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Abstract—By employing neural network approximation
architecture, the nonlinear discounted optimal regulation
is handled under event-driven adaptive critic framework.
The main idea lies in adopting an improved learning algo-
rithm, so that the event-driven discounted optimal control
law can be derived via training a neural network. The stabil-
ity guarantee and simulation illustration are also included.
It is highlighted that the initial stabilizing control policy is
not required during the implementation process with the
combined learning rule. Moreover, the closed-loop system
is formulated as an impulsive model. Then, the related sta-
bility issue is addressed by using the Lyapunov approach.
The simulation studies, including an application to a power
system, are also conducted to verify the effectiveness of
the present design method.

Index Terms—Adaptive/approximate dynamic program-
ming, approximation, discount factor, event-driven control,
neural networks, optimal regulation, power system.

I. INTRODUCTION

THERE exists a severe difficulty called the “curse of dimen-
sionality” when solving the Hamilton–Jacobi–Bellman

equation during nonlinear optimal regulation design. Hence,
a series of iterative methods have been developed to tackle
the optimal control problems. Among them, neural networks
have served as an important function approximation archi-
tecture to perform the iterative calculation. In fact, neural
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networks are widely adopted to perform learning and ap-
proximation abilities for practical feedback stabilization prob-
lems [1]–[5], especially for optimal control design [5]. Re-
cently, a significant breakthrough has been made in adaptive
boundary control design and stability analysis for infinite di-
mensional systems with constraints [2], [3]. Based on neural
networks, adaptive/approximate dynamic programming [6], [7]
is regarded as a key technique to design optimal controllers
adaptively and forward-in-time. In the last decade, extensive
developments of adaptive/approximate dynamic programming
have been achieved in aspect of optimal control for discrete-time
systems [8]–[12] and continuous-time systems [13]–[17]. For
example, Modares and Lewis [14] studied the linear quadratic
tracking control with discounted cost function of partially un-
known continuous-time systems based on the reinforcement
learning technique. One also has observed the extensions of
regulation design to various intelligent control strategies for
complex systems, such as decentralized control [18], consen-
sus control [19], H∞ control [20], and tracking control [21].
However, the aforementioned results are mainly obtained based
on time-driven design, which would inevitably cause frequent
adjustments of the actuator state and might result in serious en-
ergy consumption. Thus, conducting time/event transformation
to achieve event-driven design has become a new avenue for the
feedback control community.

With the rapid development of network-based systems, more
and more control loops are closed through some communication
media. The increasing interest in saving the computational load
of networked control systems results in an extensive attention
with respect to the event-triggering mechanism. Under the gen-
eral framework of event-driven approaches, the actuators are
updated only when certain conditions are violated to guarantee
both stability performance and control efficiency of the target
plants. Recently, the event-driven adaptive critic control has pro-
vided a new channel to implement nonlinear intelligent optimal
stabilization [22]–[26]. For example, Sahoo et al. [22] presented
a novel approximation-based event-triggered control scheme
of multi-input multioutput unknown nonlinear continuous-time
systems in affine form. Vamvoudakis et al. [23] proposed an
event-driven tracking control algorithm for nonlinear systems
with an infinite horizon discounted cost function. Under the
new framework, the designed controller is only updated when
an event is triggered, thereby reducing the computational burden
of two processes including neural network learning and adaptive
optimal control.
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Nevertheless, to the best of our knowledge, the existing work
of event-based adaptive critic designs is mainly conducted
for optimal regulation [24] and robust H∞ control [25], [26]
with undiscounted cost function. Besides, an initial stabilizing
control policy is a common requirement of the literature
[23]–[26], which narrows the application of event-based design
to a certain extent. Motivated by the above consideration and
the results of [27]–[29], in this paper, the authors aim at using
the neural network approximator to derive the event-based
nonlinear discounted optimal control law without depending
on the special initial condition. In summary, it improves the
previous results [13], [15]–[17], [22]–[26], [28] in terms of
introducing the discounted cost function and reinforcing the
learning mechanism, under an event-based environment. The
rest of this paper is organized as follows. A brief description of
the nonlinear discounted optimal control problem is provided
in Section II. Neural network approximation for event-based
nonlinear discounted optimal control is developed with sta-
bility analysis in Section III. The application studies and the
concluding remarks are presented in Sections IV and V.

A list of notations used in the paper is given. R represents
the set of all real numbers. Rn is the Euclidean space of all
n-dimensional real vectors. Rn×m is the space of all n×m real
matrices. ‖ · ‖ denotes the vector 2-norm of a vector in Rn or
the matrix 2-norm of a matrix in Rn×m . In represents the n×
n identity matrix. λmax(·) and λmin(·) calculate the maximal
and minimal eigenvalues of a matrix, respectively. Let Ω be a
compact subset of Rn and A (Ω) be the set of admissible control
policies (defined in [13]) on Ω. N = {0, 1, 2, . . .} denotes the
set of all nonnegative integers. In addition, the superscript “T”
is used to represent the transpose operation and ∇(·) � ∂(·)/∂x
is employed to denote the gradient operator.

II. PROBLEM STATEMENT

Dynamical systems with input-affine form are common in the
literature and engineering. Consider a class of continuous-time
affine nonlinear systems described by

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)

where x(t) ∈ Ω ⊂ Rn is the state vector, u(t) ∈ Ωu ⊂ Rm is
the control vector, and f(·) and g(·) are differentiable in their
arguments with f(0) = 0. Let the initial state at t = 0 be x(0) =
x0 and x = 0 be the equilibrium point of the controlled plant.
In general, the system (1) is assumed to be controllable. In
the optimal regulation design, it is always required to derive a
state feedback control law u(x) with respect to a specified cost
function. Choose two positive definite matrices Q ∈ Rn×n and
R ∈ Rm×m and let

U(x(τ), u(τ)) = xT(τ)Qx(τ) + uT(τ)Ru(τ)

represent the utility function. Then, similar to [14], [23], and
[29], one can define the infinite horizon discounted cost function
as

J(x(t), u) =
∫ ∞

t

e−γ (τ−t)U(x(τ), u(τ))dτ (2)

where γ > 0 is a discount factor. Note that with the discount
factor, one can modulate the convergence speed of the regulation
design and reduce the value of the optimal cost. For simplicity,
the cost J(x(t), u) is written as J(x(t)) or J(x) in the sequel.
What one shall concern is the cost function starting from t = 0,
which is denoted as J(x(0)) = J(x0).

For an admissible control policy u ∈ A (Ω), if the related
cost function (2) is continuously differentiable, one can derive
a limit-based expression with three parts

lim
T→0

1
T

∫ t+T

t

e−γ (τ−t)U(x(τ), u(τ))dτ
︸ ︷︷ ︸

Part 1

+ lim
T→0

1
T
J(x(t+ T )) − J(x(t))

︸ ︷︷ ︸
Part 2

+ lim
T→0

1
T

(
e−γT − 1

)
J(x(t+ T ))

︸ ︷︷ ︸
Part 3

= 0.

Then, one derives the infinitesimal version called the nonlinear
Lyapunov equation as follows:

0 = U(x, u)︸ ︷︷ ︸
Part 1

+ (∇J(x))T[f(x) + g(x)u]︸ ︷︷ ︸
Part 2

− γJ(x)︸ ︷︷ ︸
Part 3

with J(0) = 0. Define the Hamiltonian of system (1) as

H(x, u,∇J(x)) = U(x, u) + (∇J(x))T[f(x)

+ g(x)u] − γJ(x).

If one recalls the Bellman’s well-known optimality principle,
then the optimal cost function

J∗(x) = min
u∈A (Ω)

∫ ∞

t

e−γ (τ−t)U(x(τ), u(τ))dτ

satisfies the so-called Hamilton–Jacobi–Bellman equation

min
u
H(x, u,∇J∗(x)) = 0.

Using the results of [13] and [25], the optimal control law is

u∗(x) = −1
2
R−1gT(x)∇J∗(x). (3)

Considering the optimal controller (3), the Hamilton–Jacobi–
Bellman equation turns to be the form

0 = U(x, u∗) + (∇J∗(x))T[f(x) + g(x)u∗] − γJ∗(x)

= xTQx− 1
4
(∇J∗(x))Tg(x)R−1gT(x)∇J∗(x)

+ (∇J∗(x))Tf(x) − γJ∗(x), J∗(0) = 0. (4)

Note that (4) is known as the classical time-based Hamilton–
Jacobi–Bellman equation, that is,H(x, u∗,∇J∗(x)) = 0, which
is difficult to address in theory. This fact inspires us to devise an
approximate control strategy to overcome the difficulty. Next,
we investigate the event-driven adaptive critic design.
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III. EVENT-DRIVEN DISCOUNTED OPTIMAL CONTROL

DESIGN VIA NEURAL NETWORK APPROXIMATION

Using the event-driven mechanism, some appropriate
sampling components are constructed to form networked
control systems. Define a monotonically increasing sequence
of triggering instants {sj}∞j=0 , where sj is the jth consecutive
sampling instant with j ∈ N. The output of the sampling
component is a sequence of the sampled state and is denoted
by x(sj ) � x̂j for all t ∈ [sj , sj+1). The gap function between
the current state vector and the sampled state vector, that is,
ej (t) = x̂j − x(t),∀t ∈ [sj , sj+1), is called the event-triggered
error function. Clearly, ej (t) = 0 at the time instant t = sj .

During the event-driven control design, the triggering instants
are determined by a certain triggering condition. In general, this
condition is established in terms of the event-triggered error
ej (t) and a state-dependent threshold eT . When the triggering
condition is violated, the control law is updated according to the
sampled data. It means that, at every triggering instant, the sys-
tem state is sampled so that the event-triggered error ej (t) is reset
to zero, and then, the feedback control law u(x(sj )) = u(x̂j ) �
μ(x̂j ) is updated. Note that the control sequence {μ(x̂j )}∞j=0
can become a continuous-time signal by bringing in a zero-order
hold. Hence, this control signal is actually a piecewise constant
function, which is μ(x̂j ) during any time interval [sj , sj+1),
j ∈ N. One can apply the event-triggering mechanism to the
optimal control law (3) and derive the following formula:

μ∗(x̂j ) = −1
2
R−1gT(x̂j )∇J∗(x̂j ) (5)

where ∇J∗(x̂j ) = (∂J∗(x)/∂x)|x= x̂j . This controller is the
main design objective of the paper. In the sequel, one shall
focus on implementing the event-driven control algorithm.

A. Neural-Approximation-Based Control Implementation

The neural-network-based adaptive critic design provides an
important idea to approximate the optimal controller of general
nonlinear systems [7], [13], [19], [20], [24], [25]. During the
neural network implementation, one can denote lc as the num-
ber of neurons in the hidden layer. According to the universal
approximation property, the optimal cost function J∗(x) can be
reconstructed by a neural network with a single hidden layer on a
compact set Ω as J∗(x) = ωT

c σc(x) + εc(x),where ωc ∈ Rlc is
the ideal weight vector, σc(x) ∈ Rlc is the activation function,
and εc(x) ∈ R is the reconstruction error. This is a common
structure in adaptive critic design [13], [19], [20], [24], [25].
Then, the gradient vector is

∇J∗(x) = (∇σc(x))Tωc + ∇εc(x).

Because the ideal weight is unknown, a critic neural network
is built to approximate the optimal cost function as Ĵ∗(x) =
ω̂T
c σc(x), where ω̂c ∈ Rlc denotes the estimated weight vector.

Similarly, one shall have the gradient vector

∇Ĵ∗(x) = (∇σc(x))Tω̂c .

Adopting the neural network expression, the event-based opti-
mal control law (5) is written as

μ∗(x̂j ) = −1
2
R−1gT(x̂j )

[
(∇σc(x̂j ))Tωc + ∇εc(x̂j )

]
. (6)

With the use of the critic neural network, the approximate value
of the above control law is

μ̂(x̂j ) = −1
2
R−1gT(x̂j )(∇σc(x̂j ))Tω̂c . (7)

Using the neural network formulation, the approximate
Hamiltonian is written as

Ĥ(x, μ̂(x̂j ),∇Ĵ∗(x)) = U(x, μ̂(x̂j )) − γω̂T
c σc(x)

+ ω̂T
c∇σc(x)[f(x)+g(x)μ̂(x̂j )]. (8)

Considering the fact thatH(x, u∗,∇J∗(x)) = 0, one shall have
ec = Ĥ(x, μ̂(x̂j ),∇Ĵ∗(x)). Clearly, one can find that

∂ec
∂ω̂c

= ∇σc(x)[f(x) + g(x)μ̂(x̂j )] − γσc(x) � φ (9)

where φ ∈ Rlc . Note that there is a negative term −γσc(x) in
(9), showing an evident difference from [13], [24], and [25].

Now, one can tune the critic neural network and design its
weight to minimize the objective function Ec = (1/2)e2

c . In
existing work such as [13], [24], [25], based on (8) and (9), one
often employs the normalized steepest descent algorithm

˙̂ωc
c = −αc 1

(1 + φTφ)2

(
∂Ec

∂ω̂c

)
= −αc φ

(1 + φTφ)2 ec (10)

to train the weight vector, where αc > 0 is the learning rate pa-
rameter to be designed and the term (1 + φTφ)2 is implemented
for normalization.

Note that during traditional adaptive critic design, one shall
choose a special weight vector to create an initial stabilizing
controller and then start training neural networks. Otherwise, an
unstable control may result in the instability of the closed-loop
system. Inspired by [27]–[29], in this paper, one can introduce
an additional Lyapunov function to improve the critic learning
criterion and employ it to regulate the critic weight vector with
a new manner. Similar to [28] and [29], one can make the fol-
lowing assumption that will be used in the subsequent stability
proof.

Assumption 1: Consider system (1) with a discounted cost
function (2) and notice its closed-loop form under the action
of the event-driven optimal control policy (6). Let Js(x) be a
continuously differentiable Lyapunov function guaranteeing the
negativity of the time derivative, that is

J̇s(x) = (∇Js(x))T[f(x) + g(x)μ∗(x̂j )] < 0.

Then, there exists a positive definite matrixD ∈ Rn×n such that
the formula

(∇Js(x))T[f(x) + g(x)μ∗(x̂j )]

= −(∇Js(x))TD∇Js(x) ≤ −λmin(D)‖∇Js(x)‖2

is true. Note that during the implementation process, Js(x) can
be determined by choosing a polynomial with respect to the
state vector, such as Js(x) = (1/2)xTx.
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Fig. 1. Simple diagram of the present control method.

When using the event-based approximate optimal controller
(7), in order to avoid the instability of the closed-loop system,
that is, J̇ μ̂s (x) = (∇Js(x))T[f(x) + g(x)μ̂(x̂j )] > 0, one can
introduce an additional term to reinforce the training process
by adjusting J̇ μ̂s (x) along the negative gradient direction of ω̂c .
Based on (7) and using the chain rule, the gradient descent
operation can be derived as follows:

˙̂ωs
c = − αs

∂
[
(∇Js(x))T(f(x) + g(x)μ̂(x̂j ))

]
∂ω̂c

=
1
2
αs∇σc(x̂j )g(x̂j )R−1gT(x)∇Js(x) (11)

where αs > 0 is a constant to be designed for the additional
stabilizing term. Therefore, the improved critic learning rule
developed in this paper, that is, ˙̂ωc = ˙̂ωc

c + ˙̂ωs
c , is formed as

˙̂ωc = − αc
φ

(1 + φTφ)2 ec

+
1
2
αs∇σc(x̂j )g(x̂j )R−1gT(x)∇Js(x) (12)

which is a combination of the classical training rule (10) and
the additional stabilizing reinforcement (11).

Remark 1: The combined learning rule (12) is an efficient
improvement to the traditional criterion used in [23]–[26]. It
reduces the requirement of an initial stabilizing controller. In-
stead, the weight vector of the critic network can be initialized as
zero when implementing the control algorithm. This, of course,
will bring in an obvious convenience to the self-learning control
design procedure.

The simple diagram of the present control method is exhibited
in Fig. 1, where the solid line represents the signal flow while the
dashed line denotes the neural network back-propagating path.
Besides, the sampling module can be built via a network-based
channel. It, together with the zero-order hold, forms the main
components of time/event transformation.

B. Stability Proof of the Impulsive Dynamics Model

In this part, we determine the error dynamics of critic network
and investigate the closed-loop system stability. One defines the
error vector between the ideal weight and the estimated value
as ω̃c = ωc − ω̂c and then finds that ˙̃ωc = − ˙̂ωc . By using the
tuning rule (12) and introducing

φ1 =
φ

1 + φTφ
∈ Rlc , φ2 = 1 + φTφ

one derives that the critic error dynamics can be written as

˙̃ωc = − αcφ1φ
T
1 ω̃c + αc

φ1

φ2
ecH

− 1
2
αs∇σc(x̂j )g(x̂j )R−1gT(x)∇Js(x)

where the term ecH = −(∇εc(x))T[f(x) + g(x)μ̂(x̂j )] stands
for the residual error arisen in the neural-network-based approx-
imation process [23]–[25].

As an adaptive control methodology, for the adaptive critic
design, the persistence of excitation assumption is indeed re-
quired since one needs to identify the parameters of the critic
network to approximate the optimal cost function. Based on
[13], [23], and [29], the persistence of excitation condition en-
sures that λmin(φ1φ

T
1 ) > 0, which is necessary and important to

perform closed-loop stability analysis.
With the event-triggering mechanism, the closed-loop sys-

tem can be considered as an impulsive model. It includes a
flow dynamics for all t ∈ [sj , sj+1) and a jump dynamics for all
t = sj+1 with j ∈ N. Next, the stability issue of the closed-loop
system is discussed. Before proceeding, the following assump-
tions are required, as usually proposed in the literature [20],
[22]–[26], [28], [29].

Assumption 2: The control function matrix g(x) is Lipschitz
continuous such that ‖g(x) − g(x̂j )‖ ≤ Lg‖ej (t)‖, where Lg
is a positive constant and it is also upper bounded by λg , that is,
‖g(x)‖ ≤ λg , where λg is a positive constant.

Assumption 3: On the compact set Ω, the derivative of the
activation function is Lipschitz continuous such that ‖∇σc(x) −
∇σc(x̂j )‖ ≤ Lσ‖ej (t)‖, whereLσ is a positive constant and the
terms∇σc(x),∇εc(x), and ecH are all upper bounded, such that
‖∇σc(x)‖ ≤ λσ , ‖∇εc(x)‖ ≤ λε , and ‖ecH ‖ ≤ λe , where λσ ,
λε , and λe are positive constants.

Theorem 1: For the nonlinear plant (1), suppose that As-
sumptions 1–3 hold. The event-driven approximate optimal con-
trol law is given in (7) and the critic network is tuned by adopting
the combined learning rule (12). Then, the closed-loop system
state and the weight estimation error are uniformly ultimately
bounded if the triggering condition

‖ej (t)‖2 ≤ eT =
(1 − η2)λmin(Q)‖x‖2 + ‖Rμ̂(x̂j )‖2

ψλL‖ω̂c‖2

(13)
is satisfied, where η ∈ (0, 1) is a design parameter, λL =
L2
gλ

2
σ + L2

σλ2
g , the constant value ψ = ‖R‖2‖R−1‖2 , and the

positive definite matrix R ∈ Rm×m therein satisfying R =
RTR.

Proof: Let us choose a Lyapunov function candidate com-
posed of four positive terms

L(t) = L1(t) + L2(t) + L3(t) + L4(t)

where the involved elements are denoted by

L1(t) = J∗(x(t)), L2(t) = J∗(x̂j ),

L3(t) =
1
2
ω̃T
c (t)ω̃c(t), L4(t) = αsJs(x(t)).
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The entire proof consists of two different cases according to
whether the events are triggered or not.

If the events are not triggered, that is, ∀t ∈ [sj , sj+1), one can
derive the time derivative of the Lyapunov function L(t) along
the trajectory of the impulsive system and first obtain

L̇1(t) = (∇J∗(x))T[f(x) + g(x)μ̂(x̂j )].

The derivative of the second term is L̇2(t) = 0 while the deriva-
tive of the third term is

L̇3(t) = − αcω̃
T
c φ1φ

T
1 ω̃c + αc

ω̃T
c φ1

φ2
ecH

− 1
2
αsω̃

T
c∇σc(x̂j )g(x̂j )R−1gT(x)∇Js(x). (14)

Besides, the derivative of the last term is

L̇4(t) = αs(∇Js(x))T[f(x) + g(x)μ̂(x̂j )]. (15)

For the term L̇1(t), based on (3) and (4) and introducing a
quadratic term μ̂T(x̂j )Rμ̂(x̂j ), one can obtain

L̇1(t) = − xTQx+ γJ∗(x)

+ u∗T(x)Ru∗(x) − 2u∗T(x)Rμ̂(x̂j )

≤ − xTQx+ γJ∗(x)

− ‖Rμ̂(x̂j )‖2 + ‖R‖2‖u∗(x) − μ̂(x̂j )‖2 .

Considering (3) and the neural network expression, the time-
based optimal control law can be reformulated as

u∗(x) = −1
2
R−1gT(x)

[
(∇σc(x))Tωc + ∇εc(x)

]
. (16)

Using the neural network expression of μ̂(x̂j ) and u∗(x), that
is, (7) and (16), it follows from ωc = ω̂c + ω̃c that

‖u∗(x) − μ̂(x̂j )‖2

≤ 1
2
‖R−1‖2

{∥∥gT(x)
[
(∇σc(x))Tω̃c + ∇εc(x)

]∥∥2

+
∥∥[
gT(x̂j )(∇σc(x̂j ))T − gT(x)(∇σc(x))T]

ω̂c
∥∥2

}
.

For acquiring a further inequality for L̇1(t), one can recall As-
sumptions 2 and 3 and hence obtain that∥∥gT(x̂j )(∇σc(x̂j ))T − gT(x)(∇σc(x))T

∥∥2

≤ 2
(∥∥[∇σc(x̂j ) −∇σc(x)]g(x̂j )

∥∥2

+
∥∥∇σc(x)[g(x̂j ) − g(x)]

∥∥2
)

≤ 2λL‖ej (t)‖2 .

Then, one can derive the following relationship:

L̇1(t) ≤ − xTQx− ‖Rμ̂(x̂j )‖2 +
1
2
ψ

(
2λL‖ω̂c‖2‖ej (t)‖2

+ 2λ2
gλ

2
σ‖ω̃c‖2 + 2λ2

gλ
2
ε

)
+ γJ∗(x). (17)

When addressing L̇3(t), one shall apply Young’s inequality to
the second term of (14), recall Assumption 3 and the factφ2 ≥ 1,

and then derive that

L̇3(t) ≤ −
(
αc − 1

2

)
λmin

(
φ1φ

T
1
)‖ω̃c‖2 +

1
2
α2
cλ

2
e

− 1
2
αsω̃

T
c∇σc(x̂j )g(x̂j )R−1gT(x)∇Js(x). (18)

Substituting ω̃c = ωc − ω̂c to the last term of (18) and using the
event-driven approximate optimal control law (7), one can find
that

L̇3(t) ≤ −
(
αc − 1

2

)
λmin

(
φ1φ

T
1
)‖ω̃c‖2 +

1
2
α2
cλ

2
e

− 1
2
αs(∇Js(x))Tg(x)R−1gT(x̂j )(∇σc(x̂j ))Tωc

− αs(∇Js(x))Tg(x)μ̂(x̂j ). (19)

Combining (15), (17), and (19) and also noticing (6) to bring
in the event-driven optimal control law, one can obtain that the
overall time derivative of L(t) is

L̇(t) ≤ − xTQx+ γJ∗(x)

+ ψλL‖ω̂c‖2‖ej (t)‖2 − ‖Rμ̂(x̂j )‖2

−
[(
αc − 1

2

)
λmin

(
φ1φ

T
1
) − ψλ2

gλ
2
σ

]
‖ω̃c‖2 +ψλ2

gλ
2
ε

+
1
2
α2
cλ

2
e + αs(∇Js(x))T[f(x) + g(x)μ∗(x̂j )]

+
1
2
αs(∇Js(x))Tg(x)R−1gT(x̂j )∇εc(x̂j ). (20)

By using Assumptions 1–3 and introducing the positive definite
matrix D, it follows from (20) that

L̇(t) ≤ − xTQx+ γJ∗(x)

+ ψλL‖ω̂c‖2‖ej (t)‖2 − ‖Rμ̂(x̂j )‖2

−
[(
αc − 1

2

)
λmin

(
φ1φ

T
1
) − ψλ2

gλ
2
σ

]
‖ω̃c‖2

+ ψλ2
gλ

2
ε +

1
2
α2
cλ

2
e − αsλmin(D)‖∇Js(x)‖2

+
1
2
αsλ

2
gλε‖R−1‖‖∇Js(x)‖. (21)

Performing some basic calculations, taking the parameter η into
consideration, and noticing the inequality

−xTQx ≤ −λmin(Q)‖x‖2

= −η2λmin(Q)‖x‖2 + (η2 − 1)λmin(Q)‖x‖2

one can find that (21) can be written as

L̇(t) ≤ − η2λmin(Q)‖x‖2 + (η2 − 1)λmin(Q)‖x‖2

+ ψλL‖ω̂c‖2‖ej (t)‖2 − ‖Rμ̂(x̂j )‖2 + γJ∗(x)

− αsλmin(D)
[
‖∇Js(x)‖ −

λ2
gλε‖R−1‖
4λmin(D)

]2

−
[(
αc− 1

2

)
λmin

(
φ1φ

T
1
)−ψλ2

gλ
2
σ

]
‖ω̃c‖2 + C (22)
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where C is a constant formed as

C = ψλ2
gλ

2
ε +

1
2
α2
cλ

2
e +

αsλ
4
gλ

2
ε‖R−1‖2

16λmin(D)
.

Then, one can find that if inequality (13) is satisfied, the time
derivative inequality (22) becomes

L̇(t) ≤ − η2λmin(Q)‖x‖2 + γJ∗(x)

−
[(
αc − 1

2

)
λmin

(
φ1φ

T
1
) − ψλ2

gλ
2
σ

]
‖ω̃c‖2 + C

since the sixth negative term of (22) can be eliminated. Hence,
considering the optimal cost function is bounded by a constant
BJ ∗ > 0, we can further obtain

L̇(t) ≤ − η2λmin(Q)‖x‖2 + γBJ ∗ + C

−
[(
αc − 1

2

)
λmin

(
φ1φ

T
1
) − ψλ2

gλ
2
σ

]
‖ω̃c‖2 . (23)

From (23), L̇(t) < 0 as long as x lies out of the set

Ωx =

{
x : ‖x‖ ≤

√
γBJ ∗ + C
η2λmin(Q)

}

or ω̃c lies out of the set

Ωω̃ c =

{
ω̃c : ‖ω̃c‖ ≤

√
2(γBJ ∗ + C)

(2αc − 1)λmin(φ1φT
1 ) − 2ψλ2

gλ
2
σ

}
.

It means that, if x and ω̃c satisfy

‖x‖ >
√
γBJ ∗ + C
η2λmin(Q)

(24)

or

‖ω̃c‖ >
√

2(γBJ ∗ + C)
(2αc − 1)λmin(φ1φT

1 ) − 2ψλ2
gλ

2
σ

(25)

then L̇(t) < 0 holds. Thus, the derivative of the Lyapunov func-
tion candidate is negative when t ∈ [sj , sj+1).

If the events are triggered, that is, ∀t = sj+1 , one derives that
the difference of the chosen Lyapunov function candidate is

ΔL(t) = L(x̂j+1) − L(x(s−j+1))

= ΔL1(t) + ΔL2(t) + ΔL3(t) + ΔL4(t)

where x(s−j+1) = limε→0 x(sj+1−ε). Combining (13), (23),

(24), and (25), one can find that L̇(t) < 0 when t ∈ [sj , sj+1).
Considering the fact that the system state and cost function are
both continuous, one can acquire that ΔL1(t) ≤ 0, ΔL3(t) ≤ 0,
and ΔL4(t) ≤ 0, where

ΔL1(t) = J∗(x̂j+1) − J∗(x(s−j+1)),

ΔL3(t) =
1
2

[
ω̃T
c(x̂j+1)ω̃c(x̂j+1) − ω̃T

c(x(s
−
j+1))ω̃c(x(s

−
j+1))

]
,

ΔL4(t) = αs [Js(x̂j+1) − Js(x(s−j+1))].

Combining these time difference terms, one can obtain

ΔL(t) ≤ ΔL2(t) = J∗(x̂j+1)−J∗(x̂j ) ≤ −K(‖ej+1(sj )‖)

where K(·) is a class-K function and ej+1(sj ) = x̂j+1 − x̂j .
This leads to a conclusion that the Lyapunov function L(t) is
also decreasing at all triggering instants t = sj+1 .

According to the above two cases, the triggering condition
(13) and the inequalities (24) and (25) guarantee that the closed-
loop system state and the critic weight error dynamics are uni-
formly ultimately bounded, which ends the proof. �

Remark 2: According to Theorem 1, one shall observe that
the critic weight error ω̃c is upper bounded by a finite constant.
Then, according to (6) and (7), one can find that

μ∗(x̂j ) − μ̂(x̂j ) = −1
2
R−1gT(x̂j )

[
(∇σc(x̂j ))Tω̃c + ∇εc(x̂j )

]

is also upper bounded due to the boundedness of the involving
terms of the right-hand side. It means that, with event-driven
formulation, the approximate controller μ̂(x̂j ) converges to a
neighborhood of its optimal value μ∗(x̂j ) with a finite bound.
Hence, one can state that the control function also satisfies the
property of uniform ultimate boundedness.

Remark 3: According to the results of [25] and [26], it can
be shown that the minimal intersample time, defined as

Δsmin = min
j∈N

{sj+1 − sj}

is lower bounded by a nonzero positive constant. In this
sense, the infamous Zeno behavior corresponding to the event-
driven discounted optimal control design is avoided effec-
tively. Thus, the event-driven adaptive critic design can be
completed.

IV. SIMULATION AND A POWER SYSTEM APPLICATION

A. Nonlinear Dynamic System Simulation

Consider a continuous-time nonlinear system with input-
affine dynamics

ẋ =

⎡
⎢⎣
−x1 + 0.8x3 sin2(x2)
0.6x1 − x2 − x1x3

1.5x3
1x2 − x3

⎤
⎥⎦+

⎡
⎢⎣
−0.3 0

1 0.2
−1.2 −0.3

⎤
⎥⎦u (26)

where x = [x1 , x2 , x3 ]T is the state variable and u = [u1 , u2 ]T

is the control variable. As an experimental case study, the dis-
counted cost function from t = 0 is defined as

J(x0) =
∫ ∞

0
e−γ τ (xTQx+ uTRu)dτ (27)

withQ = 3I3 andR = I2 . These matrices are chosen according
to the practical design purpose of how to weigh the state-related
utility and the control-related utility. Let the initial system state
vector be set as x0 = [1,−0.5, 0.5]T and construct a critic neural
network to approximate the optimal cost function as Ĵ∗(x) =
ω̂T
c σc(x), which, specifically, is written as

Ĵ∗(x) = ω̂c1x
2
1 + ω̂c2x1x2 + ω̂c3x1x3

+ ω̂c4x
2
2 + ω̂c5x2x3 + ω̂c6x

2
3 .

For getting satisfactory simulation results, one can exper-
imentally set Js(x) = (1/2)xTx, γ = 0.2, αc = 2.8, αs =
0.01, and λL = 25. The learning rate parameters are often
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Fig. 2. Convergence of the weight vector of the neural network.

Fig. 3. Triggering condition.

chosen with engineering experience and intuition when not-
ing the tradeoff between control accuracy and computa-
tional complexity. Besides, the sampling time is set as
0.1 s. In adaptive critic control, a probing noise should
be employed to satisfy the persistence of excitation condi-
tion. Through the simulation, the weight vector converges to
[2.0808, 0.1531, 0.0818, 0.9318, 0.3136, 0.7748]T, which is de-
picted in Fig. 2. Observing Fig. 2, one can find that the initial
elements of the weight vector are all set as zero, which indicates
that the initial control law is not required to be a stabilizing one.
Moreover, the triggering condition and the sampling period of
the learning process are displayed in Figs. 3 and 4, respectively.
In fact, one can observe that the convergence of the weight vector
has occurred at t = 450 s and after that the noise is removed. It is
also worth mentioning that the time-based controller uses 5000
samples of state, while the event-based control law only needs
2064 samples, which reduces the controller updates greatly (or
specifically, 58.72%) during the learning session.

Fig. 4. Sampling period in the learning process.

Fig. 5. Control response.

Using the approximate optimal controller, the feedback con-
trol signal and the corresponding state trajectory of system (26)
are depicted in Figs. 5 and 6, respectively. Moreover, for il-
lustrating the action of the discount factor, one can set γ = 0
(which denotes the normal design manner such as in [13], [15],
[24]–[26]) and run the adaptive critic learning algorithm again.
For this undiscounted case, the weight vector converges to
[2.5066, 0.2664,−0.3007, 1.1400, 0.5539, 0.9858]T. Via calcu-
lation, one derives that the approximate optimal cost function of
γ = 0 is Ĵ∗(x0) = 2.6160, while for the discounted case study,
it is Ĵ∗(x0) = 2.3934. Hence, one can find that the optimal cost
is obviously reduced when adding and increasing the discount
factor, which further verifies the event-based near-optimal con-
trol performance with discounted cost functions.

B. Power System Application

Consider the power system proposed in [30] and let ξf , ξg ,
and ξG be the incremental change of the frequency deviation, the
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Fig. 6. State trajectory.

TABLE I
PARAMETER VALUES OF THE PROPOSED POWER SYSTEM

Parameters TG Tt Tg Fr Kt Kg

Values 5 10 10 0.5 1 1

generator output, and the governor value position, respectively.
Let the control inputu represent the incremental speed change of
positive deviation. The practical dynamics of this power system
is given as follows:

ξ̇f = − 1
TG

ξf − 1
FrTG

ξG +
1
TG

u, (28a)

ξ̇g =
Kt

Tt
ξf − 1

Tt
ξg , (28b)

ξ̇G =
Kg

Tg
ξg − 1

Tg
ξG (28c)

where TG , Tt , Tg denote the time constant of the governor, the
turbine, and the generator model, Fr is the feedback regulation
constant, and Kt , Kg are the gain constant of the turbine model
and the generator model. If one defines x = [ξf , ξg , ξG ]T ∈ R3

as the state vector, where x1 = ξf , x2 = ξg , and x3 = ξG , then
the state-space description of the power system (28) can be
written as an input-affine form

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
TG

0 − 1
FrTG

Kt

Tt
− 1
Tt

0

0
Kg

Tg
− 1
Tg

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
x+

⎡
⎢⎢⎢⎣

1
TG

0

0

⎤
⎥⎥⎥⎦u. (29)

For the simulation purpose, one selects the values of the
related parameters as shown in Table I. In this example,
the discounted cost function is also selected as the form of
(27) with Q = I3 and R = I . The initial state vector is set
as x0 = [0.2,−0.2, 0.1]T. Other main parameters are chosen
the same as the previous example. Then, one can turn to

Fig. 7. Convergence of the weight vector of the neural network.

Fig. 8. Sampling period in the learning process.

the neural-approximation-based discounted optimal control de-
sign. After the critic learning, the weight vector converges to
[1.4590,−0.6729,−0.9078, 2.0382, 1.7394, 1.7137]T, given in
Fig. 7. In this example, the event-based control law only requires
1662 samples, showing in Fig. 8, which reduces the controller
updates up to 66.76% during the learning session.

Applying the approximate optimal controller to system (29),
one can obtain the state trajectory shown in Fig. 9. It should be
mentioned that, using the computer with the processor Intel Core
i7-4790, the actual elapsed time is 1.6530 s, rather than the time
steps marked in Fig. 9. This also indicates the simulation envi-
ronment framework, by considering the diagram of the present
control method in Fig. 1. Note that the distinction between the
elapsed time and time steps is also true for other figures. In ad-
dition, the approximate optimal cost functions for the two cases,
that is, γ = 0.2 and γ = 0, are 0.1310 and 0.2307, respectively.
This also shows the effect of the discount factor in decreasing
the cost function. These simulation results of the two examples
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Fig. 9. State trajectory.

Fig. 10. State trajectory.

substantiate the effectiveness of the event-driven optimal state
feedback control strategy with discounted cost functions.

For testing the robustness of the proposed algorithm, we con-
duct the simulation again, by choosing TG = 5.1, Tt = 9.9,
Tg = 9.8, Fr = 0.51, Kt = 0.99, Kg = 1.02, and setting a dif-
ferent initial system state as x0 = [0.21,−0.19, 0.11]T. The ob-
tained simulation results (e.g., the state trajectory of Fig. 10)
show the effectiveness and robustness of the proposed control
algorithm.

V. CONCLUSION

The event-driven approximate optimal control problem with
discounted cost functions of affine nonlinear dynamical sys-
tems was investigated here. Due to the approximation error,
the near-optimal control law under event-based environment
was obtained, rather than the optimal value. This was achieved
by adaptively training a neural network according to the com-
bined learning rule proposed in the paper. The stability proof of
the closed-loop system and the experimental verification were

performed. Compared with the existing design manner, the de-
crease of the optimal cost function is observed when adding and
enlarging the discount factor. Since the presented methodology
requires the knowledge of the dynamic model, a future direc-
tion is to develop data-based implementation for the proposed
control technique.

REFERENCES

[1] L. Cheng, W. Liu, Z. G. Hou, J. Yu, and M. Tan, “Neural-network-based
nonlinear model predictive control for piezoelectric actuators,” IEEE
Trans. Ind. Electron., vol. 62, no. 12, pp. 7717–7727, Dec. 2015.

[2] W. He and S. S. Ge, “Cooperative control of a nonuniform gantry crane
with constrained tension,” Automatica, vol. 66, no. 4, pp. 146–154, 2016.

[3] W. He and S. Zhang, “Control design for nonlinear flexible wings of
a robotic aircraft,” IEEE Trans. Control Syst. Technol., vol. 25, no. 1,
pp. 351–357, Jan. 2017.

[4] Y. J. Liu, S. Tong, C. L. P. Chen, and D. J. Li, “Neural controller
design-based adaptive control for nonlinear MIMO systems with un-
known hysteresis inputs,” IEEE Trans. Cybern., vol. 46, no. 1, pp. 9–19,
Jan. 2016.

[5] B. Xu, C. Yang, and Z. Shi, “Reinforcement learning output feedback NN
control using deterministic learning technique,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 3, pp. 635–641, Mar. 2014.

[6] D. Wang, C. Mu, and D. Liu, “Data-driven nonlinear near-optimal regu-
lation based on iterative neural dynamic programming,” Acta Automatica
Sin., vol. 43, no. 3, pp. 366–375, 2017.

[7] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, D. A. White and D. A. Sofge, Eds. New York,
NY, USA: Van Nostrand Reinhold, 1992, ch. 13.

[8] T. Dierks, B. T. Thumati, and S. Jagannathan, “Optimal control of un-
known affine nonlinear discrete-time systems using offline-trained neural
networks with proof of convergence,” Neural Netw., vol. 22, nos. 5/6,
pp. 851–860, 2009.

[9] A. Heydari and S. N. Balakrishnan, “Finite-horizon control-constrained
nonlinear optimal control using single network adaptive critics,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 145–157,
Jan. 2013.

[10] Q. Zhao, H. Xu, and S. Jagannathan, “Near optimal output feedback
control of nonlinear discrete-time systems based on reinforcement neural
network learning,” IEEE/CAA J. Automatica Sin., vol. 1, no. 4, pp. 372–
384, Oct. 2014.

[11] C. Mu, D. Wang, and H. He, “Novel iterative neural dynamic programming
for data-based approximate optimal control design,” Automatica, vol. 81,
pp. 240–252, 2017.

[12] C. Mu, C. Sun, A. Song, and H. Yu, “Iterative GDHP-based approximate
optimal tracking control for a class of discrete-time nonlinear systems,”
Neurocomputing, vol. 214, pp. 775–784, 2016.

[13] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to
solve the continuous-time infinite horizon optimal control problem,” Au-
tomatica, vol. 46, no. 5, pp. 878–888, May 2010.

[14] H. Modares and F. L. Lewis, “Linear quadratic tracking control of
partially-unknown continuous-time systems using reinforcement learn-
ing,” IEEE Trans. Automat. Control, vol. 59, no. 11, pp. 3051–3056,
Nov. 2014.

[15] J. Na and G. Herrmann, “Online adaptive approximate optimal track-
ing control with simplified dual approximation structure for continuous-
time unknown nonlinear systems,” IEEE/CAA J. Automatica Sin., vol. 1,
pp. 412–422, Oct. 2014.

[16] Y. Jiang and Z. P. Jiang, “Global adaptive dynamic programming for
continuous-time nonlinear systems,” IEEE Trans. Automat. Control,
vol. 60, no. 11, pp. 2917–2929, Nov. 2015.

[17] W. Gao and Z. P. Jiang, “Adaptive dynamic programming and adaptive op-
timal output regulation of linear systems,” IEEE Trans. Automat. Control,
vol. 61, no. 12, pp. 4164–4169, Dec. 2016.

[18] T. Bian, Y. Jiang, and Z. P. Jiang, “Decentralized adaptive optimal control
of large-scale systems with application to power systems,” IEEE Trans.
Ind. Electron., vol. 62, no. 4, pp. 2439–2447, Apr. 2015.

[19] H. Zhang, H. Jiang, Y. Luo, and G. Xiao, “Data-driven optimal consensus
control for discrete-time multi-agent systems with unknown dynamics
using reinforcement learning method,” IEEE Trans. Ind. Electron., vol. 64,
no. 5, pp. 4091–4100, May 2017.



8186 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 64, NO. 10, OCTOBER 2017

[20] H. Zhang, C. Qin, B. Jiang, and Y. Luo, “Online adaptive policy learning
algorithm for H∞ state feedback control of unknown affine nonlinear
discrete-time systems,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2706–
2718, Dec. 2014.

[21] B. Luo, D. Liu, T. Huang, and D. Wang, “Model-free optimal tracking
control via critic-only Q-learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 10, pp. 2134–2144, Oct. 2016.

[22] A. Sahoo, H. Xu, and S. Jagannathan, “Neural network-based event-
triggered state feedback control of nonlinear continuous-time systems,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 3, pp. 497–509,
Mar. 2016.

[23] K. G. Vamvoudakis, A. Mojoodi, and H. Ferraz, “Event-triggered optimal
tracking control of nonlinear systems,” Int. J. Robust Nonlinear Control,
vol. 27, no. 4, pp. 598–619, 2017.

[24] X. Zhong and H. He, “An event-triggered ADP control approach for
continuous-time system with unknown internal states,” IEEE Trans. Cy-
bern., vol. 47, no. 3, pp. 683–694, Mar. 2017.

[25] D. Wang, C. Mu, H. He, and D. Liu, “Event-driven adaptive ro-
bust control of nonlinear systems with uncertainties through NDP
strategy,” IEEE Trans. Syst. Man Cybern., Syst., to be published.
doi:10.1109/TSMC.2016.2592682.

[26] Q. Zhang, D. Zhao, and Y. Zhu, “Event-triggered H∞ con-
trol for continuous-time nonlinear system via concurrent learn-
ing,” IEEE Trans. Syst. Man Cybern., Syst., to be published.
doi:10.1109/TSMC.2016.2531680.

[27] T. Dierks and S. Jagannathan, “Optimal control of affine nonlinear
continuous-time systems,” in Proc. Amer. Control Conf., Baltimore, MD,
USA, Jun. 2010, pp. 1568–1573.

[28] D. Liu, D. Wang, F. Y. Wang, H. Li, and X. Yang, “Neural-network-
based online HJB solution for optimal robust guaranteed cost control
of continuous-time uncertain nonlinear systems,” IEEE Trans. Cybern.,
vol. 44, no. 12, pp. 2834–2847, Dec. 2014.

[29] X. Yang, D. Liu, Q. Wei, and D. Wang, “Guaranteed cost neural tracking
control for a class of uncertain nonlinear systems using adaptive dynamic
programming,” Neurocomputing, vol. 198, pp. 80–90, 2016.

[30] K. G. Vamvoudakis, M. F. Miranda, and J. P. Hespanha, “Asymptotically
stable adaptive-optimal control algorithm with saturating actuators and
relaxed persistence of excitation,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 11, pp. 2386–2398, Nov. 2016.

Ding Wang (M’15) received the B.S. degree in
mathematics from Zhengzhou University of Light
Industry, Zhengzhou, China, the M.S. degree
in operations research and cybernetics from
Northeastern University, Shenyang, China, and
the Ph.D. degree in control theory and control
engineering from Institute of Automation, Chi-
nese Academy of Sciences, Beijing, China, in
2007, 2009, and 2012, respectively.

He was a Visiting Scholar in the Department
of Electrical, Computer, and Biomedical Engi-

neering, University of Rhode Island, Kingston, RI, USA, from December
2015 to January 2017. He is currently an Associate Professor with The
State Key Laboratory of Management and Control for Complex Systems,
Institute of Automation, Chinese Academy of Sciences. His research
interests include adaptive and learning systems, computational intelli-
gence, and intelligent control. He has published more than 100 journal
and conference papers and coauthored two monographs.

Dr. Wang is the Publications Chair of the 24th International Confer-
ence on Neural Information Processing (ICONIP 2017). He received the
Excellent Doctoral Dissertation Award of Chinese Academy of Sciences
in 2013 and a nomination of the Excellent Doctoral Dissertation Award
of Chinese Association of Automation (CAA) in 2014. He serves as an
Associate Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND
LEARNING SYSTEMS and Neurocomputing. He is a member of Asia-Pacific
Neural Network Society and CAA.

Haibo He (SM’11) received the B.S. and
M.S. degrees in electrical engineering from
Huazhong University of Science and Technol-
ogy, Wuhan, China, in 1999 and 2002, re-
spectively, and the Ph.D. degree in electrical
engineering from Ohio University, Athens, OH,
USA, in 2006.

From 2006 to 2009, he was an Assistant Pro-
fessor in the Department of Electrical and Com-
puter Engineering, Stevens Institute of Technol-
ogy. He is currently the Robert Haas Endowed

Chair Professor in the Department of Electrical, Computer, and Biomed-
ical Engineering, University of Rhode Island, Kingston, RI, USA. His re-
search interests include adaptive dynamic programming, computational
intelligence, machine learning and data mining, and various applications.
He has published 1 sole-author research book (Wiley), edited 1 book
(Wiley-IEEE) and 6 conference proceedings (Springer), and authored
and coauthored more than 250 peer-reviewed journal and conference
papers.

Dr. He severed as the General Chair of the IEEE Symposium Series
on Computational Intelligence (SSCI 2014). He received the IEEE In-
ternational Conference on Communications Best Paper Award (2014),
the IEEE Computational Intelligence Society (CIS) Outstanding Early
Career Award (2014), the National Science Foundation (NSF) CAREER
Award (2011), and the Providence Business News (PBN) “Rising Star
Innovator Award” (2011). He is currently the Editor-in-Chief of the IEEE
TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.

Xiangnan Zhong (S’17) received the B.S. de-
gree in automation and the M.S. degree in con-
trol theory and control engineering from North-
eastern University, Shenyang, China, in 2010
and 2012, respectively. She is currently work-
ing toward the Ph.D. degree in the Department
of Electrical, Computer, and Biomedical Engi-
neering, University of Rhode Island, Kingston,
RI, USA.

Her research interests include adaptive dy-
namic programming, reinforcement learning,

neural network, and optimal control.

Derong Liu (S’91–M’94–SM’96–F’05) received
the Ph.D. degree in electrical engineering from
the University of Notre Dame, Notre Dame, IN,
USA, in 1994.

He was a Staff Fellow with General Mo-
tors Research and Development Center, from
1993 to 1995. He was an Assistant Professor
in the Department of Electrical and Computer
Engineering, Stevens Institute of Technology,
Hoboken, NJ, USA, from 1995 to 1999. He joined
the University of Illinois at Chicago, Chicago, IL,

USA, in 1999, and became a Full Professor of Electrical and Computer
Engineering and of Computer Science in 2006. He was selected for the
“100 Talents Program” by the Chinese Academy of Sciences in 2008,
and he served as the Associate Director of The State Key Laboratory
of Management and Control for Complex Systems at the Institute of Au-
tomation, from 2010 to 2015. He has published 18 books.

Dr. Liu was the Editor-in-Chief of the IEEE TRANSACTIONS ON NEU-
RAL NETWORKS AND LEARNING SYSTEMS from 2010 to 2015. He is the
Editor-in-Chief of Artificial Intelligence Review (Springer). He received
the Faculty Early Career Development Award from the National Science
Foundation in 1999, the University Scholar Award from the University
of Illinois from 2006 to 2009, the Overseas Outstanding Young Scholar
Award from the National Natural Science Foundation of China in 2008,
and the Outstanding Achievement Award from Asia Pacific Neural Net-
work Assembly in 2014. He is a Fellow of the International Neural Net-
work Society and a Fellow of the International Association of Pattern
Recognition.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


