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a b s t r a c t 

In this paper, we focus on developing adaptive optimal regulators for a class of continuous-time nonlin- 

ear dynamical systems through an improved neural learning mechanism. The main objective lies in that 

establishing an additional stabilizing term to reinforce the traditional training process of the critic neural 

network, so that to reduce the requirement with respect to the initial stabilizing control, and therefore, 

bring in an obvious convenience to the adaptive-critic-based learning control implementation. It is exhib- 

ited that by employing the novel updating rule, the adaptive optimal control law can be obtained with an 

excellent approximation property. The closed-loop system is constructed and its stability issue is handled 

by considering the improved learning criterion. Experimental simulations are also conducted to verify 

the efficient performance of the present design method, especially the major role that the stabilizing 

term performed. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

As is known, linear optimal regulator design has been studied

y control scientists and engineers for many years. For nonlinear

ystems, the optimal control problem always leads to cope with

he nonlinear Hamilton–Jacobi–Bellman (HJB) equation, which is

ntractable to solve in general cases. Fortunately, a series of iter-

tive methods have been established to tackle the optimal control

roblems approximately [1–3] . For adaptive/approximate dynamic

rogramming (ADP) [3–9] , the adaptive critic is taken as the ba-

ic structure and neural networks are often involved to serve as

he function approximator. Generally speaking, employing the ADP

ethod always results in approximate or adaptive optimal feed-

ack controllers. Note that optimality and adaptivity are two im-

ortant criteria of control theory and also possess grea t signifi-

ance to control engineering, such as [10–16] . Hence, this kind of
� This work was supported in part by National Natural Science Foundation of 

hina under Grants U1501251 , 61533017 , and 61233001 , in part by Beijing Natu- 
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daptive-critic-based optimal control design has great potentials in

arious control applications. 

In the last decade, the methodology of ADP has been widely

sed for optimal control of discrete-time systems, such as

17–24] and continuous-time systems, like [25–32] . Heydari and

alakrishnan [18] investigated finite-horizon nonlinear optimal

ontrol with input constraints by adopting single network adaptive

ritic designs. Song et al. [19] proposed a novel ADP algorithm

o solve the nearly optimal finite-horizon control problem for

 class of deterministic nonaffine nonlinear time-delay systems.

u et al. [21] studied the approximate optimal tracking control

esign for a class of discrete-time nonlinear systems based on the

terative globalized dual heuristic programming technique. Zhao

t al. [22] gave a model-free optimal control method for optimal

ontrol of affine nonlinear systems without using the dynamics

nformation. Qin et al. [23] studied the neural-network-based

elf-learning H ∞ 

control design for discrete-time input-affine non-

inear systems in light of ADP method. Zhong et al. [24] developed

he theoretical basis of the new goal representation heuristic dy-

amic programming structure for general discrete-time nonlinear

ystems. Vamvoudakis and Lewis [25] proposed an important

ctor-critic algorithm to attain the continuous-time infinite hori-

on nonlinear optimal regulation design. Zhang et al. [26] studied

he approximate optimal control for non-zero-sum differential

ames with continuous-time nonlinear dynamics based on single
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network adaptive critics. Modares and Lewis [27] proposed a linear

quadratic trajectory tracking control method for partially-unknown

continuous-time systems based on the reinforcement learning

technique. Na and Herrmann [28] proposed an online adaptive and

approximate optimal trajectory tracking approach with a simpli-

fied dual approximation architecture for continuous-time unknown

nonlinear controlled plants. Bian et al. [29] studied decentralized

adaptive optimal control of a class of large-scale systems and its

application toward the power systems. Jiang and Jiang [30] orig-

inally established the global ADP structure for continuous-time

nonlinear systems. Luo et al. [31] provided the reinforcement

learning solution for HJB equation with respect to the constrained

optimal control problems. Gao and Jiang [32] applied ADP to

design optimal output regulation of linear systems adaptively. This

greatly promotes the development of the adaptive critic control

designs of complex nonlinear systems. However, the traditional

adaptive critic control design always depends on the choice of an

initial stabilizing control, which is pretty difficult to find out in

control practices. Actually, requiring an initial stabilizing control

is a common property of [25,27] , which weakens the application

aspect of the adaptive-critic-based design to a certain extent, and

correspondingly, motivates our research greatly. This paper focuses

on developing nonlinear adaptive optimal regulators through an

improved neural learning mechanism. The major contribution lies

in that it constructs a simple reinforced structure to achieve the

nonlinear optimal regulation design adaptively, without requiring

the initial stabilizing controller. Moreover, the stability of the

closed-loop system including the additional stabilizing term is

presented with a simpler proof process. Finally, the important

role that the stabilizing term plays is also verified by simulation

study in detail. This can be regarded as an improvement to the

traditional adaptive critic designs, like [25,27] . 

The rest of the current paper is organized as follows. The stud-

ied problem is described briefly in Section 2 . The improved adap-

tive critic design technique of nonlinear adaptive optimal control

is developed with closed-loop stability analysis in Section 3 . The

simulation studies and the concluding remarks are presented in

Section 4 and Section 5 , respectively. Incidentally, the main nota-

tions used in the paper are listed as follows. R stands for the set

of all real numbers. R 

n is the Euclidean space of all n -dimensional

real vectors. R 

n ×m is the space of all n × m real matrices. ‖·‖ de-

notes the vector norm of a vector in R 

n or the matrix norm of a

matrix in R 

n ×m . I n represents the n × n identity matrix. λmax ( ·)
and λmin ( ·) calculate the maximal and minimal eigenvalues of a

matrix, respectively. Let � be a compact subset of R 

n and A (�)

be the set of admissible control laws on �. The superscript “T ” is

taken for representing the transpose operation and ∇( ·) � ∂ ( ·)/ ∂ x is
employed to denote the gradient operator. 

2. Problem statement 

In this paper, we study a class of continuous-time nonlinear

systems with input-affine form given by 

˙ x (t) = f (x (t)) + g(x (t )) u (t ) , (1)

where x (t) ∈ � ⊂ R 

n is the state variable, u (t) ∈ �u ⊂ R 

m is the

control variable, and the system functions f (·) ∈ R 

n and g(·) ∈
R 

n ×m are known matrices and are differentiable in the arguments

satisfying f (0) = 0 . In this paper, we let the initial state at t = 0 be

x (0) = x 0 and let x = 0 be the equilibrium point. In addition, we

assume that f ( x ) is Lipschitz continuous on a set � in R 

n which

contains the origin and the nonlinear plant (1) is controllable. 

In order to design the optimal feedback control law u ( x ), we let

Q ( x ) > 0 when x � = 0 and Q(0) = 0 , set R as a positive definite

matrix with appropriate dimension, take 

(x (τ ) , u (τ )) = Q(x (τ )) + u 

T (τ ) Ru (τ ) 
o stand for the utility function, and then define the infinite hori-

on cost function as 

(x (t) , u ) = 

∫ ∞ 

t 

U(x (τ ) , u (τ )) d τ. (2)

otice here the cost J ( x ( t ), u ) is often written as J ( x ( t )) or J ( x ) for

implicity. For an admissible control law u ∈ A (�) , if the cost

unction (2) is continuously differentiable, then the related in-

nitesimal version is the nonlinear Lyapunov equation 

 = U(x, u ) + (∇J(x )) T [ f (x ) + g(x ) u ] 

ith J(0) = 0 . Next, we define the Hamiltonian of system (1) as 

(x, u, ∇J(x )) = U(x, u ) + (∇J(x )) T [ f (x ) + g(x ) u ] . 

ccording to Bellman’s optimality principle, the optimal cost func-

ion J ∗( x ) 

 

∗(x ) = min 

u ∈ A (�) 

∫ ∞ 

t 

U(x (τ ) , u (τ )) d τ, 

akes sure that the so-called HJB equation 

in 

u 
H(x, u, ∇J ∗(x )) = 0 

olds. Similar as [25,30] , the optimal feedback control law is com-

uted by 

 

∗(x ) = −1 

2 

R 

−1 g T (x ) ∇J ∗(x ) . (3)

oticing the optimal control expression (3) , the HJB equation is in

act 

 = U(x, u 

∗) + (∇J ∗(x )) T [ f (x ) + g(x ) u 

∗] 

= Q(x ) + (∇J ∗(x )) T f (x ) 

− 1 

4 

(∇J ∗(x )) T g(x ) R 

−1 g T (x ) ∇J ∗(x ) , J ∗(0) = 0 . (4)

q. (4) is actually H(x, u ∗, ∇J ∗(x )) = 0 , which is difficult to get

he solution theoretically. In other words, it is clearly not easy to

btain the optimal control law (3) for general nonlinear systems,

hich inspires us to effectively design a class of approximate opti-

al control schemes. 

. Approximate optimal control design and its stability 

During the approximate control algorithm implementation, the

dea of adaptive critic is adopted with neural network approxima-

ion. Using the universal approximation property, the optimal cost

unction J ∗( x ) can be expressed by a neural network with a single

idden layer on a compact set � as 

 

∗(x ) = ω 

T 
c σc (x ) + ε c (x ) , (5)

here ω c ∈ R 

l c is the ideal weight vector that is upper bounded,

 c is the number of hidden neurons, σc (x ) ∈ R 

l c is the activation

unction, and ε c (x ) ∈ R is the reconstruction error. Then, the gradi-

nt vector is 

J ∗(x ) = (∇ σc (x )) T ω c + ∇ ε c (x ) . 

oticing the ideal weight is unknown in advance, a critic network

s developed to approximate the optimal cost function as 

ˆ 
 

∗(x ) = ˆ ω 

T 
c σc (x ) , (6)

here ˆ ω c ∈ R 

l c denotes the estimated weight vector. Similarly, we

erive the gradient vector as 

 ̂

 J ∗(x ) = (∇σc (x )) T ˆ ω c . 

onsidering the feedback formulation (3) and the neural network

xpression (5) , the optimal control law can be rewritten as 

 

∗(x ) = −1 

R 

−1 g T (x ) 
[
(∇σc (x )) T ω c + ∇ε c (x ) 

]
. (7)
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sing the critic neural network (6) , the approximate optimal feed-

ack control function is 

ˆ 
 

∗(x ) = −1 

2 

R 

−1 g T (x )(∇σc (x )) T ˆ ω c . (8) 

ased on the neural network formulation, the approximate version

f the Hamiltonian is expressed by 

ˆ 
 (x, ˆ u 

∗(x ) , ∇ ̂

 J ∗(x )) = U(x, ˆ u 

∗(x )) + ˆ ω 

T 
c ∇σc (x )[ f (x ) + g(x ) ̂  u 

∗(x )] .
(9) 

y considering the fact H(x, u ∗, ∇J ∗(x )) = 0 , we have e c = 

ˆ H (x,

ˆ  ∗(x ) , ∇ ̂

 J ∗(x )) and then find that 

∂e c 

∂ ̂  ω c 
= ∇σc (x )[ f (x ) + g(x ) ̂  u 

∗(x )] � φ, (10) 

here φ ∈ R 

l c and the set containing the elements φ1 , φ2 , . . . , φl c 

s linearly independent. 

Now, we show how to train the critic network and design the

eight vector ˆ ω c to minimize the objective function E c = 0 . 5 e 2 c . Ac-

ording to (9) and (10) , we can employ the normalized steepest

escent algorithm 

´̂
  c = −αc 

1 

(1 + φT φ) 2 

(
∂E c 

∂ ̂  ω c 

)
= −αc 

φ

(1 + φT φ) 2 
e c 

o adjust the weight vector, where αc > 0 is the learning rate.

ote that in this traditional design technique, we should choose

 special weight vector to create the initial stabilizing con-

rol law and then start the training process. Otherwise, an un-

table control may result in the instability of the closed-loop

ystem. 

Recently, a new near-optimal control algorithm was proposed in

33] and then applied for solving several control design problems

34,35] . Among that, an ADP-based guaranteed cost neural tracking

ontrol algorithm for a class of continuous-time uncertain nonlin-

ar dynamics was developed in [35] . However, the stability proof of

he above results is quite complicated. Inspired by Dierks and Ja-

annathan [33–35] , we introduce an additional Lyapunov function

o improve the critic learning mechanism and adopt it to facilitate

pdating the critic weight vector with a novel fashion. Similar as

34,35] , we make the following assumption. 

ssumption 1. Consider system (1) with the cost function (2) and

ts closed-loop form with the action of the optimal feedback con-

rol (7) . Let J s ( x ) be a continuously differentiable Lyapunov function

andidate that satisfies 

˙ 
 s (x ) = (∇J s (x )) T [ f (x ) + g(x ) u 

∗(x )] < 0 . 

hen, there exists a positive definite matrix � ∈ R 

n ×n such that 

(∇J s (x )) T [ f (x ) + g(x ) u 

∗(x )] = −(∇J s (x )) T �∇J s (x ) 

≤ −λmin (�) ‖∇J s (x ) ‖ 

2 

s true. 

emark 1. This is a common assumption which was used in the

iterature, for instance [26,33–35] , in order to facilitate designing

he control law and discussing the closed-loop stability. During the

mplementation, J s ( x ) can be obtained by suitably selecting a poly-

omial with respect to the state vector, such as J s (x ) = 0 . 5 x T x . It is

n experimental choice incorporating engineering experience and

ntuition after considering a tradeoff between control accuracy and

omputation complexity. 

When applying the approximate optimal control law (8) to the

ontrolled plant and for the purpose of excluding the case that

he closed-loop system is unstable, we can introduce an addi-

ional term to reinforce the training process by modulating the
ime derivative of J s ( x ) along the negative gradient direction with

espect to the weight vector ˆ ω c as follows: 

∂ 
[
(∇J s (x )) T ( f (x ) + g(x ) ̂  u 

∗(x )) 
]

∂ ̂  ω c 

 −
(
∂ ̂  u 

∗(x ) 

∂ ̂  ω c 

)T ∂ 
[
(∇J s (x )) T ( f (x ) + g(x ) ̂  u 

∗(x )) 
]

∂ ̂  u 

∗(x ) 

 

1 

2 

∇σc (x ) g(x ) R 

−1 g T (x ) ∇J s (x ) . 

herefore, the novel critic learning rule developed in this paper is

ormulated as 

˙ ˆ  c = −αc 
φ

(1 + φT φ) 2 
e c + 

1 

2 

αs ∇σc (x ) g(x ) R 

−1 g T (x ) ∇J s (x ) , (11) 

here αs > 0 is the designed learning constant. 

In what follows, we focus on building the error dynamics with

espect to the critic network and investigating its stability. We de-

ne the error vector between the ideal weight and the estimated

alue as ˜ ω c = ω c − ˆ ω c and then find that ˙ ˜ ω c = − ˙ ˆ ω c . By using the

uning rule (11) and introducing two new variables 

1 = 

φ

(1 + φT φ) 
∈ R 

l c , φ2 = 1 + φT φ, 

e derive that the critic error dynamics can be simply formulated

s 

˙ ˜  c = − αc φ1 φ
T 
1 ˜ ω c + αc 

φ1 

φ2 

e cH − 1 

2 

αs ∇σc (x ) g(x ) R 

−1 g T (x ) ∇J s (x ) , 

(12) 

here the term 

 cH = −(∇ε c (x )) T [ f (x ) + g(x ) ̂  u 

∗(x )] 

tands for the residual error arisen in the neural-network-based

pproximation process. 

For the adaptive critic design, the persistence of excitation as-

umption is required since we want to identify the parameter of

he critic network to approximate the optimal cost function. Ac-

ording to Vamvoudakis and Lewis [25] , the persistence of excita-

ion condition ensures that λmin (φ1 φ
T 
1 
) > 0 , which is significant to

onduct the closed-loop stability analysis in what follows. 

Now, the closed-loop stability incorporating the novel learning

echanism is discussed. Before proceeding, the following assump-

ion is needed, as usually proposed in literature as [26,35] . 

ssumption 2. The control function matrix g ( x ) is upper bounded

uch that ‖ g ( x ) ‖ ≤ λg , where λg is a positive constant. On the

ompact set �, the terms ∇ σ c ( x ), ∇ εc ( x ), and e cH are all upper

ounded such that ‖∇σ c ( x ) ‖ ≤ λσ , ‖∇εc ( x ) ‖ ≤ λε , and | e cH | ≤ λe ,

here λσ , λε , and λe are positive constants. 

heorem 1. For the nonlinear system (1) , we suppose that

ssumption 2 holds. The approximate optimal control law is given by

8) , where the constructed critic network is tuned by adopting the

mproved rule given as (11) . Then, the closed-loop system state and

he critic weight estimation error satisfy uniformly ultimately bounded

tability. 

roof. Let us choose a Lyapunov function candidate formulated

s 

 c (t) = L c1 (t) + L c2 (t) , 

here 

 c1 (t) = 

1 

2 

˜ ω 

T 
c (t) ̃  ω c (t) , L c2 (t) = αs J s (x (t)) . 

aking the time derivative to the above Lyapunov function and ac-

ording to (12) , we have 
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(  
˙ L c1 (t) = −αc ̃  ω 

T 
c φ1 φ

T 
1 ˜ ω c + αc 

˜ ω 

T 
c φ1 

φ2 

e cH − 1 

2 

αs ̃  ω 

T 
c ∇σc (x ) g(x ) R 

−1 

×g T (x ) ∇J s (x ) . (13)

Besides, the derivative of L c 2 ( t ) is 

˙ L c2 (t) = αs (∇J s (x )) T [ f (x ) + g(x ) ̂  u 

∗(x )] . (14)

For ˙ L c1 (t) , we apply the Young’s inequality to the second term

of (13) , i.e., 

αc 
˜ ω 

T 
c φ1 

φ2 

e cH ≤ 1 

2 

(
˜ ω 

T 
c φ1 φ

T 
1 ˜ ω c + α2 

c 

e 2 cH 

φ2 
2 

)
, 

recall Assumption 2 and the fact φ2 ≥ 1, and then derive that 

˙ L c1 (t) ≤ −
(
αc − 1 

2 

)
λmin (φ1 φ

T 
1 ) ‖ ̃  ω c ‖ 

2 + 

1 

2 

α2 
c λ

2 
e 

− 1 

2 

αs ̃  ω 

T 
c ∇σc (x ) g(x ) R 

−1 g T (x ) ∇J s (x ) . (15)

Substituting ˜ ω c = ω c − ˆ ω c to the last term of (15) , we have 

˙ L c1 (t) ≤ −
(
αc − 1 

2 

)
λmin (φ1 φ

T 
1 ) ‖ ̃  ω c ‖ 

2 + 

1 

2 

α2 
c λ

2 
e 

− 1 

2 

αs (∇J s (x )) T g(x ) R 

−1 g T (x )(∇σc (x )) T ω c 

− αs (∇J s (x )) T g(x ) ̂  u 

∗(x ) . (16)

By combining (14) and (16) , we can obtain that the overall time

derivative of L c ( t ) is 

˙ L c (t) 

≤ −
[ (

αc − 1 

2 

)
λmin (φ1 φ

T 
1 ) − λ2 

g λ
2 
σ

] 
‖ ̃  ω c ‖ 

2 + λ2 
g λ

2 
ε + 

1 

2 

α2 
c λ

2 
e 

+ αs (∇J s (x )) T f (x ) − 1 

2 

αs (∇J s (x )) T g(x ) R 

−1 g T (x )(∇σc (x )) T ω c .

(17)

Recalling the optimal control law in (7) , we find that (17) be-

comes 

˙ L c (t) ≤ −
[ (

αc − 1 

2 

)
λmin (φ1 φ

T 
1 ) − λ2 

g λ
2 
σ

] 
‖ ̃  ω c ‖ 

2 + λ2 
g λ

2 
ε + 

1 

2 

α2 
c λ

2 
e 

+ αs (∇J s (x )) T [ f (x ) + g(x ) u 

∗(x )] 

+ 

1 

2 

αs (∇J s (x )) T g(x ) R 

−1 g T (x ) ∇ε c (x ) . (18)

In light of Assumptions 1 and 2 , it follows from (18) that 

˙ L c (t) ≤ −
[ (

αc − 1 

2 

)
λmin (φ1 φ

T 
1 ) − λ2 

g λ
2 
σ

] 
‖ ̃  ω c ‖ 

2 + λ2 
g λ

2 
ε + 

1 

2 

α2 
c λ

2
e 

− αs λmin (�) ‖∇J s (x ) ‖ 

2 + 

1 

2 

αs λ
2 
g λε ‖ R 

−1 ‖‖∇J s (x ) ‖ . (19)

Performing some basic mathematical operations, (19) can be writ-

ten as 

˙ L c (t) ≤ −
[ (

αc − 1 

2 

)
λmin (φ1 φ

T 
1 ) − λ2 

g λ
2 
σ

] 
‖ ̃  ω c ‖ 

2 

+ λ� − αs λmin (�) 
[ 
‖∇J s (x ) ‖ − 1 

4 λmin (�) 
λ2 

g λε ‖ R 

−1 ‖ 

] 2 
, 

where the constant term is denoted by 

λ� = λ2 
g λ

2 
ε + 

1 

2 

α2 
c λ

2 
e + 

1 

16 λmin (�) 
αs λ

4 
g λ

2 
ε ‖ R 

−1 ‖ 

2 . 

This comes to a conclusion that, if the inequality 

‖ ̃  ω c ‖ > 

√ 

2 λ�

(2 αc − 1) λmin (φ1 φT 
1 
) − 2 λ2 

g λ2 
σ

� B ˜ ω c 
r 

∇J s (x ) ‖ > 

1 

4 λmin (�) 
λ2 

g λε ‖ R 

−1 ‖ + 

√ 

λ�

αs λmin (�) 
� B J sx 

olds, we can accomplish the goal of ˙ L c (t) < 0 . Note that J s ( x ) is

elected as a polynomial and according to the standard Lyapunov

xtension theorem [36] , we further come to the result that the sys-

em state x and the critic weight error ˜ ω c are uniformly ultimately

ounded. This is the end of the proof. �

emark 2. According to Theorem 1 , we observe that the critic

eight error ˜ ω c is upper bounded by a finite constant such as

 ̃  ω c ‖ ≤ B ˜ ω c . Then, according to (7) and (8) , we can clearly find

hat 

 u 

∗(x ) − ˆ u 

∗(x ) ‖ = 

1 

2 

∥∥R 

−1 g T (x ) 
[
(∇σc (x )) T ˜ ω c + ∇ε c (x ) 

]∥∥
≤ 1 

2 

‖ R 

−1 ‖ λg (λσ B ˜ ω c + λε ) � B u ∗ , 

hich implies that, the approximate optimal control ˆ u ∗(x ) con-

erges to a neighborhood of its optimal value u ∗( x ) with a finite

ound B u ∗ , where B u ∗ is a positive constant. 

. Simulation verification 

In this section, some experimental simulations are conducted

o display the effectiveness of the improved adaptive optimal con-

rol method. Consider a continuous-time nonlinear system with

he following form: 

˙ 
 = 

[
−x 1 + x 2 

−0 . 5 x 1 − 0 . 5 x 2 
[
1 − ( cos (2 x 1 ) + 2) 2 

]] + 

[
0 

cos (2 x 1 ) + 2 

]
u, 

(20)

here x = [ x 1 , x 2 ] 
T , we aim to derive a feedback control law u ( x )

o minimize the infinite horizon cost function given by 

(x 0 ) = 

∫ ∞ 

0 

{
Q(x ) + u 

T Ru 

}
d τ

ith Q(x ) = x T x and R = I. 

We adopt the improved adaptive control algorithm to cope with

he optimal regulation problem, where a critic network should be

uilt to approximate the optimal cost function. We denote the

eight variable of the neural network as ˆ ω c = [ ̂  ω c1 , ˆ ω c2 , ˆ ω c3 ] 
T and

hoose the activation function as σc (x ) = [ x 2 
1 
, x 2 

2 
, x 1 x 2 ] 

T . Addition-

lly, we set the basic learning rate of the neural network as αc = 5

nd select the initial state vector of the controlled nonlinear plant

e x 0 = [1 , −1] T . 

During the implement process of the improved neural learn-

ng algorithm, we bring in a probing noise to guarantee the

ersistence of excitation condition. The system state must be per-

istently excited long enough so as to guarantee the constructed

ritic network to learn the optimal cost and also to ensure us to

btain the optimal control law as accurately as possible. For keep-

ng the stability property, we introduce the additional stabilizing

erm and update the weight vector according to the improved

earning rule (11) , where J s ( x ) is chosen as J s (x ) = 0 . 5 x T x . When

electing αs = 0 . 001 , the weight of the critic network converges

o [0 . 4975 , 1 . 0013 , 0 . 0014] T as shown in Fig. 1 . Obviously, we

ee that the convergence of the weight elements has occurred

t 550 s, so that the probing signal can be turned off after that.

he evolution of the corresponding state trajectory is depicted in

ig. 2 , which displays the adjustment trend in the neural network

earning session. 

Using the above converged weight and according to (6) and

8) , the approximate optimal cost function and the approximate
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Fig. 1. Convergence of the weight vector when setting αs = 0 . 001 . 

Fig. 2. State trajectories in the learning session. 
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Fig. 3. 3D view of the approximation error of the cost function. 

Fig. 4. 3D view of the approximation error of the control input. 
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[  

a  
ptimal control law can be expressed by 

ˆ 
 

∗(x ) = 

[ 

0 . 4975 

1 . 0013 

0 . 0014 

] T 
⎡ 

⎣ 

x 2 1 

x 2 2 

x 1 x 2 

⎤ 

⎦ 

nd 

ˆ 
 

∗(x ) = −1 

2 

R 

−1 

[
0 

cos (2 x 1 ) + 2 

]T 
[ 

2 x 1 0 

0 2 x 2 
x 2 x 1 

] T [ 

0 . 4975 

1 . 0013 

0 . 0014 

] 

, 

espectively. 

For the controlled nonlinear system with the given special

orm, using the similar strategy given in [25] , the optimal cost

unction as well as the optimal control law are J ∗(x ) = 0 . 5 x 2 1 + x 2 2 
nd u ∗(x ) = −[ cos (2 x 1 ) + 2] x 2 , respectively. In this sense, the op-

imal weight vector should be [0 . 5 , 1 , 0] T . Hence, the converged

eight [0 . 4975 , 1 . 0013 , 0 . 0014] T possesses an excellent approxi-

ation ability. Moreover, we can plot the error illustration be-

ween the optimal cost and the approximate one as indicated in

ig. 3 . Similarly, the error of the optimal control law compared

ith the approximate state feedback law is exhibited in Fig. 4 . We
an observe that the two approximation errors are pretty close to

ero, which shows a satisfying approximate ability of the neural-

etwork-based learning algorithm. 

For further showing the action of the stabilizing term, we

hoose different parameters to observe the convergence process

f the critic weight vector. When we set αs = 0 . 01 and still

se J s (x ) = 0 . 5 x T x, the weight of the critic network gradually

onverges to [0 . 4763 , 1 . 0133 , 0 . 0130] T as shown in Fig. 5 . If we

ontinue to enlarge this parameter, the convergence ability be-

omes bad. For instance, when choosing αs = 0 . 1 and using J s (x ) =
 . 5 x T x, the weight vector of the critic network converges to

0 . 2656 , 1 . 1288 , 0 . 1057] T , which is exhibited in Fig. 6 . Although

he weight vectors of Figs. 1, 5 , and 6 converge to different val-

es, there exists a common property, i.e., the weights are all mod-

lated from a zero vector. This illustrates the fact that the initial

tabilizing control law is indeed not required under the improved

daptive critic control design. 

The state curves of the first 20 s with respect to the above

our cases are illustrated in Fig. 7 . Therein, the four curves show

he state trajectories obtained by the action of the four different

ontrol laws. The solid line represents the state curve by apply-

ng the approximate optimal control ˆ u ∗ derived by the converged

eight [0 . 4975 , 1 . 0013 , 0 . 0014] T . The dash line stands for the state

urve by employing the optimal control u ∗ with the ideal weight

0 . 5 , 1 , 0] T . The dash-dot line presents the state curve by using the

pproximate optimal control ˆ u 1 derived from the weight vector
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Fig. 5. Convergence of the weight vector when setting αs = 0 . 01 . 

Fig. 6. Convergence of the weight vector when setting αs = 0 . 1 . 

Fig. 7. State trajectories by adopting four difference control laws. 

Fig. 8. Trajectories obtained from the optimal control law and approximate optimal 

control when using αs = 0 . 001 . 

Fig. 9. State trajectories possessing divergent property without using the stabilizing 

term. 
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0 . 4763 , 1 . 0133 , 0 . 0130] T . At last, the dot line shows the state curve

y adopting the approximate optimal control ˆ u 2 obtained with the

eight vector [0 . 2656 , 1 . 1288 , 0 . 1057] T , which clearly, does not

ave satisfying performance. 

From these comparison results, we prove that the weight vec-

or obtained by using αs = 0 . 001 holds the best convergence trend

mong the three approximate values. The corresponding state tra-

ectory has almost the same evolution as the curve derived by

he optimal control law u ∗( x ). Besides, the optimal control and

pproximate optimal control of the first 20 s when using αs =
 . 001 are shown in Fig. 8 . These two trajectories are also nearly

he same with each other. Therefore, we come to a conclusion

hat αs = 0 . 001 is a very suitable choice of this experimental

xample. 

Finally, we show the simulation result of removing the ad-

itional stabilizing term, i.e., setting αs = 0 . The state trajectory

ossesses divergent property quickly as time goes on, which is

isplayed in Fig. 9 . It means that, the approximate state feedback
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9  
erived from the traditional learning algorithm is unable to control

he plant expectedly, which firmly demonstrates the importance

f the stabilizing term. However, we can conclude from the

imulation process that the parameter related to the stabilizing

erm should not be chosen too large as well. Consequently, it is

 parameter that must be selected properly during the adaptive

ontrol implementation. It should not be vanished completely

nd also is undesirable to set too large. The engineering experi-

nce is required and is also constructive to achieve a satisfying

ption. 

All the aforementioned simulation results verify the effective-

ess of the improved adaptive optimal feedback control strategy

erived in this paper. Incidentally, the simulation plant (20) just

epresents a few nonlinear dynamical systems, where the optimal

ontrol law can be obtained only for the comparison purpose. Ac-

ually, the present method is particularly beneficial to design adap-

ive optimal control for nonlinear systems with more general form.

n such situation, it is difficult to find optimal control laws in ad-

ance, hence it is considerably important to derive approximate

and adaptive) optimal regulators. 

. Conclusions 

The adaptive optimal state feedback control design of nonlin-

ar dynamical systems is studied with an improved adaptive critic

tructure. The approximate optimal control law is derived by train-

ng a critic network based on the new learning rule. The stabil-

ty proof of the closed-loop system and the experimental veri-

cation of dynamical systems are carried out. The future work

ontains how to reduce the requirement with respect to the sys-

em dynamics, and then to develop more advanced adaptive op-

imal control techniques for general nonlinear systems (e.g., un-

ertain nonlinear systems) through the improved neural learning

echanism. 
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