
the particle filter framework as an attempt to alleviate the occlusion problem in track-
ing. In these methods, particles are randomly sampled around the states of the tracked
object according to a zero-mean Gaussian distribution. At time t , n particles are sam-
pled. The observation (pixel color values) of each particle in the frame is denoted as:
x ∈ R

d . In the noiseless case, each particle x is represented as a linear combination
z of templates that form a dictionary D = [d1, d2, . . . , dm], such that x = Dz. D
can be constructed from an overcomplete sampling of the target object, based on an
initial bounding box at the start of tracking, and dynamically updated to maintain an
up-to-date target appearance model.

In many visual tracking scenarios, targets are often partially occluded or corrupted
by noise. Occlusion is unpredictable as it may affect any part, or occlude any amount,
of the target. The occluded object can be either a connected region or a number of
randomly scattered pixels, though the former is more likely in natural images. In
addition, only a sparse number of these templates is required to reliably represent
each particle, which encourages z to be sparse. To incorporate these two pieces of
information, each particle x should be represented as a sparse linear combination,
while allowing for sparse error e to encode occlusion: x = Dz + e. The sparse
coefficients z and sparse error e are recovered by solving the following �1 minimiza-
tion problem. The current tracking result is usually chosen to be the particle x with
minimum reconstruction error w.r.t. dictionary D.

5 Occlusion Detection via Structured Sparse Learning … 95

min ‖z‖1 + ‖e‖1 s.t. x = Dz+ e (5.1)

This approach has demonstrated to be robust against partial occlusions, which
improves tracking performance. However, it suffers from the following drawbacks:
(1) The error (due to occlusion) is not sparse for many tracking scenarios, as exem-
plified in Fig. 5.1. Because a portion of the target is significantly occluded, we need
to discard that portion for the sparsity assumption to still hold. (2) This kind of
algorithm does not exploit any prior information about the occlusion, especially the
important property that occlusion is spatially contiguous. By modeling error pixels as
structured and sparse, the representation is made more accurate to model occlusion
and better defined.

To deal with the above drawbacks, we propose a new particle filter tracker that
involves tracking by occlusion detection, thus appropriately named the TOD tracker.
In each frame, particles are represented in a structured sparse learning framework,
which exploits prior information about the location of occlusion and its spatial conti-
guity. This prior is propagated from previous frames in the form of an occlusion mask.
The main goal is to show how this prior information can be effectively incorporated
into the sparse representation framework, thus improving its robustness against more
types of realistic occlusions. Compared with existing methods, the contributions of
this work are twofold: (1) We propose a structured sparse learning method for occlu-
sion detection in object tracking. It exploits structure information to make occlusion
both sparse and spatially continuous for more robust performance. To the best of our
knowledge, this is the first work to use occlusion prior information through structured
sparsity in object tracking. (2) Compared to the popular L1 tracker [29] that does not
model occlusion explicitly, our method is generic. In fact, it yields the L1 tracker as
a special case.

The chapter is organized as follows. In Sect. 5.2, we summarize work most related
to ours. The particle filter algorithm is reviewed in Sect. 5.3. The proposed tracking
approach and optimization methodology are presented in Sects. 5.4 and 5.5, respec-
tively. In Sect. 5.6, we report and analyze extensive experimental results.

Fig. 5.1 Frames from two different video sequences portraying significant occlusion. The ground
truth track of each object is designated in green. Clearly, occlusion renders the tracking problem
very difficult. However, certain assumptions about the structuredness of occlusion (e.g., spatial
contiguity) can be exploited to alleviate its effect on tracking performance

96 T. Zhang et al.

5.2 Related Work

Visual tracking is an important topic in computer vision and it has been studied
for several decades. There is extensive literature, and we refer to [36, 37, 41] for a
more extensive review. In this section, we review and focus on previous work, from
which our proposed tracking method borrows some ideas. In fact, we provide a brief
overview of visual tracking and sparse representation for object tracking.

5.2.1 Visual Tracking

In general, visual tracking methods can be categorized into two groups: generative
and discriminative.

5.2.1.1 Generative Visual Tracking

Generative tracking methods adopt an appearance model to describe the target
observations, and the aim is to search for the target location that has the most
similar appearance to this model. Examples of generative methods include eigen-
tracker [5], mean shift tracker [9], appearance model based tracker [17], context-
aware tracker [38], incremental tracker (IVT) [35], fragment-based tracker (Frag) [1],
and VTD tracker [21]. In [5], a view-based representation is used for tracking rigid
and articulated objects. The approach builds on and extends work on eigenspace rep-
resentations, robust estimation techniques, and parametrized optical flow estimation.
The mean shift tracker [9] is a traditional and popular method, which successfully
copes with camera motion, partial occlusions, clutter, and target scale variations.
In [17], a robust and adaptive appearance model is learned for motion-based tracking
of natural objects. The model adapts to slowly changing appearance, and it maintains
a natural measure of the stability of the observed image structure during tracking.
The context-aware tracker [38] considers the context of the tracked object for robust
visual tracking. Specifically, this method integrates into the tracking process a set
of auxiliary objects that are automatically discovered in the video on the fly by data
mining. The IVT tracker [35] seeks an adaptive appearance model that accounts for
appearance variation of rigid or limited deformable motion. Although it has been
shown to perform well when the target object undergoes lighting and pose variation,
this method is less effective in handling heavy occlusion or nonrigid distortion as a
result of the adopted holistic appearance model. The Frag tracker [1] aims to solve
the partial occlusion problem by using a representation that is based on histograms
of local patches. The tracking task is carried out by combining votes of matching
local patches using an object template. However, this template is not updated and
therefore it is not expected to handle appearance changes due to large variations
in scale and/or shape deformation. The VTD tracker [21] effectively extends the

5 Occlusion Detection via Structured Sparse Learning … 97

conventional particle filter framework with multiple motion and observation models
to account for appearance variation caused by change of pose, lighting, and scale as
well as partial occlusion. However, as a result of its adopted generative representation
scheme that is not equipped to distinguish between target and background patches,
it is prone to drift.

5.2.1.2 Discriminative Visual Tracking

Discriminative tracking methods formulate object tracking as a binary classification
problem, which aims to find the target location that can best distinguish the tar-
get from the background. Examples of discriminative methods are online boosting
(OAB) [14], semi-online boosting [15], ensemble tracking [2], co-training track-
ing [25], online multiview forests for tracking [22], adaptive metric differential track-
ing [18], and online multiple instance learning tracking [3]. In the OAB tracker [14],
online AdaBoost is adopted to select discriminative features for object tracking.
Its performance is affected by background clutter and can easily drift. The ensem-
ble tracker [2] formulates the task as a pixel-based binary classification problem.
Although this method is able to differentiate between target and background, the
pixel-based representation is rather limited and thereby limits its ability to handle
occlusion and clutter. Moreover, the MIL tracker [3] extends multiple instance learn-
ing to an online setting for object tracking. Although it is able to address the problem
of tracker drift, this method does not handle large nonrigid shape deformations well.
In [8], a target confidence map is built by finding the most discriminative RGB color
combination in each frame. Furthermore, a hybrid approach that combines a gener-
ative model and a discriminative classifier is proposed in [43] to capture appearance
changes and allow the reacquisition of an object after total occlusion. Also, global
mode seeking can be used to detect and reinitialize the tracked object after total
occlusion [42]. Another approach uses image fusion to determine the best appear-
ance model for discrimination and then a generative approach for dynamic target
updates [6].

5.2.2 Sparse Representation for Object Tracking

Recently, sparse linear representation based on the particle filter framework has been
introduced to object tracking and has been shown to achieve significant tracking per-
formance [4, 23, 26, 29, 30, 45, 47, 51]. In the L1 tracker [29], a tracking candidate
is represented as a sparse linear combination of object templates and trivial templates.
Sparse representation is computed by solving a constrained �1 minimization problem
with nonnegativity constraints to solve the inverse intensity pattern problem during
tracking. The results show good performance at a high computational expense due
to the �1 minimization. In fact, the computational cost grows proportionally with
the number of particle samples. In [30], an efficient L1 tracker with minimum error

98 T. Zhang et al.

bound and occlusion detection is proposed. The minimum error bound is quickly
calculated from a linear least squares equation, and serves as a guide for particle
resampling in a particle filter framework. Without loss of precision during resam-
pling, the most insignificant samples are removed before solving the computationally
expensive �1 minimization problem. In [26], dynamic group sparsity is integrated
into the tracking problem and high-dimensional image features are used to improve
tracking robustness. In [23], dimensionality reduction and a customized orthogonal
matching pursuit algorithm are adopted to accelerate the L1 tracker [29]. However,
this method may reduce the tracking performance sometimes [23]. In [4], a very fast
numerical solver based on the accelerated proximal gradient approach is developed to
solve the �1 norm minimization problem with guaranteed quadratic convergence. In
[45], compressive sensing theory is adopted for real-time tracking. In [51], a sparsity-
based discriminative classifier and a sparsity-based generative model are designed
for tracking. Zhang et al. [47, 49] propose a multitask learning approach to jointly
learn the particle representations for robust object tracking. Our proposed method
is inspired by the success of these �1 minimization based trackers, and we will also
adopt the sparsity property for robust tracking.

5.3 Particle Filter

A particle filter [11] is a Bayesian sequential importance sampling technique for
estimating the posterior distribution of state variables characterizing a dynamic sys-
tem. It provides a convenient framework for estimating and propagating the posterior
probability density function of state variables regardless of the underlying distribu-
tion through a sequence of prediction and update steps. Let st and y∗t denote the state
variable describing the parameters of an object at time t (e.g., motion features) and its
observation, respectively. In the particle filter framework, the posterior p(st |y∗1:t) is
approximated by a finite set of n samples

{
si

t

}n
i=1 (called particles) with importance

weights wi . The particle samples si
t are independently drawn from an importance dis-

tribution q(st |s1:t−1, y∗1:t), which is set to the state transitional probability p(st |st−1)

for simplicity. In this case, the importance weight of particle i is updated by the
observation likelihood as: wi

t = wi
t−1 p(y∗t |si

t).
Particle filters have been extensively used in object tracking [41], and we also

employ particle filters to track the target object. Similar to [29], we assume an affine
motion model between consecutive frames. Therefore, the state variable st consists of
the six affine transformation parameters (2D linear transformation and translation).
By applying an affine transformation using st as parameters, we crop the region of
interest y∗t from the image and normalize it to the same size as the target templates in
our dictionary. The state transition distribution p(st |st−1) is modeled to be Gaussian,
with the dimensions of st assumed independent. The observation model p(y∗t |st)

reflects the similarity between a target candidate and target templates in the dictionary.
In this work, p(y∗t |st) is inversely proportional to the reconstruction error obtained
by linearly representing y∗t using the template dictionary.

5 Occlusion Detection via Structured Sparse Learning … 99

5.4 Tracking by Occlusion Detection (TOD)

Occlusion is one of the most important challenges for visual tracking. In this section,
we give a detailed description of our particle filter based tracking method, which
makes use of occlusion prior information in a structured sparse learning framework
to represent particle samples.

5.4.1 Occlusion Detection via Structured Sparsity

Occlusion detection is very important and difficult for tracking. In this section, we
show how we incorporate a sparsity-inducing norm that also encodes prior structural
information (spatial contiguity) regarding the support of the error incurred when
sparse linear representation is used to describe particles. We expect that such struc-
tural information renders a more accurate and robust representation model that can
handle occlusions in object tracking. In our particle filter based tracking method,
particles are randomly sampled around the states of the tracked object according
to a zero-mean Gaussian distribution. Similar to [29], we assume an affine motion
model between consecutive frames. Therefore, the state of a particle st consists of the
six affine transformation parameters (2D linear transformation and translation). By
applying an affine transformation based on st , we crop the region of interest y∗t from
the image and normalize it to the same size as the target templates in our dictionary.
The state transition distribution p(st |st−1) is modeled to be a zero-mean Gaussian,
with the dimensions of st independent. The observation model p(y∗t |st) reflects the
similarity between a particle and target templates in the dictionary. In this chapter,
p(y∗t |st) is inversely proportional to the reconstruction error obtained by linearly
representing y∗t using the template dictionary.

We sample n particles at each frame, and the observation (pixel color values)
of the i th particle is denoted in vector form as: x ∈ R

d (for simplicity, we ignore
the subscript i). The observation x of a particle is represented as a sparse linear
combination z of m dictionary templates D ∈ R

d×m , as shown in Eq. (5.1). D is
updated dynamically to handle frame-to-frame changes in target appearance (The
dictionary update issue is addressed later). The popular L1 tracking work [29],
which represents each particle by solving an �1 LASSO problem, can be generalized
as shown in Eq. (5.1).

min
z,e
‖z‖1 + ϕ(e) s.t. x = Dz+ e, (5.2)

In the L1 tracker, the regularizer ϕ(•) on e is chosen to be ‖e‖1. This regularization
scheme encourages the error (e.g., occlusion) to be pixel-wise sparse. This assump-
tion fails in many tracking scenarios as exemplified in Fig. 5.1. It also does not
incorporate the structural information inherent to occlusion, namely spatial contigu-
ity. Basically, the �1-norm regularization treats each entry (pixel) in e independently.

100 T. Zhang et al.

It does not take into account any specific structures or possible relations among sub-
sets of the entries. To encode this structured prior information, we assume that the
spatial support of the error is contiguous. This can be enforced by modeling the error
as spatially smooth. Also, this error can be assumed to be sparse, if any significant
occlusion is detected and removed beforehand. Note that we assume that some pix-
els in a particle are occluded and those are determined by an occlusion mask that is
propagated from frame-to-frame. At every frame, this mask is used to determine the
pixels, from which the particle representation z is computed. This representation is
used to estimate the error at each pixel. By thresholding this error with a predefined
threshold, the occlusion mask is updated and propagated to the next frame.

To incorporate pairwise relationships between pixels in the particle, we adopt a
graph-guided fused LASSO framework that explicitly takes into account the complex
dependency structure represented as a graph, whose nodes are pixels in the particle.
We assume that the d pixels in each particle are organized in a graph G with a set
of nodes V and edges E . In this chapter, we adopt a simple strategy for constructing
such a graph, whereby an edge exists between any pair of neighboring pixels and
its weight is proportional to the correlation of their intensity values and inversely
proportional to the Euclidean distance between them. More sophisticated methods
can be employed, but they are not the focus of this chapter. Let wml denote the weight
of an edge (m, l) ∈ E that represents the strength of correlation between pixels m
and l. Therefore, to encourage spatial contiguity between particle pixels, we employ
a graph-guided fusion penalty, which extends the standard LASSO by fusing the
em and el if (m, l) ∈ E . With the above notation, we formulate the representation
problem as a structured sparse �1 problem as follows.

min
z,e
‖z‖1 + λ‖e‖1 + γ

∑

(m,l)∈E
wml‖em − el‖1

s.t. x = Dz+ e,
(5.3)

where λ and γ are trade-off parameters that control the complexity of the model. A
larger value for γ leads to a greater fusion effect. The wml weighs the fusion penalty
for each edge such that em and el for highly correlated pixels have a large wml . Details
of solving this problem are provided in Sect. 5.5.

Discussion: In this chapter, we propose a generic formulation for robust object
tracking using structured sparse learning as shown in Eq. (5.3). By defining γ differ-
ently, different object trackers are obtained. When γ = 0, TOD becomes the popular
L1 tracker [29]. In this way, the popular L1 tracker [29] is a special case of our
formulation. To the best of our knowledge, introducing the structured information in
occlusion detection for tracking has not been proposed in any of the previous works.
In Fig. 5.2, we present an example of how our TOD tracker works as compared to the
L1 tracker. In the top row, we show a result of representing particle x using structured
sparse learning instead of traditional sparse learning (used in L1 tracking), whose
result is shown in the bottom row. Clearly, the error generated by TOD leads to a
high response at the actual location of the occlusion, while it is missed by traditional

5 Occlusion Detection via Structured Sparse Learning … 101

Fig. 5.2 Schematic example of TOD. The representation z of particle x w.r.t. dictionary D is learned
by solving Eq. (5.3). Notice that z is sparse in general, i.e., a few dictionary templates are used to
represent x. The first row is our TOD, and the second row is the popular L1 tracker. Compared with
the L1 tracker, our methods can obtain much more continuous occlusion detection result

sparse learning. It is evident that by enforcing spatial contiguity on the error val-
ues, the occlusion can be better localized. This error is thresholded to produce an
occlusion mask that is propagated to the next frame.

5.4.2 Dictionary Template Update

In the literature, a large body of work has been proposed to use object templates for
visual tracking [27]. Target appearance remains the same only for a certain period of
time, but eventually the object templates are no longer an accurate representation of its
appearance. A fixed appearance template is not sufficient to handle changes in appear-
ance due to occlusion or changes in illumination and pose. Also, if the templates are
updated too often, small errors are introduced each time a template is updated, errors
accumulate, and the tracker may drift from the target. Many approaches have been
proposed over the years to address the drift problem [19, 28]. In this chapter, we do
so by dynamically updating templates in D.

In order to initialize the object and background dictionaries, we sample equal-
sized patches at and around the initial position of the object. In our experiments, we
shift the initial bounding box by 1–3 pixels in each direction, thus resulting in m = 20
object templates as in [29]. Note that m is a user-defined parameter. All templates
are normalized. To each object template, we allocate a weight ωi that is indicative of
how representative the template is. In fact, the more a template is used to represent
tracking results, the higher is its weight. Next, we describe how we use these weights
to update D. As mentioned earlier, the tracking result at instance t is the particle
zi that is best represented by D such that i = arg mink=1,...,n (‖xk − Dzk‖2). The
weight of an object template in D is updated depending on how much that template is
used in representing zi . If zi is sufficiently represented (up to a predefined threshold)
by the dictionary, then there is no need to update it. Otherwise, the current tracking
result replaces the object template that has the smallest weight. The weight of this
new template is set to the median of the current normalized weight vector ω. This
template update scheme is summarized in Algorithm 1. We have two criteria: (1) The

102 T. Zhang et al.

Algorithm 1: Dictionary Template Update
1: Predefined threshold ε1 and ε2
2: y∗ is the newly chosen tracking target and zi its representation. Set Δdi = ‖xi − Dzi‖2 and

simi = sim(D, y∗), where sim is the maximum similarity between y and all elements in D.
3: ω is the current weight vector of templates in D
4: Update weights according to the coefficients of the target templates: ωk ← ωk exp(zi (k))

5: if (simi < ε1 & Δdi > ε2) then
6: r ← arg mink=1,...,mO ωk
7: D(:, r)← y∗, /*replace template with y∗ */
8: ωr ← median(ω), /*replace weight*/
9: end if
10: Normalize ω such that ‖ω‖1 = 1

similarity simi between the current tracking result and template should be smaller
than ε1, which avoids updating templates frequently and thus avoids tracker drift;
Once the current tracking result leads to a big variance, we add it to the dictionary
by replacing it with the ‘least’ used dictionary template; (2) The error Δdi should be
smaller than ε2, which means we update the dictionary template if only if there is no
occlusion; In our experiments, ε1 and ε2 are set to be 0.6, and 0.7, respectively.

5.5 Optimization

In this section, we provide a detailed description of how Eq. (5.3) is solved efficiently.
First, we rewrite the graph-guided fusion LASSO problem in Eq. (5.3), using a vertex-
edge incident matrix W ∈ R

|E |×d , as follows:

∑

(m,l)∈E

wml‖em − el‖1 = ‖We‖1

where each row in W corresponds to an edge in the graph. If we label each edge with
a linear index, we can define W formally as below:

W j,k =
⎧
⎨

⎩

wml i f j = (m, l) and k = m
−wml i f j = (m, l) and k = l
0 otherwise

Therefore, the overall penalty in Eq. (5.3) including both LASSO and graph-
guided fusion penalty functions can be written as ‖Be‖1, where B = [

λW; γ I
]

and I ∈ R
d×d denotes an identity matrix. Then, the structured sparsity problem in

Eq. (5.3) is converted into the following problem:

min
z,e
‖z‖1 + ‖Be‖1 s.t. x = Dz+ e (5.4)

5 Occlusion Detection via Structured Sparse Learning … 103

To solve Eq. 5.4, we introduce two slack variables and add two equality constraints,
thus converting it into Eq. (5.5).

min
z,e
‖z1‖1 + ‖f‖1 (5.5)

such that: x = Dz2 + e; z2 = z1; f = Be

This transformed problem can be minimized using the conventional Inexact Aug-
mented Lagrange Multiplier (IALM) method that has attractive quadratic conver-
gence properties and is extensively used in matrix rank minimization problems [33].
IALM is an iterative method that augments the traditional Lagrangian function with
quadratic penalty terms. This allows closed form updates for each of the unknown
variables. By introducing augmented lagrange multipliers (ALM) to incorporate the
equality constraints into the cost function, we obtain the Lagrangian function in
Eq. (5.6) that we show, in what follows, can be optimized through a sequence of
simple closed form update operations (refer to Eq. (5.7)).

L(z1−2, y1−3, u1−3)

= ‖z1‖∗ + ‖f‖1
+ tr

[
yT

1 (x − Dz2 − e)
]
+ u1

2
‖x − Dz2 − e‖2F

+ tr
[
yT

2 (z2 − z1)
]
+ u2

2
‖z2 − z1‖2F

+ tr
[
yT

3 (f − Be)
]
+ u3

2
‖f − Be‖2F (5.6)

⇒ min
z1−2,y1−3,u1−3

L(z1−2, y1−3, u1−3) (5.7)

y1, y2, and y3 are lagrange multipliers, and u1 > 0, u2 > 0, and u3 > 0 are three
penalty parameters. The above problem can be solved by either exact or inexact
ALM algorithms [24]. For efficiency, we choose the inexact ALM, whose details we
outline in Algorithm (2). Its convergence properties can be proven similar to those
in [24]. In fact, both IALM is an iterative algorithm that solves for each variable in
a coordinate descent manner. In other words, each iteration of IALM involves the
updating of each variable, with the other variables fixed to their most recent values.
Consequently, we obtain five update steps corresponding to the five sets of variables
we need to optimize for. Note that Steps 1–5 all have closed form solutions.

Step 1: [Update z1] Updating z1 requires the solution to the optimization prob-
lem in Eq. (5.8). This solution can be computed in closed form in Eq. (5.9), where
Sλ

(
zi j

) = sign(zi j) max
(
0, |zi j | − λ

)
is the soft-thresholding operator, and zi j is

the j th element of vector z.

z∗1 = arg min
z1

1

u1
‖z1‖∗ + 1

2

∥
∥
∥
∥z1 −

(
z2 + 1

u2
y2

)∥
∥
∥
∥

2

F
(5.8)

104 T. Zhang et al.

⇒ z∗1 = S 1
u1

(
z2 + 1

u2
y2

)
(5.9)

Step 2: [Update f] f is updated by solving the optimization problem in Eq. (5.10)
with the closed form solution shown in Eq. (5.11).

f∗ = arg min
f

1

u3
‖f‖1 + 1

2

∥
∥
∥
∥f −

(
Be + 1

u3
y3

)∥
∥
∥
∥

2

F
(5.10)

⇒ f∗ = S 1
u3

(
Be + 1

u3
y3

)
(5.11)

Step 3: [Update e] e is updated by solving the optimization problem in Eq. (5.12)
with the closed form solution shown in Eq. (5.13).

e∗ = arg min
e

tr [yt
1(x − Dz2 − e)] + u1

2
‖x − Dz2 − e‖2F

+ tr [yt
3(Be − f)] + u3

2
‖Be − f‖2F (5.12)

⇒ e∗ = (
BT B+ I

)−1
G , (5.13)

where G = x − Dz2 + 1
u1

y1 − BT
(

1
u3

y3 − f
)

.

Step 4: [Update z2] z2 is updated by solving the optimization problem in
Eq. (5.14) with the closed form solution shown in Eq. (5.15).

z2
∗ = arg min

z2

tr [yt
1(x − Dz2 − e)] + u1

2
‖x − Dz2 − e‖2F

+ tr [yt
2(z2 − z1)] + u2

2
‖z2 − z1‖2F (5.14)

⇒ z2
∗ = (

DT D+ I
)−1

G , (5.15)

where G = DT (x − e + 1
u1

y1)+ z1 − 1
u2

y2.

Step 5: Update Multipliers y1, y2: We update the Lagrange multipliers in
Eq. (5.16), where ρ > 1.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1 = y1 + u1(x − Dz2 − e)
y2 = y2 + u2(z2 − z1)

y3 = y3 + u3(f − Be)
u1 = ρu1; u2 = ρu2; u3 = ρu3

(5.16)

5 Occlusion Detection via Structured Sparse Learning … 105

Algorithm 2: Structured sparse learning for occlusion detection (Solving Eq
(5))

Input : data x, parameters λ, γ , and ρ

Output: z

Initialize z2 = 0, y1 = 0, y2 = 0, y3 = 01
while not converged do2

fix other variables and update z1 [Eq (9)]3
fix other variables and update f [Eq (11)]4
fix other variables and update e [Eq (13)]5
fix other variables and update z2 [Eq (15)]6
update multipliers and parameters [Eq (16)]7
Update final solution z← z28

end9

The IALM algorithm that solves Eq. (5.5) is shown in Algorithm (2), where con-
vergence is reached when the change in objective function or solution z is below a
user-defined threshold ε = 10−3. Empirically, we find that our IALM algorithm is
insensitive to a large range of ε values. In our implementation, u1 = u2 = u3.

Computational Complexity: For the proposed TOD, it just uses the soft-
thresholding operator, and is also very fast. This complexity is on par with that of
other fast particle-based tracking algorithms. In comparison, the computational com-
plexity of the L1 tracker [29], which uses a sparse linear representation similar to our
proposed tracker, is at least O

(
nd2

)
, since the number of dictionary templates (object

and trivial) is (m+ 2d) and n Lasso problems are solved independently. Clearly, our
method is more computationally attractive than L1 tracker. When m = 21, n = 400,
and d = 32×32, the average per-frame run-time for TOD and L1 trackers are about
5 s and 6 min, respectively.

5.6 Experimental Results

In this section, we do experimental results that validate the effectiveness and effi-
ciency of our TOD method. We also make a thorough comparison between TOD
and state-of-the-art tracking methods where applicable. We compile a set of 10 chal-
lenging tracking sequences to evaluate TOD. The sequences are sports videos and
general videos include challenging appearance variations due to changes in pose,
illumination, scale, and occlusion. Most of them involve various types of partial
occlusions or multiple occlusions. We compare our TOD method to 6 recent and
state-of-the-art trackers denoted as: L1 [29], RCT [45], MIL [3], IVT [35], Frag [1],
and OAB [14]. We implemented them using publicly available source codes or
binaries provided by the authors. They were initialized using their default para-
meters. In our implementation, the initial position of the target is selected man-
ually, and we shift the initial bounding box by 1–3 pixels in each dimension,

106 T. Zhang et al.

thus resulting in m = 21 target templates D (similar to L1 tracker [29]). All our
experiments are done using MATLAB on a 2.66 GHZ Intel Core2 Duo PC with
18 GB RAM. For all experiments, we model p (st |st−1) ∼ N (0, diag(σ)), where
σ = [0.005, 0.0005, 0.0005, 0.005, 3, 3]T . We set the number of particles n = 400.
In Algorithm 2, we set λ = 1 and γ = 5. Next, we give a qualitative and quantitative
analysis of TOD, and compare it against the 6 baseline methods. Our experiments
show that TOD produces more robust and accurate tracks.

5.6.1 Qualitative Comparison

The qualitative comparison results are shown in Figs. 5.3 and 5.4, which show track-
ing results of the 7 trackers on a subset of the videos. The details are introduced
as follows. In the AF1 sequence, a player is tracked with appearance changes due
to camera motion. Tracking results for frames {10, 162, 300, 400} are presented in
Fig. 5.3a. IVT and MIL start to drift around frame 162. Due to changes in appear-
ance, OAB and L1 start to undergo target drift from frame 300. Frag starts to fail
after frame 400. RCT can track the target through the whole sequence; however,
this tracker is not as robust or accurate as the TOD tracker. For the AF2 sequence,
the player is subject to changes in illumination and pose. Based on the results in
Fig. 5.3b, OAB, RCT, and L1 start to drift from the target at frame 200, while MIL
and Frag drift at frame 277 and finally lose the target. IVT tracks the target quite
well with a little drift. However, the target is successfully tracked throughout the
entire sequence by TOD. In So1 shown in Fig. 5.3c, a player with white color is
tracked. The results at 4 frames are shown in Fig. 5.3c. Because there is only minor
occlusion by other players, most of the methods can track the face accurately except
Frag, which drifts around frame 170. The So2 sequence contains abrupt object and
camera motion with significant scale changes, which cause most of the trackers to
drift as shown in Fig. 5.3d. TOD, L1, and RCT handle these changes well. Compared
with L1, TOD obtains much better performance, which shows that harnessing local
structure between pixels is useful for object tracking. In the So3 sequence, tracking
results for frames {1, 27, 92, 230} are presented in Fig. 5.3e. Frag and IVT start to
drift around frame 27 and 92, respectively. Due to changes in lighting and camera
motion, most of the trackers drift including L1 and O AB. TOD, MTT, and RCT
can track the target through the whole sequence; however, the proposed TOD tracker
shows the best performance.

On the faceocc2 sequence, the results are shown in Fig. 5.4a. Most trackers start
drifting from the man’s face when it is almost fully occluded by the book. Because
the L1 and TOD methods explicitly handle partial occlusions, and update the object
dictionary progressively, they handle the appearance changes in this sequence very
well. Fig. 5.4b shows tracking results for the girl sequence. Performance on this
sequence exemplifies the robustness of TOD to occlusion (complete occlusion of the
girl’s face as she swivels in the chair) and large pose change (the face undergoes
significant 3D rotation). TOD and L1 are capable of tracking the target during the

5 Occlusion Detection via Structured Sparse Learning … 107

(a)

(b)

(c)

(d)

(e)

Fig. 5.3 Tracking results of 7 methods on 5 sports video sequences. Frame numbers are denoted
in red and the 7 tracking results (bounding boxes) are color-coded in each frame a AF1 b AF2
c So1 d So2 e So3

108 T. Zhang et al.

(a)

(b)

(c)

(d)

(e)

Fig. 5.4 Tracking results of 7 methods on 5 general video sequences. Frame numbers are denoted
in red and the 7 tracking results (bounding boxes) are color-coded in each frame a faceocc2 b girl
c onelsr1 d onelsr1 e tud_crossing

5 Occlusion Detection via Structured Sparse Learning … 109

entire sequence. Other trackers experience drift at different time instances. Fig. 5.4c
shows tracking results for the onelsr1 sequence. In this sequence, partial occlusion
happens, and it is much more easier. Therefore, many trackers (except OAB) can
track the target through the whole video sequence. In the onelsr2 sequence (refer to
Fig. 5.4d), the walking woman is partially occluded by a walking man. IVT, MIL,
Frag, OAB, and RCT lose the target woman, start tracking the man when partial
occlusion occurs around frame 200, and are unable to recover from this failure. TOD
and L1 track the woman quite well. In the tud_crossing sequence, the target is severely
occluded by multiple humans as shown in Fig. 5.4e. RCT and MIL start to drift
around frame 32. Due to multiple occlusions, IVT starts to undergo target drift from
frame 83. Other trackers, TOD, L1, and Frag can track the target through the whole
video; however, among all of the trackers, the TOD shows the best performance.

5.6.2 Quantitative Comparison

To give a fair quantitative comparison among the 7 trackers, we obtain manually
labeled ground truth tracks for all the sequences. Most of the ground truth can be
downloaded with the sequences. Tracking performance is evaluated according to the
average per-frame distance (in pixels) between the center of the tracking result and
that of ground truth as used in [3, 10, 29]. Clearly, this distance should be small.
In Fig. 5.5, the average center distance for each tracker over the 10 sequences is
plotted. TOD consistently outperform the other trackers in all sequences except for
AF2 and onelsr1, where they obtain very similar results to IVT. OAB is effected by
background clutter and easily drifts from the target. MIL performs well except under
severe illumination changes. RCT is not stable on several video sequences, especially
those that contain occlusion and illumination variations. Frag and L1 handle partial
occlusion well, but tend to fail under severe illumination and pose changes. IVT
is hardly affected by parameter settings and obtains good results in the absence of
severe illumination changes. TOD can consistently produce a smaller distance than
other trackers. This implies that TOD can accurately track the target despite severe
occlusions and pose variations.

To demonstrate the effectiveness of our TOD, we compare it with the L1 and RCT
trackers, which are the most related trackers to ours based on sparse learning and
have shown state-of-the-art performance [29, 45]. Based on the results in Fig. 5.5,
TOD outperform the L1 tracker and RCT. This is primarily due to the use of structure
information for occlusion modeling, which makes TOD robust to occlusion problem.
In addition, about the computational cost, TOD is much more efficient than L1 as
discussed in Sect. 5.5.

110 T. Zhang et al.

Fig. 5.5 Average distance of 7 trackers applied to 10 sequences

5.7 Conclusion

In this chapter, we propose a novel tracking method that allows for occlusion model-
ing and detection via structured sparse learning. By considering the structural infor-
mation inherent to occlusion (e.g., spatial contiguity), the proposed TOD is much
more robust for tracking under occlusion. The structured sparse learning problem is
solved using an efficient IALM method. We show that the popular L1 tracker [29] is
a special case of our formulation. Also, we extensively analyze the performance of
our tracker on challenging real-world video sequences and show that it outperforms
6 state-of-the-art trackers. In the future, we will do research on how to embed the
temporal information to model occlusion in our framework.

Acknowledgments This study is supported by the research grant for the Human Sixth Sense Pro-
gramme at the Advanced Digital Sciences Center from Singapore’s Agency for Science, Technology,
and Research (A∗STAR).

References

1. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral
histogram. In: Proceedings of IEEE conference on computer vision and pattern recognition,
pp 798–805

2. Avidan, S (2005) Ensemble tracking. In: Proceedings of IEEE conference on computer vision
and pattern recognition, pp 494–501

3. Babenko B, Yang M-H, Belongie S (2009) Visual tracking with online multiple instance
learning. In: Proceedings of IEEE conference on computer vision and pattern recognition,
pp 983–990

4. Bao C, Wu Y, Ling H, Ji H (2012) Real time robust l1 tracker using accelerated proximal gradient
approach. In: Proceedings of IEEE conference on computer vision and pattern recognition

5 Occlusion Detection via Structured Sparse Learning … 111

5. Black MJ, Jepson AD (1998) Eigentracking: Robust matching and tracking of articulated
objects using a view-based representation. Int J Comput Vis 26(1):63–84

6. Blasch E, Kahler B (2005) Multiresolution eoir target tracking and identification. In: Interna-
tional conference on information fusion, vol 8, pp 1–8

7. Chockalingam P, Pradeep N, Birchfield S (2009) Adaptive fragmentsbased tracking of non-rigid
objects using level sets. In: ICCV

8. Collins RT, Liu Y (2003) On-line selection of discriminative tracking features. In: Proceedings
of the IEEE international conference on computer vision, pp 346–352

9. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern
Anal Mach Intell 25(5):564–575

10. Dinh TB, Vo N, Medioni G (2011) Context tracker: exploring supporters and distracters in
unconstrained environments. In: Conference on computer vision and pattern recognition

11. Doucet A, De Freitas N, Gordon N (eds) (2001) Sequential Monte Carlo methods in practice.
Springer, New York

12. Fleuret F, Berclaz J, Lengagne R, Fua P (2008) Multicamera people tracking with a probabilistic
occupancy map. IEEE Trans PAMI 30(2):267–282

13. Gay-Bellile V, Bartoli A, Sayd P (2010) Direct estimation of nonrigid registrations with image-
based self-occlusion reasoning. IEEE Trans PAMI 32(1):87–104

14. Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting. In: Proceed-
ings of British machine vision conference, pp 1–10

15. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for Robust tracking.
In: Proceedings of European conference on computer vision, pp 234–247

16. Han B, Davis L (2005) On-line density-based appearance modeling for object tracking.
In: ICCV

17. Jepson A, Fleet D, El-Maraghi T (2003) Robust on-line appearance models for visual tracking.
IEEE Trans Pattern Anal Mach Intell 25(10):1296–1311

18. Jiang N, Liu W, Wu Y (2011) Adaptive and discriminative metric differential tracking.
In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1161–
1168

19. Kaneko T, Hori O (2003) Feature selection for reliable tracking using template matching.
In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 796–802

20. Kwak S, Nam W, Han B, Han JH (2011) Learning occlusion with likelihoods for visual tracking.
In: ICCV

21. Kwon J, Lee KM (2010) Visual tracking decomposition. In: Proceedings of IEEE conference
on computer vision and pattern recognition, pp 1269–1276

22. Leistner C, Godec M, Saffari A, Bischof H (2010) Online multi-view forests for tracking.
In: DAGM, pp 493–502

23. Li H, Shen C, Shi Q (2011) Real-time visual tracking with compressed sensing. In: Proceedings
of IEEE conference on computer vision and pattern recognition, pp 1305–1312

24. Lin Z, Ganesh A, Wright J, Wu L, Chen M, Ma Y (2009) Fast convex optimization algorithms
for exact recovery of a corrupted low-rank matrix. In: Technical Report UILU-ENG-09-2214,
UIUC

25. Liu R, Cheng J, Lu H (2009) A Robust boosting tracker with minimum error bound in a
co-training framework. In: Proceedings of the IEEE international conference on computer
vision, pp 1459–1466

26. Liu B, Yang L, Huang J, Meer P, Gong L, Kulikowski C (2010) Robust and fast collabora-
tive tracking with two stage sparse optimization. In: Proceedings of European conference on
computer vision, pp 1–14

27. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to
stereo vision (DARPA). In: DARPA image understanding workshop, pp 121–130

28. Matthews I, Ishikawa T, Baker S (2004) The template update problem. IEEE Trans Pattern
Anal Mach Intell 26:810–815

29. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representa-
tion. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272

112 T. Zhang et al.

30. Mei X, Ling H, Wu Y, Blasch E, Bai L (2011) Minimum error bounded efficient l1 tracker
with occlusion detection. In: Proceedings of IEEE conference on computer vision and pattern
recognition, pp 1257–1264

31. Mittal A, Davis LS (2003) M2tracker: a multi-view approach to segmenting and tracking people
in a cluttered scene. Int J Comput Vis 51(3):189–203

32. Moeslund TB, Hilton A, Kruger V, Sigal L (2011) Visual analysis of humans
33. Peng Y, Ganesh A, Wright J, Xu W, Ma Y (2011) RASL: Robust alignment by sparse and

low-rank decomposition for linearly correlated images. IEEE Trans Pattern Anal Mach Intell
34(11):2233–2246

34. Ross D, Lim J, Yang M (2004) Adaptive probabilistic visual tracking with incremental subspace
update. In: European conference on computer vision

35. Ross D, Lim J, Lin R-S, Yang M-H (2008) Incremental learning for Robust visual tracking. Int
J Comput Vis 77(1):125–141

36. Salti S, Cavallaro A, Stefano LD (2012) Adaptive appearance modeling for video tracking:
survey and evaluation. IEEE Trans Image Process 21(10):4334–4348

37. Wu Y, Lim J, M-H Yang (2013) Online object tracking: a benchmark. In: Proceedings of IEEE
conference on computer vision and pattern recognition

38. Yang M, Wu Y, Hua G (2009) Context-aware visual tracking. IEEE Trans Pattern Anal Mach
Intell 31(7):1195–1209

39. Yang M, Yuan J, Wu Y (2007) Spatial selection for attentional visual tracking. In: Conference
on computer vision and pattern recognition

40. Yang M, Wu Y, Hua G (2009) Context-aware visual tracking. PAMI 31(1):1195–1209
41. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):13+
42. Yin Z, Collins R (2008) Object tracking and detection after occlusion via numerical hybrid

local and global mode-seeking. In: Proceedings of IEEE conference on computer vision and
pattern recognition, pp 1–8

43. Yu Q, Dinh TB, Medioni G (2008) Online tracking and reacquistion using co-trained genera-
tive and discriminative trackers. In: Proceedings of European conference on computer vision,
pp 78–691 (2008)

44. Zhang T, Lu H, Li SZ (2009) Learning semantic scene models by object classification and
trajectory clustering. In: CVPR

45. Zhang K, Zhang L, M-H Yang (2012) Real-time compressive tracking. In: Proceedings of
European conference on computer vision

46. Zhang T, Ghanem B, Liu S, Ahuja N (2012) Low-rank sparse learning for robust visual tracking.
In: European conference on computer vision

47. Zhang T, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse
learning. In: Proceedings of IEEE conference on computer vision and pattern recognition

48. Zhang T, Liu J, Liu S, Xu C, Lu H (2011) Boosted exemplar learning for action recognition
and annotation. IEEE Trans Circuits Syst Video Technol 21(7):853–866

49. Zhang T, Ghanem B, Liu S, Ahuja N (2013) Robust visual tracking via structured multi-task
sparse learning. Int J Comput Vis 101(2):367–383

50. Zhang T, Liu S, Xu C, Lu H (2013) Mining semantic context information for intelligent video
surveillance of traffic scenes. IEEE Trans Ind Inform 9(1):149–160

51. Zhong W, Lu H, M-H Y (2012) Robust object tracking via sparsity-based collaborative model.
In: Proceedings of IEEE conference on computer vision and pattern recognition

	5 Occlusion Detection via Structured Sparse Learning for Robust Object Tracking
	5.1 Introduction
	5.2 Related Work
	5.2.1 Visual Tracking
	5.2.2 Sparse Representation for Object Tracking

	5.3 Particle Filter
	5.4 Tracking by Occlusion Detection (TOD)
	5.4.1 Occlusion Detection via Structured Sparsity
	5.4.2 Dictionary Template Update

	5.5 Optimization
	5.6 Experimental Results
	5.6.1 Qualitative Comparison
	5.6.2 Quantitative Comparison

	5.7 Conclusion
	References

