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Abstract

Purpose: To identifyMRI-based radiomics as prognostic factors
in patients with advanced nasopharyngeal carcinoma (NPC).

Experimental Design: One-hundred and eighteen patients
(training cohort: n¼ 88; validation cohort: n¼ 30)with advanced
NPC were enrolled. A total of 970 radiomics features were
extracted from T2-weighted (T2-w) and contrast-enhanced T1-
weighted (CET1-w) MRI. Least absolute shrinkage and selection
operator (LASSO) regression was applied to select features for
progression-free survival (PFS) nomograms. Nomogram discrim-
ination and calibration were evaluated. Associations between
radiomics features and clinical data were investigated using
heatmaps.

Results: The radiomics signatures were significantly associated
with PFS. A radiomics signature derived from joint CET1-w and
T2-w images showed better prognostic performance than signa-
tures derived from CET1-w or T2-w images alone. One radiomics

nomogram combined a radiomics signature from joint CET1-w
and T2-w images with the TNM staging system. This nomogram
showed a significant improvement over the TNM staging system
in terms of evaluating PFS in the training cohort (C-index, 0.761
vs. 0.514; P < 2.68 � 10�9). Another radiomics nomogram
integrated the radiomics signature with all clinical data, and
thereby outperformed a nomogram based on clinical data alone
(C-index, 0.776 vs. 0.649; P < 1.60 � 10�7). Calibration curves
showed good agreement. Findings were confirmed in the valida-
tion cohort. Heatmaps revealed associations between radiomics
features and tumor stages.

Conclusions: Multiparametric MRI-based radiomics nomo-
grams provided improved prognostic ability in advanced NPC.
These results provide an illustrative example of precision med-
icine and may affect treatment strategies. Clin Cancer Res; 23(15);
4259–69. �2017 AACR.

Introduction
Nasopharyngeal carcinoma (NPC) is a rather common malig-

nant tumor among Asians, especially the South China (1). Radio-
therapy is regarded as the standard treatment for patients with
NPC. Although various improvements have been achieved in
radiotherapy technology and equipment, the 5-year survival rate

of patients with NPC remains around 50% (2). Patients with
advanced NPC have a poorer prognosis, with 5-year survival rates
ranging from 10% to 40% (2, 3). Unfortunately, approximately
70%–80% of patients with NPC have locoregionally advanced
disease at diagnosis (4, 5). Themain causes of treatment failure are
locoregional recurrences and distant metastasis (6). Pretreatment
identification of recurrence and distantmetastasis in patients with
advanced NPC is crucial to identify the prognosis and make
decisions regarding treatment. If poor survival can be identified
before treatment, then this can help to determine whether more
aggressive treatments should be administered, for example by
increasing cycles, or by using of adjuvant and/or induction
chemotherapy, or by using gemcitabine plus cisplatin instead of
fluorouracil plus cisplatin as the standard first-line treatment
option (7, 8).

Although the tumor-node-metastasis (TNM) staging system for
NPC plays a vital role in predicting prognosis and facilitate
treatment stratification, it may not be sufficiently precise (9).
Beyond traditional prediction strategies, some recent studies
reported that various clinical risk factors, such as hemoglobin,
lactate dehydrogenase level, neutrophil-to-lymphocyte ratio, and
platelet counts, were associated with poor survival (10–13).
However, the clinical utility of these factors was limited and
unclear. Therefore, new tools are urgently needed to identify
patients who are at risk of having a poor prognosis.
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Radiomics, an emerging and promising field, hypothesizes that
medical imaging canprovide crucial information regarding tumor
physiology (14–16). Increasing numbers of pattern recognition
tools and dataset sizes have facilitated the development of pro-
cesses for radiomics (17). By convertingmedical images into high-
dimensional, mineable, and quantitative imaging features via
high-throughput extraction of data-characterization algorithms,
radiomics methods provide an unprecedented opportunity to
improve decision-support in oncology at low cost and noninva-
sively (14, 17). Some previous studies have shown that biomar-
kers based on quantitative radiomics features are associated with
clinical prognosis and underlying genomic patterns across a range
of cancer types (18–22).

Recently, the most widely used imaging modality in radiomics
research has been CT, which can quantify tissue density (14).
However, unlike CT, MRI can detect tumor density and reflect
physiologic characteristics of tumors (23). In addition, MRI
provides better tissue contrast, has multiplanar capacity, and
exhibits fewer artifacts from radiation and bone beam hardening,
which allows tumor margins to be delineated more accurately
(24). To our knowledge, no published study has determined
whether the prognosis of NPC could be evaluated by a radiomics
approach based on multiparametric MRI.

Thus, in this study, we developed and validated multipara-
metric MRI-based radiomics as a novel approach for providing
individualized, pretreatment evaluation of progression-free sur-
vival in patients with advanced NPC (stage III–IVb). In addition,
we sought to reveal association between radiomics features and
clinical data.

Patients and Methods
A predefined hypothesis and rationale for sample size
Predefined hypothesis. The Cox proportional hazards regression
model can be used to improve the prognosis of the PFS of patients
with advanced NPC.

Sample size. Small sample size will increase both the type-I (incor-
rectly detecting a difference) and type-II (not detecting an actual
difference) error rates. To generate accurate estimates of the impact

of the depended variables, an adequate number of events per
variable is required. For the training sample size, Chalkidou and
colleagues proposed that for linear models, like multiple regres-
sion, at least 10 to15observationsper predictor variable is required
to produce reasonably stable estimates (25). In our study, eight
features were selected for the final model and the minimum
training data size was 80. While for the validation sample size, we
performed a power calculation to estimate the sample size for our
study (26) and found that the minimum sample size is 24. The
estimation process can be found in the Supplementary Informa-
tion. In our study, 118 patients (88 training data and 30 validation
data) were involved, which were enough.

Patients
Our Institutional Review Board approved this retrospective

study and waived the need to obtain informed consent from the
patients. The entire cohort of this study was acquired from the
January 2007 to August 2013 records of the Institutional Picture
Archiving and Communication System (PACS, Carestream),
which was used to identify patients who had histologically
confirmed NPC (TNM stage: III-IVb) without evidence of recur-
rence or distant metastases at diagnosis. All patients underwent
pretreatment 1.5 T MRI scans (Signa EXCITE HD, TwinSpeed, GE
Healthcare). Supplementary Figure S1 provides the patient
recruitment pathway, along with the inclusion and exclusion
criteria. A total of 118 consecutive patients met the criteria (92
men and 26 women; mean age, 43 years� 10.98) were identified
and divided into two cohorts at a ratio of 3:1 using computer-
generated random numbers. Eighty-eight patients were allocated
to the training cohort (65men and 23women;mean age, 44 years
� 10.73), while 30 patients were allocated to the independent
validation cohort (27 men and three women; mean age, 43 years
� 11.85).

Demographic and pretreatment clinical characteristics were
collected from PACS, including age, gender, histology, T-stage,
N-stage, overall stage, hemoglobin, and platelet counts. The dates
of baselineMRIwere also recorded. Tumor stagingwas performed
on the basis of the American Joint Committee on Cancer TNM
Staging System Manual, 7th Edition (27).

Follow-up and clinical endpoint
All patients were followed up every 1–3 months during the

first 2 years, every 6 months in years 2–5, and annually
thereafter. To avoid extended follow-up and provide an effi-
cient tool that would allow earlier personalized treatment, we
chose PFS as the endpoint (28). We calculated PFS from the first
day of treatment to the date of disease progression (locoregio-
nal recurrences or distant metastases), death from any cause, or
the date of the last follow-up visit (censored). The minimum
follow-up time to ascertain the PFS was 36 months. All local
recurrences were diagnosed by flexible nasopharyngoscopy and
biopsy and/or MRI scanning of the nasopharynx and skull base
that showed progressive bone erosion and/or soft tissue swell-
ing. Regional recurrences were diagnosed by clinical examina-
tion of the neck and, in doubtful cases, by fine-needle aspira-
tion or an MRI scan of the neck. Distant metastases were
diagnosed on the basis of clinical symptoms, physical exam-
ination, and imaging methods that included chest X-ray, whole-
body bone scan, MRI/CT, positron emission tomography
(PET)/CT, and abdominal sonography.

Translational Relevance

Radiomics, an emerging field, uses quantitative features
of medical imaging to provide information on tumor phys-
iology. Here, we used features of MR images as prognostic
factors in patients with advanced nasopharyngeal carcino-
ma. Radiomics-based prognostic nomograms were devel-
oped based on a training cohort (n ¼ 88) using machine
learning methods. The nomograms were then tested in a
validation cohort (n ¼ 30). We found that prognostic ability
became higher when we added radiomics features to the
TNM staging system and to clinical factors. Practically
speaking, radiomics-based nomograms are an especially
promising approach to personalized medicine because they
are noninvasive and relatively low cost. Our study provides
an illustrative example of this promise, and may affect
treatment strategies for patients with advanced nasopharyn-
geal carcinoma.
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MRI acquisition and segmentation
All patients underwent a pretreatment 1.5 T MRI scan. For

feature selection, we used axial T2-weighted Digital Imaging and
Communications in Medicine (DICOM) images and contrast-
enhanced T1-weighted DICOM images that had been archived in
the PACS, without applying any preprocessing or normalization.
The Supplementary Information describes the magnetic reso-
nance image acquisition parameters.

Note that segmentation is required before the extraction of
quantitative radiomics features. We used ITK-SNAP software for
three-dimensional manual segmentation (open source software;
www.itk-snap.org). All manual segmentations of the tumor were
performed by a radiologist who had 10 years of experience, and
each segmentation was validated by a senior radiologist, who had
20 years of experience (largely with NPC). The region of interest
covered thewhole tumor andwas delineated on both the axial T2-
weighted images and contrast-enhanced T1-weighted images on
each slice.

Data analysis
Radiomics feature extraction/selection and radiomics signature
building. Radiomics features capture phenotypic differences
between tumors by extracting a large set of quantitative features
(Fig. 1). The feature extractionmethodology has been described in
the Supplementary Information. All feature extraction methods
were implemented using MatLab 2014a (MathWorks). We used
least absolute shrinkage and selectionoperator (LASSO)method to
select features that were most significant and then built a Cox
model including selected variates. The LASSO is a data analysis

method that may be applied for biomarker selection in high
dimensional data. Originally proposed for the linear regression
model, thismethodminimizes the residual sumof squares, subject
to the sumof the absolute value of the coefficients being less than a
tuning parameter (l). For the binary logistic regressionmodel, the
residual sum of squares is replaced by the negative log-likelihood.
If the l is large, there is no effect on the estimated regression
parameters, but as the l gets smaller, some coefficients may be
shrunk towards zero (29, 30).We then selected the l for which the
cross-validation error is the smallest. Finally, the model is refit
using all of the available observations and the selected l. By the
way, most of the coefficients of the covariates are reduced to zero
and the remaining non-zero coefficients are selected by LASSO.
Non-zero coefficient of the selected feature is defined as Rad-Score:
the Rad-score was calculated for each patient as a linear combi-
nation of selected features that were weighted by their respective
coefficients. Radiomics signatures were built using Rad-score.

Prognostic validation of radiomics signature. The potential associ-
ation of radiomics signature with PFS was first assessed in the
training cohort, and then validated in the validation cohort.
Kaplan–Meier survival analysis was used in both cases. The
patients were divided into high-risk and low-risk groups based
on themedianRad-score. Patientswithmedian scoreswere placed
inhigh-risk groups.Weperformed stratified analyses to determine
the PFS in various subgroups, comparing high-risk and low-risk
patients. Univariate Cox proportional hazards models were
applied to calculate the C-index of the radiomics signature that
was based on CET1-w and T2-w images.

Figure 1.

Flowchart showing the process of radiomics. A, Image segmentation is performed on contrast-enhanced T1-w and T2-w MRI images. Experienced radiologists
contour the tumor areas on all MRI slices. B, Features are extracted from within the defined tumor contours on the MRI images, quantifying tumor intensity,
shape, texture, and wavelet filter. C, For the analysis, the radiomics features are compared with clinical data.
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Performance of the TNM staging system, clinical nomogram, and
radiomics nomogram in the training cohort. The TNM staging
system and nomogram performance weremeasured quantitative-
ly using the C-index. The C-index is commonly used to evaluate
the discriminative ability of prognostic models in survival anal-
ysis. The value of the C-index can range from 0.5, which indicates
no discriminative ability, to 1.0, which indicates perfect ability to
distinguish between the patients who experience disease progres-
sion or death and those who do not. Bootstrap analyses with
1,000 resamples were used to obtain a C-index statistics that were
corrected for potential overfitting. The nomogram calibration
curves were assessed by plotting the observed survival fraction
against the nomogram-assessed probabilities.

Validation of the TNM staging system and nomograms
Theprognostic performance of the TNMstaging system, clinical

nomogram, and radiomics nomogram was evaluated in the
training cohort and then tested in the validation cohort. C-index
and calibration curve were obtained from multivariable Cox
proportional hazard regression analyses.

Association of radiomics features with clinical data
We performed a heatmap analysis to evaluate associations

between radiomics features and clinical data.

Statistical analysis
The statistical analyses were performedwith R software (R Core

Team. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria; http://
www.R-project.org, 2016). The following R packages were used:
The glmnet package was used for LASSO logistic regression. The
detailed description of the LASSO method was shown in and
Supplementary Information. The survival package was used for
Kaplan–Meier survival analyses. The rms package was used for
Cox proportional hazards regression, nomograms, and calibra-
tion curves. The Hmisc package was used for comparisons
between C-indices. The Resource Selection package was used to
apply Hosmer–Lemeshow tests. The gplots and pheatmap
packages were used for heatmaps. Bonferroni correction was used
for multiple hypothesis correction if necessary. All statistical tests
were two-sided, and P values of <0.05were considered significant.

Results
Clinical characteristics of the patients

The clinical characteristics of the training and validation
cohorts are summarized in Table 1. No differences were found
between the training and validation cohorts in terms of age,
gender, overall stage, T-stage, N-stage, histology, or follow-up
time (P ¼ 0.270–0.687). However, hemoglobin and platelet
counts differed significantly between the two cohorts (P <
0.001). The median PFS was 40 months (range, 3–84 months).

Radiomics feature extraction/selection and radiomics signature
building

A total of 970 features were extracted frommagnetic resonance
images (485 features from T2-w images and the remaining 485
from CET1-w images). Of these, we selected three features from
CET1-w images and four features from T2-w images that were
most strongly associatedwith PFS in the training cohort (Table 2).
To build the radiomics signature, eight features were selected for

inclusion in the Rad-score prognostic model, including five fea-
tures derived fromCET1-w images and three features derived from
T2-w images (Supplementary Fig. S2A–S2B; Supplementary
Information, Rad-score calculation formula). Rad-score for each
patient in the training cohort was shown in Fig. 2.

Validation of radiomics signature
In the training cohort, the radiomics signature derived from

CET1-w images yielded a C-index of 0.690 [95% confidence
interval (CI): 0.593–0.787]. The radiomics signature from T2-w
images yielded a C-index of 0.648 (95% CI: 0.551–0.745). The
radiomics signature from joint CET1-w and T2-w images
yielded the highest C-index, which was 0.758 (95% CI:
0.661–0.856).

In the validation cohort, the radiomics signature from CET1-w
images yielded a C-index of 0.724 (95% CI: 0.544–0.904). The
radiomics signature from T2-w images yielded a C-index of 0.682
(95%CI: 0.500–0.860). The radiomics signature from jointCET1-
w and T2-w images yielded the highest C-index, which was 0.737
(95% CI: 0.549–0.924).

Table 1. Patient and tumor characteristics in the training and validation cohorts

Training cohort
(N ¼ 88)

Validation cohort
(N ¼ 30)

Gender
Male 65 (73.9%) 27 (90%)
Female 23 (26.1%) 3 (10%)

Age (years)
Median (IQR) 43 (37.75–51.00) 44 (36.25–50.75)
�40 37 (42%) 13 (43.4%)
40–50 26 (30%) 9 (30%)s
>50 25 (28%) 8 (26.6%)

Overall stage
III 55 (62.5%) 22 (73.4%)
IV 33 (37.5%) 8 (26.6%)

T stage
T1 3 (3.4%) 4 (13.4%)
T2 23 (26.1%) 3 (10%)
T3 41 (46.6%) 17 (56.6%)
T4 21 (23.9%) 6 (20%)

N stage
N0 8 (9%) 1 (3.3%)
N1 19 (21.6%) 5 (16.7%)
N2 47 (53.4%) 22 (73.3%)
N3 14 (16%) 2 (6.7%)

Histologya

WHO type I 0 0
WHO type II 3 (3.5%) 3 (10%)
WHO type III 83 (96.5%) 27 (90%)

Hemoglobin before treatment (g/L)
Median (IQR) 173.5 (142–232.5) 143.5 (134–152.5)
�182 43 (49%) 6 (20)
>182 45 (51%) 24 (80)

Platelet counts before treatment (109/L)
Median (IQR) 141.5 (126.75–185.25) 227.5 (184–296.5)
�184 23 (26.1%) 9 (30%)
>184 65 (73.9%) 21 (70%)

Follow-up time (mo)
Median (IQR) 40.5 (26–58.5) 38.5 (29–49.5)

NOTE: Data are n (%) unless otherwise indicated. No significant differenceswere
found between the training cohort and the validation cohort in terms of age,
gender, overall stage, T-stage, N-stage, histology, or follow-up time (P¼ 0.270-
0.687). Hemoglobin and platelet countswere significantly different between the
two cohorts (P ¼ 6.49�10�5 and 0.0001, respectively).
Abbreviations: IQR, inter-quartile range; type I, keratinizing; type II, nonkera-
tinizing differentiated; type III, nonkeratinizing undifferentiated.
aHistology was categorized according to the WHO Classification.
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Significant discrimination between the PFS of high-risk and
low-risk patients was observed when subgroup analyses were
performed (Fig. 3).

The value of the joint radiomics signature is complementary to
the TNM staging system in the training cohort

The traditional TNM staging system yielded a C-index of 0.514
(95% CI: 0.432–0.596). We developed a radiomics nomogram
that integrated the radiomics signature from the joint CET1-w and
T2-w images with the TNM staging system. This nomogram

showed a significant improvement over the TNM staging system
in terms of evaluating PFS (C-index: 0.761; 95% CI, 0.664–
0.858), with a P value < 2.68 � 10�9 (Fig. 4A). The nomogram
also showed good calibration (Fig. 4B).

The incremental value of the radiomics signature when added
to the clinical data in the training cohort

The clinical nomogram yielded a C-index of 0.649 (95% CI:
0.552–0.746). We created a radiomics nomogram that integrated
the radiomics signature from the joint CET1-w and T2-w images
with all clinical data, and found that it provided a C-index of
0.776 (95% CI: 0.678–0.873) and good calibration (Fig. 4C and
D). Hence, the radiomics nomogram appeared to be more accu-
rate than clinical nomogram for evaluating PFS (P < 1.60� 10�7).

Validation of the TNM staging system and nomograms
When tested in the validation cohort, the traditional TNM

staging system yielded a C-index of 0.634 (95% CI: 0.498–
0.769). The radiomics nomogram that integrated the radiomics
signature from the joint CET1-w and T2-w images with the TNM
staging system showed an improvement over the TNM staging
system alone (C-index: 0.728; 95% CI: 0.541–0.916). The cali-
bration curve for probability of PFS showed good agreement
between evaluation by nomogram and actual observation (figure
not shown).

The clinical nomogram yielded a C-index of 0.626 (95% CI:
0.438–0.813) in the validation cohort, which was improved by
adding radiomics signature (C-index: 0.724; 95% CI: 0.537–
0.912). The calibration curves showed good agreement
between nomogram-evaluated and actual survival (figure not
shown).

Association of radiomics features with clinical data
Unsupervised clustering revealed clusters of NPC patients with

similar radiomics expression patterns (Supplementary Fig. S3).
We used a heatmap to determine the association between

radiomics features and clinical data (Fig. 5). The results showed

Table 2. Radiomics feature selection results based on the cross-validation

Result category CET1-w T2-w CET1-wþT2-w

Number of selected features 3 4 8
Individual features CET1-w_5_fos_mean

(P ¼ 1.022864e-05)
T2-w_Max3D
(P ¼ 4.527813e-05)

CET1-w_5_fos_median
(P ¼ 1.022864e-05)

CET1-w_5_GLCM_correlation
(P ¼ 3.550793e-05)

T2-w_3_fos_mean
(P ¼ 1.990964e-03)

CET1-w_1_GLCM_energy
(P ¼ 1.022216e-03)

CET1-w_5_GLRLM_RP
(P ¼ 3.438792e-04)

T2-w_6_GLCM_IMC1
(P ¼ 5.970507e-06)

CET1-w_5_GLCM_correlation
(P ¼ 3.550793e-05)

T2-w_1_GLRLM_SRLGLE
(P ¼ 3.898521e-05)

CET1-w_4_GLRLM_LRHGLE
(P ¼ 1.651304e-04)

CET1-w_5_GLRLM_RP
(P ¼ 3.438792e-04)

T2-w_Max3D (P ¼ 4.527813e-05)
T2-w_3_fos_mean (P ¼ 1.990964e-03)
T2-w_4_fos_mean (P ¼ 4.369881e-03)

The best-performance feature CET1-w_5_fos_mean T2-w_6_GLCM_IMC1 CET1-w_5_GLRLM_RP

NOTE: P value for each radiomic feature associated with outcome was calculated using Cox proportional hazards regression. CET1-w ¼ contrast-enhanced T1-
weighted; T2-w¼ T2-weighted;CET1-w_4_GLRLM_LRHGLE: the LongRunHighGray Level Emphasis in the Gray-Level Run-Lengthmatrix of textural features; CET1-
w_5_fos_median: thefirst-order statistics featurewhich describes themedian value of the intensity levels; CET1-w_5_GLCM_correlation: the correlation in theGLCM
that describes the degree of similarity of thematrix elements in a row or column direction; CET1-w _5_GLRLM_RP: the Run Percentage in the Gray-Level Run-Length
matrix of textural features; T2-w_Max3D: the shape and size feature that describes the maximum three-dimensional tumor diameter in the original image; T2-
w_3_fos_mean and T2-w_4_fos_mean: the first-order statistics feature that describes themean value of the intensity levels; CET1-w_1_GLCM_energy: the energy of
thewhole element in the GLCMmatrix; T2-w_6_GLCM_IMC1: the informational measure of correlation 1 in the Gray-Level Run-Lengthmatrix of textural features; T2-
w_1_GLRLM_SRLGLE: the short Run Low Gray Level Emphasis in the Gray-Level Run-Length matrix of textural features.

Figure 2.

Rad-score for each patient in the training cohort. Green bars show scores for
patients who survived without disease progression or were censored, while red
bars show scores for those who experienced progression or died.
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significant associations between signature features CET1-
w_5_fos_median, T2-w_Max3D, and T2-w_3_fos_mean with
overall stage (P ¼ 0.002-0.007) as well as T-stage (P ¼ 0.001-
0.004). CET1-w_5_fos_median was associated with N-stage (P ¼
0.048). In contrast, no radiomics feature was significantly asso-
ciated with hemoglobin or platelet counts (for all, P > 0.05).
Interestingly, further analysis suggested that higher mean values
of CET1-w_5_fos_median, T2-w_Max3D, and T2-w_3_fos_mean
were associated with higher overall stage and T-stage (P¼ 3.16�
10�9 to 0.03). However, the mean value of CET1-w_5_ fos_
median was lower in the cases with node metastasis than in the
cases without node metastasis (P ¼ 7.49 � 10�5; Table 3).

Discussion
In the current study, we identified multiparametric MRI-based

radiomics as a new approach for individualized evaluation of PFS
before treatment in advanced NPC (stage III–IVb). To our knowl-
edge, this is the first study of MRI-based radiomics for evaluating
prognosis in advanced NPC. The radiomics signature from joint
CET1-w and T2-w images demonstrated better prognostic perfor-
mance than the radiomics signature from either CET1-w or T2-w
images alone. The radiomics signature successfully stratifiedpatients
into high-risk and low-risk groups, which were separated on the
basis of the median Rad-score. The two groups had significantly
different 3-year PFS. The radiomics nomogram outperformed both
the traditional TNM staging system and a clinical nomogram.

To develop the radiomics signature, a total of 970 candidate
featureswere reduced to a set of only eight potential descriptors by
using a LASSO logistic regression model. LASSO is suitable for
analyzing large sets of radiomics features with a relatively small
sample size, and it is designed to avoid overfitting (31, 32). The
radiomics features obtained from LASSO are generally accurate,
and the regression coefficients ofmost features are shrunk towards
zero during model fitting, making the model easier to interpret
and allowing the identification of features that are most strongly
associated with PFS (33). Moreover, LASSO allows radiomics
signature to be constructed by combining the selected features.
The radiomics signature from joint CET1-w and T2-w images
revealed adequate discrimination in both the training cohort (C-
index, 0.758) and the validation cohort (C-index, 0.701). The
field of radiomics aims to develop decision support tools. There-
fore, it involves combining radiomics data with other patient
characteristics, as available, to increase the power of the decision
support models (17, 34). We showed that radiomics features
complemented the TNM staging system, helping to provide better
prognostic ability for pretreatment PFS. This complementary
ability illustrates the clinical importance of our findings as TNM
staging is routinely used in clinical practice (35, 36).Currently, the
TNM staging system is used for risk stratification and treatment
decision making. However, when patients were stratified by
clinical disease stage, differences in PFS were evident within the
individual stages, which suggest that heterogeneity was present in
the survival outcomes.

The advanced nasopharyngeal carcinoma patients (stage III–
IVb) with shorter PFS may benefit greatly if we can perform
accurate prognosis and predict their response to an aggressive
treatment plan. In this regard, our study only focused on
patients with stage III–IVb tumors. As a future study, we will
develop a new model to include low-stage NPC patients.
Moreover, N-staging in our study showed poor prognosis value.

Note that advanced NPC patients often experienced lymph
node metastasis. In contrast, relatively few patients had lymph
node metastasis with low-stage tumors. Therefore, the N-stage
seemed not to be an adverse prognosis factor for advanced
patients. Besides, only 9% and 3% III–IVb patients with N0
stage were involved in the training cohort and validation
cohort, respectively. The small number of N0 patients would
also limit the performance of N-staging.

Our results showed that the radiomics signature performed
better than the TNM classification, not only in the training cohort,
but also in the validation cohort. Theremight be three reasons: (i)
our study was focused on advanced nasopharyngeal carcinoma
cohorts. As shown in Table 1, the involved patients were all with
clinical stage III and IV. Therefore, it was difficult for clinical
staging to predict PFS since all patients had similar stage infor-
mation; (ii) related to the first reason, our cohorts were imbalance
in T and N staging. Only 9% N0 and 3.4% T1 stage patients were
involved in the training set. Even if the clinical staging works, the
imbalance cohort would generate a great deviation when using
only clinical staging for prognosis; (iii) clinical staging reflected
tumor size (T stage), lymph node status (N stage), and metastasis
status (M stage), which were based on gross anatomy informa-
tion. They were proved to have prognosis value in clinical prac-
tices. Currently, the intratumor heterogeneity has been reported to
havepronounced effects ondiagnosis andprognosis, and thus it is
considered to be a potential prognosis factor. This view fits our
current knowledge of cancer, in which malignant lesions consist
of heterogeneous cell populations with distinct molecular and
microenvironmental differences. In contrast to traditional clinical
staging, which barely reflect the intratumor heterogeneity, the
radiomic approach extracts features from the imaging character-
istics of the entire tumor onmedical images, thus provide a robust
way to characterize the intratumor heterogeneity noninvasively.
That is the reason that the radiomics signatures performed better
than clinical staging on the patients' population selected in the
current study. Therefore, radiomics signatures can have indispens-
able prognosis value totally complementary to clinical staging.
Age, gender, body mass index, lactate dehydrogenase level in
serum, hemoglobin, platelet counts, and various other prognostic
factors have been identified and evaluated retrospectively in some
previous studies (37–39). Therefore, we devised a clinical nomo-
gram that combined available risk factors (age, gender, pretreat-
ment hemoglobin, and platelet counts) with overall stage. Our
results demonstrated that the performance of the clinical nomo-
gram could be improved by adding a radiomics signature to the
model. If additional clinical variables were included in the radio-
mics nomogram, its performance might improve further.

Segmentation is the most critical and challenging component
of radiomics because the subsequent feature data are generated
from the segmented volumes, even though many tumors have
indistinct borders (40). Compared with CT or PET/CT, MRI
provides better tissue contrast, has multiplanar capacity, and
exhibits fewer artifacts from radiation and bone beam hardening,
allowing tumor borders to be delineated more accurately (24).
Another especially challenging component of radiomics is vari-
ability in the imaging data (17). Variations in acquisition and
image reconstruction parameters can introduce changes that are
not due to underlying biologic effects (17). Recently, CT has been
the most widely used imaging modality, in consideration of its
standard-of-care images (41). However, CT is also limited by the
evolution of hardware and progress in informatics. To reduce bias
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and variance, we extracted all radiomics features from the same
MRI unit at our institution. Naturally, the use of multiparametric
magnetic resonance images would be expected to improve per-

formance. Therefore, we analyzed CET1-w and T2-w images
together, and the results confirmed our expectations by providing
the best performance.

Figure 3.

Stratified analyses were performed to estimate
progression-free survival in various subgroups,
comparing high-risk patients and low-risk
patients.
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T2-w images can detect tumor density, andCET1-w imagesmay
reflect intratumoral heterogeneity and architecture (e.g., tumor
angiogenesis). Therefore, we analyzed the relationships between
radiomics features and tumor-associated characteristics. We
observed that radiomics features CE T1-w_5_fos_median, T2-
w_3_fos_mean, and T2-w_Max3D were significantly associated
with both overall stage and T-stage. Inmany previous studies that
used IHC methods, dynamic-contrast–enhanced MRI (DCE-
MRI), or PET/CT, researchers have found that angiogenesis is
closely related to tumor invasion and metastasis, which can be
staged by TNM (42–47). Unlike the traditional methods, radio-
mics offers a noninvasive and low-cost method of providing new
insights into the associations between tumor angiogenesis and
biological behaviors. In addition, our radiomics evaluations also

showed that tumors with increased cell density (T2-w_3_fos_-
mean) and greater maximum diameters (T2-w_Max3D) may be
more likely to invade the surrounding tissues. However, we
unexpectedly found that cases with lymph node metastasis had
a lower mean value of CET1-w_5_fos_median than did cases
without lymph node metastasis. Almost all previous studies have
reported the contrary result that angiogenesis is positively corre-
lated with lymph node metastasis (48–50). The reason for this
discrepancy may be NPC patients often experienced lymph node
metastasis even in the low-stage (stage I–II). Only 9% and 3.4%
III–IVb patients were with N0 stage in the training cohort and the
validation cohort, respectively, which limited the ability of radio-
mic features to uncover the association between intensity levels in
contrast-enhanced T1-w images and lymphatic metastasis.

Figure 4.

A, A radiomics nomogram integrated the radiomics signature from joint CET1-w and T2-w images with the TNM staging system in the training cohort. B, Calibration
curve of the radiomics nomogram. The diagonal dotted line represents an ideal evaluation, while the yellow and red solid lines represent the performance
of the nomogram. Closer fit to the diagonal dotted line indicates a better evaluation. C, Adding age, gender, hemoglobin, and platelet counts to the
radiomics nomogram. D, Calibration curve of the radiomics nomogram with the addition of age, gender, hemoglobin, and platelet counts.

Zhang et al.

Clin Cancer Res; 23(15) August 1, 2017 Clinical Cancer Research4266

on February 21, 2019. © 2017 American Association for Cancer Research. clincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst March 9, 2017; DOI: 10.1158/1078-0432.CCR-16-2910 

http://clincancerres.aacrjournals.org/


However, the current study may provide some different insights
into the mechanisms of lymphatic metastasis of NPC, which
warrant future investigation.

The limitations to this study included the fact that our analysis
did not account for two-way or higher order interactions between
features. If interactions between features had been identified, the
interaction terms that were most strongly associated with the
outcome interactions would have been selected when we con-
structed the radiomics signature, and this could have improved
prognostic performance. However, uncovering the interactions of
multiple attributes is a challenging problem. On one hand, the
ability to detect multiway interactions would be underpowered
unless all multiway interactions were prespecified and explicitly
formulated in themodel. On the other hand, when the number of
possible configurations becomes very large and the sample size is
limited, it is difficult to yield reliable statistical inferences for two-
way or higher order interactions. Furthermore, we used a valida-
tion cohort that was drawn from the same institution as the

training cohort, which prevented us from investigating the gen-
eralizability of the results to other institutions and settings.
Finally, selection bias occurred when strict criteria were used
(randomization hypothesis is compromised), which may affect
themodel training. For instance,weused strict inclusion criteria in
our study to select 118 patients: (i) all patients should be in
clinical stage III and IV, which will limit the application of our
method to low-stage patients; (ii) all patients should have regular
follow-up time [every 1–3months during the first 2 years, every 6
months in years 2–5, and annually thereafter]; (iii) all patients
should use uniform imaging scanners and parameters to ensure
the reproducibility and stability of radiomics features. These
criteria introduced selection bias by removing patients with the
best prognosis (i.e., those of low stage) as well as the worst
prognosis (i.e., those were lost in follow up at all). The selection
bias thus limits our model only accurate in those patients in a
good condition and at the clinical stage III and IV. Indeed our
results clearly showed the potential of radiomics approach in the

Figure 5.

Heatmap of associations between
selected radiomics features and
clinical data. P values < 0.05 indicate
statistically associations, as
determined using t tests.

Table 3. The mean values of radiomics features associated with tumor stages

Stage CET1-w_5_fos_median P T2-w_3_fos_mean P T2-w_Max3D P

Overall stage
III 130.67 � 23.01 0.0319 122.36 � 1.01 0.0002 117.53 � 4.52 0.0019
IV 144.49 � 26.40 122.91 � 0.90 119.98 � 3.92

T stage
T1 114.57 � 5.26 2.53�10�8 121.66 � 1.17 3.16�10�9 112.27 � 15.18 4.21�10�4

T2 117.13 � 4.79 122.25 � 1.03 127.84 � 18.50
T3 118.39 � 3.84 122.55 � 0.92 135.52 � 23.14
T4 120.54 � 4.29 123.08 � 0.86 148.73 � 29.58

N stage
N0 120.03 � 4.59 0.0014 — — — —

N1–3 117.74 � 4.53 — —

NOTE: Values are expressed as means � SDs.
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prognosis of NPC patients. As a future study, we will increase the
patient sample size by including those were not included in the
current study. Moreover, we should include patients from differ-
ent scanners and with various imaging parameters, and develop
normalization method to improve the radiomics model.

In summary, the current study developed and validated multi-
parametric MRI-based radiomics as a convenient approach to
evaluatingPFSpretreatment inpatientswith advancedNPC(stage
III–IVb). The radiomics signature that we presented added value
to both the TNM staging system and clinical data as method of
providing individualized evaluation of PFS. Prognostic models
based on quantitative radiomics could potentially be useful for
precisionmedicine andaffect the treatment strategies that are used
for patients with NPC.

Radiomics can be complementary to other omics such as
proteomics and genomics. Radiomics focuses onmedical imaging
of the entire tumor and perform diagnosis and prognosis of the
tumor with masses of quantitative imaging features. Proteomics
studies proteins in tissue of the tumor or other organs to find the
change of protein structure and function in the diseases. Geno-
mics discovers andnotes the gene sequences to study function and
structure of genomes of the diseases. Contrary to radiomics that
determines the tumor features in the macroscopic scale, proteo-
mics and genomics determine the feature of tumor in the micro-
scopic scale. Therefore, it can be anticipated that, in the future, the
combination of several omics would be the best scheme for
disease diagnosis and treatment.
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