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Abstract—Adaptive dynamic programming (ADP) and rein-
forcement learning are quite relevant to each other when
performing intelligent optimization. They are both regarded
as promising methods involving important components of eval-
uation and improvement, at the background of information
technology, such as artificial intelligence, big data, and deep
learning. Although great progresses have been achieved and sur-
veyed when addressing nonlinear optimal control problems, the
research on robustness of ADP-based control strategies under
uncertain environment has not been fully summarized. Hence,
this survey reviews the recent main results of adaptive-critic-
based robust control design of continuous-time nonlinear systems.
The ADP-based nonlinear optimal regulation is reviewed, fol-
lowed by robust stabilization of nonlinear systems with matched
uncertainties, guaranteed cost control design of unmatched
plants, and decentralized stabilization of interconnected systems.
Additionally, further comprehensive discussions are presented,
including event-based robust control design, improvement of the
critic learning rule, nonlinear H∞ control design, and several
notes on future perspectives. By applying the ADP-based opti-
mal and robust control methods to a practical power system and
an overhead crane plant, two typical examples are provided to
verify the effectiveness of theoretical results. Overall, this survey
is beneficial to promote the development of adaptive critic con-
trol methods with robustness guarantee and the construction of
higher level intelligent systems.

Index Terms—Adaptive critic designs, adaptive/approximate
dynamic programming (ADP), boundedness, convergence, neural
networks, optimal control, reinforcement learning, robust control,
stability.

I. INTRODUCTION

ARTIFICIAL intelligence, big data, and deep learning are
all hot topics of information technology. The artificial
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intelligence techniques such as machine learning [1], [2] and
deep learning [3]–[5] are extremely helpful for the study
of big data [6], [7]. Recently, Google DeepMind developed
a program called AlphaGo [8] that has shown performance
previously thought to be impossible for at least a decade.
Instead of exploring various sequences of moves, AlphaGo
learns to make a move by evaluating the strength of its position
on the board. This kind of evaluation was ensured to be possi-
ble via deep learning capabilities of neural networks [9]–[11].
Due to the excellent properties of adaptivity, advanced input–
output mapping, fault tolerance, nonlinearity, and self-learning,
neural networks are frequently used for universal function
approximation in numerical algorithms. Deep neural networks-
based learning has played a vital role in AlphaGo’s suc-
cess [12]. Position evaluation, aimed at approximating the
optimal cost function of the game, is the key procedure
of AlphaGo. Noticeably, reinforcement learning [13] is an
indispensable component of this advanced product.

A. Reinforcement Learning and Adaptive Critic Designs

As an important branch of artificial intelligence and
especially machine learning, reinforcement learning tackles
modification of actions based on interactions with the envi-
ronment. The environment comprises everything outside the
agent (the learner and the decision-maker) and also interacts
with the agent. Reinforcement learning focuses on how an
agent ought to take actions in an environment so as to
maximize the cumulative reward or minimize the punish-
ment, where the idea of optimization is involved. In fact,
people often are interested in mimicking nature and design-
ing automatic control systems that are optimal to effectively
achieve required performances without unduely depending on
the limited resources. Prescribing a search tracking back-
ward from the final step and employing the principle of
optimality thereby finding the optimal policy, dynamic pro-
gramming is a useful computational technique to solve optimal
control problems [14], [15]. However, due to the defect of
backward numerical process when coping with the high-
dimensional optimization problems, it is computationally
untenable to run dynamic programming to obtain the optimal
solution (i.e., the well-known “curse of dimensionality” [14]).
What is worse, the backward direction of the search pro-
cess precludes the use of dynamic programming in real-time
control.

Reinforcement learning is highly related to dynamic pro-
gramming technique. Classical dynamic programming algo-
rithms are of limited utility in reinforcement learning because
of their dependence on the perfect model and a mass of
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computational expense. However, dynamic programming pro-
vides an essential foundation for understanding reinforcement
learning. There is a class of reinforcement learning meth-
ods incorporating the actor-critic (or adaptive critic) structure,
where an actor component applies an action (or control law) to
the environment and a critic component evaluates the value of
that action. The combination of actor-critic structure, dynamic
programming, and neural networks, results in the adap-
tive/approximate dynamic programming (ADP) algorithm,
invented by Werbos [16]–[18] and Santiago and Werbos [19]
for obtaining approximate optimal solutions. The core idea
of ADP is the adaptive critic-based optimization and it is
regarded as a necessary outlet to achieve truly brain-like
intelligence [18], [19].

B. Adaptive Critic Optimal Control Design

Neural networks and fuzzy systems are always regarded as
important intelligent complements to practical control engi-
neering. Actually, they are often used as fundamental compo-
nents of various computational intelligence techniques and the
optimization design of complex dynamics based on them is a
significant topic of decision and control community [20]–[24].
Linear optimal regulators has been studied by control sci-
entists and engineers for many years. However, it is not an
easy task to acquire the analytic solution of the Hamilton–
Jacobi–Bellman (HJB) equation for general nonlinear systems.
Thus, their optimal feedback design is much too difficult but
considerable important. Remarkably, the successive approxi-
mation method [25]–[28] and the closely related ADP method
are both developed to conquer the difficulty via approxi-
mating the HJB solution. In general, ADP is a promising
technique to approximate optimal control solutions for com-
plex systems [16]–[19], [25]–[28]. Particularly, it is regarded
as an effective strategy to design optimal controllers in online
and forward-in-time manners. Among them, the adaptive critic
is the basic framework and neural networks are often involved
to serve as the function approximator. Employing the ADP
method always results in adaptive near-optimal feedback con-
trollers and hence is useful to perform various nonlinear
intelligent control applications.

There are several synonyms used for ADP and most of
them are closely related to neural networks. They are “adap-
tive critic designs” [29]–[31], “ADP” [32], [33], “approximate
dynamic programming” [18], [27], [34], “neural dynamic pro-
gramming” [35], [36], “neuro-dynamic programming” [37],
“reinforcement learning” [13], [34] including Q-learing [38],
and “relaxed dynamic programming” [39], [40]. In the basic
framework, there are three components: 1) critic; 2) model;
and 3) action. They are usually implemented via neural
networks and perform the function of evaluation, prediction,
and decision, respectively. Some improved structures are also
proposed, such as the goal representation ADP [41]–[44]
and fuzzy ADP [44], [45]. In the last two decades, ADP
has been promoted extensively when coping with adap-
tive optimal control of discrete-time systems [46]–[65] and
continuous-time systems [66]–[85]. Among them, the iter-
ative ADP algorithm based on value iteration is important

to the self-learning optimal control design of discrete-time
systems [27], [47], [52], [55], [59], while the policy iteration
is significant to the adaptive optimal control design of
continuous-time systems [28], [66], [69], [77], [82]. The con-
vergence of these iterative algorithms is a basic issue so
that it has been sufficiently studied [27], [28], [47], [52],
[54], [55], [57], [59], [62], [64], [66], [69], [73], [76], [77],
[79], [82], [83]. For comprehensive survey papers and books
of recent developments, please refer to [86]–[99], includ-
ing various topics in terms of theory, design, analysis, and
applications. As emphasized by Lewis et al. [87]–[89], the
ADP technique is closely related to reinforcement learning
when engaging in the research of feedback control. In gen-
eral, value and policy iterations are fundamental algorithms
of reinforcement learning-based ADP in optimal control. It is
easy to initialize the value iteration, but one cannot always
guarantee stability of iterative control laws during the imple-
mentation process. Policy iteration starts with a stabilizing
controller, but it is difficult to find the initial admissible
control law in many situations. As a result, the generalized
version of these two algorithms has received great atten-
tion [60], [63], [87]–[89], [96] recently, for integrating their
advantages and avoiding the weaknesses.

The rapid development of information technology, espe-
cially artificial intelligence, big data, and deep learning, are
profoundly affecting our society. Nowadays, the data-driven
control design has become a hot topic in the field of control
theory and control engineering [100]–[104]. The development
of ADP methods greatly promotes the research of data-based
optimal control design [46], [54], [55], [76], [78], [80], [81],
[93], [105], [106]. A novel iterative neural dynamic program-
ming algorithm was developed in [105] and [106], reflecting
a combination of neural dynamic programming technique and
the iterative ADP algorithm. The integral reinforcement learn-
ing proposed in [107]–[109] provides a new outlet of achieving
the model-free optimal regulation. All of these results are
beneficial to the development of artificial intelligence and
computational intelligence techniques.

C. Adaptive-Critic-Based Nonlinear Robust Control Design

Existing results of ADP methods are mostly obtained under
the assumption that there are no dynamical uncertainties in
the controlled plants. Nevertheless, practical control systems
are always subject to model uncertainties, exogenous distur-
bances or other changes in their lifetime. They are necessarily
considered during the controller design process in order to
avoid the deterioration of nominal closed-loop performance.
A controller is said to be robust if it works even if the actual
system deviates from its nominal model on which the con-
troller design is based. The importance of the robust control
problem is evident which has been studied by control scientists
for many years (see [110]–[115] and the references therein).
In [114] and [115], the robust control problem was handled by
using the optimal control approach for the nominal system.1

1It represents the portion of system without considering the uncertainty dur-
ing the feedback control design aimed at guaranteeing the desired performance
of a dynamic plant containing uncertain elements [113]–[115].



WANG et al.: ADAPTIVE CRITIC NONLINEAR ROBUST CONTROL: SURVEY 3431

This is a very important result which establishes a connec-
tion between the two control topics. However, the detailed
procedure is not discussed and it is difficult to cope with gen-
eral nonlinear systems. Then, an optimal control scheme based
on the HJB solution for robust controller design of nonlin-
ear systems was proposed in [116] and [117]. The algorithm
was constructed by using the least squares method performed
offline while the closed-loop stability analysis was not fully
discussed.

Since 2013, there gradually appeared some publications
of ADP-based robust control designs [118]–[127]. In gen-
eral, the problem transformation is conducted to build a
close relationship between the robustness and optimality.
Moreover, the closed-loop system is always proven to be
uniformly ultimately bounded (UUB) that will be defined
later. In [118], a policy iteration algorithm was developed to
solve the robust control problem of continuous-time nonlin-
ear systems with matched uncertainties and the algorithm was
improved in [119]. This method was extended to deal with
the robust stabilization of matched nonlinear systems with
unknown dynamics [120] and with constrained inputs [121].
Incidentally, it is worth mentioning that a tentative result of
ADP-based robust control design of discrete-time nonlinear
systems was given in [122]. For improving the learning rule of
the critic neural network, the adaptation-oriented near-optimal
control problem was revisited and then the robust stabilization
of nonlinear systems was studied with further results [123].
Moreover, the robust control method of nonlinear systems
with unmatched uncertainties was derived in [124]. The robust
control design with matched uncertainties and disturbances
was also studied in [125] as an extension of [119]. Note the
data-driven approaches are helpful to the ADP-based robust
control design since system uncertainties can sometimes be
regarded as unknown dynamics. For discussing the optimal-
ity of the ADP-based robust controller, a novel data-based
robust optimal control method of matched nonlinear systems
was constructed [126]. Data-based robust adaptive control for
a class of unknown nonlinear systems with constrained-input
was studied via integral reinforcement learning [127]. These
results guarantee that ADP methods are applicable to a large
class of complex nonlinear systems under uncertain environ-
ment. Hence, they greatly broadens the application scope of
ADP, since many of previous publications do not focus on the
robustness of obtained controllers. Subsequently, because of
possessing the common speciality of handling system uncer-
tainty, the combination of sliding mode control with ADP
provides a new direction to the study of self-learning con-
trol design [53], [128]. In [53], the application issue on
air-breathing hypersonic vehicle tracking was addressed by
employing an innovative combination of sliding mode con-
trol and ADP. Then, the sliding mode control method based on
ADP was used in [128] to stabilize the closed-loop system with
time-varying disturbances and guarantee the nearly optimal
performance of the sliding-mode dynamics.

For filling up the gap in most of ADP literature where
dynamic uncertainties or unmodeled dynamics were not
addressed, an important framework named robust ADP was
proposed in [129]–[133] to cope with the nonlinear robust

optimal control design from another aspect. An overview of
robust ADP method for linear and nonlinear systems was
given in [130], outlining the development of robust ADP the-
ory with potential applications in engineering and biology.
In [131], a key strategy integrating several tools of mod-
ern nonlinear control theory, such as the robust redesign and
backstepping techniques as well as the nonlinear small-gain
theorem [134], was developed with ADP formulation. After
that, the robust ADP method was employed to decentralized
optimal control of large-scale systems [132] and output feed-
back control of interconnected systems [133]. Therein, the
applications of robust ADP to power systems were given spe-
cial attention [129]–[133]. Generally, the robust ADP design
cannot only stabilize the original uncertain system, but also
achieve optimality in the absence of dynamic uncertainty. It
was emphasized that, under the framework of robust ADP,
computational designs for robust optimal control can be car-
ried out based only on the online data of the state and input
variables [130]. In this sense, the robust ADP method can
be regarded as a nonlinear variant of [135], where a com-
putational adaptive optimal control strategy was proposed to
iteratively solve the linear algebraic Riccati equation using
online information of state and input.

However, as we have seen, most of the previous
research only concerns with the robustness of the
uncertain system and the optimality of the nominal
system [118], [121], [123], [124], [131]. In other words,
the direct optimal control design of uncertain nonlinear
systems is very difficult. This is because coping with the
cost function of the uncertain plant is not an easy task.
Therefore, some researchers have paid attention to the study
of boundedness of the cost function with respect to the uncer-
tain plant, in addition to optimizing it. The guaranteed cost
control strategy [136] possesses the advantage of providing
an upper bound on a given cost and therefore the degradation
of control performance incurred by system uncertainties can
be guaranteed to be less than this bound. When discussing
the optimality with respect to the guaranteed cost function,
it leads to the optimal guaranteed cost control problem. The
guaranteed cost control design is a somewhat mature research
topic of control community, but there are some new results
with the emerging ADP formulation [137]–[141]. Under the
ADP framework, we obtain a novel self-learning optimal
guaranteed cost control scheme.

When studying complex dynamical systems, we often par-
tition them into a number of interconnected subsystems for
convenience. The combination of these subsystems can be
seen as large-scale systems. As one of the effective con-
trol schemes for large-scale systems, the decentralized control
design has acquired much interest because of its evident
advantages, such as easy implementation and low dimen-
sionality [119], [142]–[147]. It is shown that the decentral-
ized stabilization for a class of interconnected nonlinear
systems is closely related to the ADP-based robust con-
trol design [119], [144]–[147]. In this sense, the self-learning
decentralized control scheme can be constructed with ADP
formulation. Note that, the robustness issue is also included in
the aforementioned guaranteed cost control and decentralized
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control designs. It will be illustrated that these three control
topics are closely connected under the proposed adaptive critic
framework.

D. Structure and Notations

Based on the existing results, this paper presents a survey of
the adaptive-critic-based robust control design of continuous-
time uncertain nonlinear systems. The ADP formulation for
nonlinear optimal regulation design is reviewed in Section II.
The ADP-based robust stabilization of nonlinear systems
with matched uncertainties, guaranteed cost control design of
unmatched case, and decentralized control of interconnected
case are reviewed in Sections III–V, respectively. After that,
further discussions on ADP-based robust control design and
some comparison remarks are given in Sections VI and VII,
respectively. Some practical applications are performed in
Section VIII to verify the effectiveness of the ADP-based
robust control methodology. Several notes on future perspec-
tives are included in Section IX and overall conclusions are
presented in Section X. Through this survey, it is hoped to
further promote the application of ADP-based methods to
intelligent control of more general nonlinear systems and the
construction of more intelligent control systems.

For consistency and convenience, the following notations
will be used throughout the survey. R represents the set of all
real numbers. R

n is the Euclidean space of all n-dimensional
real vectors. R

n×m is the space of all n×m real matrices. ‖ · ‖
denotes the vector norm of a vector in R

n or the matrix norm
of a matrix in R

n×m. In represents the n × n identity matrix.
λmax(·) and λmin(·) stand for the maximal and minimal eigen-
values of a matrix, respectively. Let � be a compact subset of
R

n, �u be a compact subset of R
m, and A (�) be the set of

admissible control laws (defined in [26], [28], [66], and [77])
on �. ρ is the parameter in the utility corresponding to the
uncertain term. L2[0,∞) denotes a space of functions where
the Lebesgue integral of the element is finite. � is the L2-gain
performance level. i is the symbol of the ith subsystem in
an interconnected plant, j is the sampling instant of the event-
triggering mechanism, and k is the iteration index of the policy
iteration algorithm. N

+ = {i}N
i=1 = {1, 2, . . . , N} denotes the

set of positive integers between 1 and N. N = {0, 1, 2, . . . }
stands for the set of all non-negative integers. “T” is used for
representing the transpose operation and ∇(·) � ∂(·)/∂x is
employed to denote the gradient operator.

II. REVIEW OF ADP-BASED CONTINUOUS-TIME

NONLINEAR OPTIMAL REGULATION

In this section, we present a brief review of the continuous-
time nonlinear optimal regulation method with neural network
implementation. The basic idea of the ADP method for optimal
control of continuous-time systems is involved therein.

A. Basic Optimal Control Problem Description

We consider a class of continuous-time nonlinear systems
with control-affine inputs given by

ẋ(t) = f (x(t)) + g(x(t))u(t) (1)

where x(t) ∈ � ⊂ R
n is the state vector, u(t) ∈ �u ⊂ R

m

is the control vector, and the system functions f (·) and g(·)
are differentiable in the arguments satisfying f (0) = 0. We
let the initial state at t = 0 be x(0) = x0 and x = 0 be the
equilibrium point of the controlled plant. The internal system
function f (x) is assumed to be Lipschitz continuous on the set
� in R

n which contains the origin. Generally, the nonlinear
plant (1) is assumed to be controllable.

In this survey, we consider the undiscounted optimal control
problem with infinite horizon cost function. We let

U(x(t), u(t)) = Q(x(t)) + uT(t)Ru(t) (2)

denote the utility function,2 where the scalar function Q(x) ≥ 0
and the m-dimensional square matrix R = RT > 0, and then
define the cost function as

J(x(t), u(t)) =
∫ ∞

t
U(x(τ ), u(τ ))dτ. (3)

For simplicity, the cost J(x(t), u(t)) is written as J(x(t)) or J(x)
in the sequel. What we always concern is the cost function
starting from t = 0, represented as J(x(0)) = J(x0).

During optimal control design, we want to derive the
optimal feedback control law u(x) to minimize the cost
function (3), where u(x) should be admissible.

Definition 1 [26], [28], [66], [77]: A control law u(x) is
said to be admissible with respect to (3) on �, denoted by
u ∈ A (�), if u(x) is continuous on �, u(0) = 0, u(x) stabilizes
system (1) on �, and J(x0, u) is finite for all x0 ∈ �.

For an admissible control law u(x) ∈ A (�), if the
related cost function (3) is continuously differentiable, then
the infinitesimal version is the nonlinear Lyapunov equation

0 = U(x, u(x)) + (∇J(x))T[ f (x) + g(x)u(x)] (4)

with J(0) = 0. Define the Hamiltonian of system (1) as

H(x, u(x),∇J(x)) = U(x, u(x)) + (∇J(x))T[ f (x) + g(x)u(x)].

(5)

Using Bellman’s optimality principle, the optimal cost function
J∗(x), specifically defined as

J∗(x) = min
u∈A (�)

∫ ∞

t
U(x(τ ), u(τ ))dτ (6)

satisfies the so-called continuous-time HJB equation

min
u∈A (�)

H
(
x, u(x),∇J∗(x)

) = 0. (7)

Based on optimal control theory, the optimal feedback control
law is computed by

u∗(x) = arg min
u∈A (�)

H(x, u(x),∇J∗(x))

= −1

2
R−1gT(x)∇J∗(x). (8)

2The selected state-related utility Q(x(t)) is more general than the classical
form xT(t)Qx(t), where Q = QT > 0. The control-related utility can be chosen
as the nonquadratic form [47], [121], [148], [149] instead of the traditionally
quadratic one uT(t)Ru(t) when encountering input constraints.
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Algorithm 1 Policy Iteration for Optimal Control Problem
1: Initialization

Let the initial iteration index be k = 0 and J(0)(·) = 0.
Give a small positive number ε as the stopping threshold.
Start iterating from an initial admissible control law u(0).

2: Policy Evaluation
Using the control law u(k)(x), solve the following nonlin-
ear Lyapunov equation

0 = U
(
x, u(k)(x)

) + (∇J(k+1)(x)
)T

ẋ (11)

with J(k+1)(0) = 0, where ẋ = f (x) + g(x)u(k)(x).
3: Policy Improvement

Based on J(k+1)(x), update the control law via

u(k+1)(x) = −1

2
R−1gT(x)∇J(k+1)(x). (12)

4: Stopping Criterion
If |J(k+1)(x) − J(k)(x)| ≤ ε, stop and obtain the approxi-
mate optimal control law; else, set k = k + 1 and go back
to Step 2.

Using the optimal control expression (8), the HJB equation
turns to be the form

0 = U
(
x, u∗(x)

) + (∇J∗(x)
)T[

f (x) + g(x)u∗(x)
]

= H
(
x, u∗(x),∇J∗(x)

)
, J∗(0) = 0. (9)

We notice that the optimal control law can be derived if the
optimal cost function can be obtained, i.e., (9) is solvable.
However, that is not the case. Since the continuous-time HJB
equation (9) is difficult to deal with in theory, it is not an
easy task to obtain the optimal control law (8) for general
nonlinear systems. This promotes the investigation of itera-
tive algorithms, such as policy iteration. We first construct
two sequences in terms of the cost function {J(k)(x)} and the
control law {u(k)(x)}, and then start iterating from an initial
admissible controller as follows:

u(0)(x) → J(1)(x) → u(1)(x) → J(2)(x) → · · · (10)

Generally, the policy iteration includes two important itera-
tive steps [13], i.e., policy evaluation based on (4) and policy
improvement based on (8), which are shown in Algorithm 1.

Note that the above policy iteration algorithm can finally
converge to the optimal cost function and optimal control law,
i.e., J(k)(x) → J∗(x) and u(k)(x) → u∗(x) as k → ∞. The
convergence proof has been given in [28], [82], and related
references therein. However, it is still difficult to obtain the
exact solution of the Lyapunov equation. This motivates us
to develop an approximate strategy to overcome the diffi-
culty [66], [68], [69], [76], [77], [81]–[85], [120], [126], [131],
which results in the ADP-based neural control design. Besides,
the knowledge of system dynamics f (x) and g(x) is needed to
perform the iterative process. Actually, some advanced meth-
ods have been proposed to relax this requirement, such as the
integral policy iteration algorithm [77], the neural identifica-
tion scheme [120], and the probing signal method [131], [135].
As discussed in the following sections, great efforts are still
being made in this aspect.

B. Neural Control Design With Stability Discussion

As is shown in Section I, several neural networks are often
incorporated in adaptive critic designs. Among them, the critic
network is regarded as the most fundamental element, even
though there may be other elements involved, such as model
network [52], [55] and action network [55], [66]. Different
configurations reflect distinct objectives of control designers.
The single critic structure is often employed to emphasize the
simplicity of the design procedure [118], [121].

During the neural network implementation, we take the uni-
versal approximation property into consideration and express
the optimal cost function J∗(x) on the compact set � as

J∗(x) = ωT
c σc(x) + εc(x) (13)

where ωc ∈ R
lc is the ideal weight vector, lc is the number

of neurons in the hidden layer, σc(x) ∈ R
lc is the activation

function, and εc(x) ∈ R is the reconstruction error.3 Then, the
gradient vector of the optimal cost function is

∇J∗(x) = (∇σc(x))
Tωc + ∇εc(x). (14)

Since the ideal weight is unknown, a critic neural network is
developed to approximate the optimal cost function as

Ĵ∗(x) = ω̂T
c σc(x) (15)

where ω̂c ∈ R
lc denotes the estimated weight vector. Similarly,

we derive the gradient vector as

∇ Ĵ∗(x) = (∇σc(x))
Tω̂c. (16)

Note that the specific structure of the critic network is always
an experimental choice with engineering experience and intu-
ition after noticing a tradeoff between control accuracy and
computational complexity [28]. Actually, selecting the proper
neurons for neural networks is more of an art than science [30].
Determining the number of neurons needed for a particular
application is still an open problem.

Considering the feedback formulation (8) and the neu-
ral network expression (13), the optimal control law can be
rewritten as a weight-related form

u∗(x) = −1

2
R−1gT(x)

[
(∇σc(x))

Tωc + ∇εc(x)
]
. (17)

Using the critic neural network (15), the approximate optimal
feedback control function is4

û∗(x) = −1

2
R−1gT(x)(∇σc(x))

Tω̂c. (18)

Based on the neural network formulation, the approximate
Hamiltonian is written as

Ĥ
(

x, û∗(x),∇ Ĵ∗(x)
)

= U
(
x, û∗(x)

) + ω̂T
c ∇σc(x)

[
f (x) + g(x)û∗(x)

]
. (19)

3For most of the general nonlinear cases, the ideal vector ωc and the ideal
scalar εc are unknown but they are both bounded.

4The control law function is directly computed as a closed-loop expression
of the critic weight vector in this single network structure. An additional
action network is built when implementing the synchronous policy iteration
algorithm [66], [88] to improve the sequential updates [77], [87] in terms of
saving computation time and avoiding dynamics knowledge.
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Fig. 1. ADP-based learning process and optimal control design diagram. The
solid line represents the signal flow while the dashed line denotes the neural
network back-propagating path. The dotted component indicates whether there
is an improvement module added to the learning criterion. If it is set to “N,”
there is no improvement and it is actually the traditional learning rule (21).
If it is set to “Y,” there will be an improved module (discussed later) during
the learning process.

Noticing (9), we define the error as

ec = Ĥ
(

x, û∗(x),∇ Ĵ∗(x)
)

− H
(
x, u∗(x),∇J∗(x)

)
(20)

so that the scalar ec = Ĥ(x, û∗(x),∇ Ĵ∗(x)). As given
in [26], [28], [66], and [82], we define ∂ec/∂ω̂c � φ ∈ R

lc

and find that the set {φ1, φ2, . . . , φlc} is linearly independent.
Now, we show how to train the critic network and design the

weight vector ω̂c to minimize the objective function normally
defined as Ec = (1/2)e2

c . Traditionally, based on (19), we can
employ the normalized steepest descent algorithm

˙̂ωc = −αc
1(

1 + φTφ
)2

(
∂Ec

∂ω̂c

)
= −αc

φ(
1 + φTφ

)2
ec (21)

to tune the weight vector, where the constant αc > 0 is the
learning rate while the term (1 + φTφ)2 is adopted for nor-
malization. The simple diagram of the ADP-based controller
design method is depicted in Fig. 1, where (21) is the basic
learning criterion of the neural network.

Defining the error vector between the ideal weight and the
estimated value as ω̃c = ωc − ω̂c, we can easily find that
˙̃ωc = − ˙̂ωc. Here, let us introduce two new variables φ1 =
φ/(1 + φTφ) and φ2 = 1 + φTφ with φ1 ∈ R

lc and φ2 ≥ 1.
Then, by using the tuning rule (21), we derive that the critic
weight error dynamics can be formulated as

˙̃ωc = −αcφ1φ
T
1 ω̃c + αc

φ1

φ2
ecH (22)

where the scalar term ecH represents the residual error due to
neural network approximation.

In adaptive critic designs, we intend to identify the param-
eters of the critic network so as to approximate the optimal
cost function. As commonly required within the adaptive con-
trol field [111], the persistence of excitation assumption is
naturally needed during adaptive critic learning. Note that
based on [66] and [67], the persistence of excitation condition
ensures that λmin(φ1φ

T
1 ) > 0, which is significant to perform

the closed-loop stability analysis. The following assumption is
commonly used such as in [66], [68], [69], [71], and [81].

Assumption 1: The control matrix g(x) is upper bounded
such that ‖g(x)‖ ≤ λg, where λg is a positive constant. On
the compact set �, the terms ∇σc(x), ∇εc(x), and ecH are all
upper bounded such that ‖∇σc(x)‖ ≤ λσ , ‖∇εc(x)‖ ≤ λε, and
|ecH| ≤ λe, where λσ , λε, and λe are positive constants.

Definition 2 [69], [71], [120]: For a nonlinear system ẋ =
f (x(t)), its solution is said to be UUB, if there exists a compact
set � ⊂ R

n such that for all x0 ∈ �, there exist a bound � and
a time T(�, x0) such that ‖x(t) − xe‖ ≤ � for all t ≥ t0 + T ,
where xe is an equilibrium point.

Lemma 1 [66]: For system (1) and the constructed neu-
ral network (15), we suppose that Assumption 1 holds. The
approximate optimal control law is given by (18) and the critic
network is tuned based on (21). Then, the closed-loop system
state and the critic weight error are UUB.

The UUB stability actually implies that after a transition
period T , the state vector remains within the ball of radius �

around the equilibrium point. Note that the proof of such UUB
stability is performed by employing the well-known Lyapunov
approach. Based on Lemma 1, the critic weight error ω̃c is
upper bounded by a finite constant. Then, according to (17)
and (18), we can find that

∥∥u∗(x) − û∗(x)
∥∥ = 1

2

∥∥R−1gT(x)
[
(∇σc(x))

Tω̃c + ∇εc(x)
]∥∥
(23)

is also upper bounded. This implies that the near-optimal con-
troller û∗(x) can converge to a neighborhood of the optimal
value u∗(x) with a finite bound. Besides, this bound can be
set adequately small by adjusting the related parameters like
the critic learning rate.

It is also worth mentioning that the previous ADP-based
optimal regulation method provides the basis for further
adaptive critic control designs. Note that the dynamical uncer-
tainties are not included in system (1). Considering the
universality of the uncertain phenomenon, it is indeed neces-
sary to extend the ADP-based optimal control design approach
to robust stabilization problems and investigate the robustness
of ADP-based controllers under uncertain environment.

III. ADP FOR NONLINEAR ROBUST CONTROL DESIGN

WITH MATCHED UNCERTAINTIES

This section mainly presents the results about ADP-
based robust control design for matched uncertain nonlinear
systems [116]–[133]. There are several categories of ADP-
based robust control strategies, such as the least-square-based
problem transformation method [116], [117], adaptive-design-
based problem transformation method [118]–[125], data-based
problem transformation method [126], [127], the combined
sliding mode control method [128], and the robust ADP
method [129]–[133]. We will not only exhibit the robustness of
the optimal controller with respect to the nominal system but
also discuss the optimality of the robust controller. Actually,
some of these methods [116], [117], [124], [130]–[133] can
be applied to unmatched robust control design.
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A. Problem Transformation Method

If dynamical uncertainties are brought into system (1) by
various changes during the operation of the controlled plant,
we have to pay attention to the robustness of the designed
controller. We consider a class of continuous-time nonlinear
systems subjected to uncertainties and described by

ẋ(t) = f (x(t)) + g(x(t))[u(t) + d(x(t))] (24)

where the term g(x)d(x) reflects a kind of dynamical uncer-
tainties matched with the control matrix. We assume d(0) = 0,
so as to keep x = 0 as an equilibrium of the controlled plant.
It is often assumed that the term d(x) is bounded by a known
function dM(x), i.e., ‖d(x)‖ ≤ dM(x) with dM(0) = 0.

Considering the uncertain nonlinear system (24), for cop-
ing with the robust stabilization problem, we should design a
control law u(x), such that the closed-loop state vector is sta-
ble with respect to dynamical uncertainties. In this section, by
adopting a positive constant ρ and specifying Q(x) = ρd2

M(x),
we show that the robust control problem can be addressed
by designing the optimal controller of the nominal plant (1),
where the cost function is still given by (3) and the modified
utility is selected as

UR(x(t), u(t)) = ρd2
M(x(t)) + uT(t)Ru(t). (25)

Note that in this situation, the optimal control function is
kept unchanged even if the modified utility is employed.
For system (1) and cost function (3) with modified utility
function (25), the Hamiltonian becomes

HR(x, u(x),∇J(x)) = ρd2
M(x) + uT(x)Ru(x)

+ (∇J(x))T[ f (x)+g(x)u(x)]. (26)

Observing the modified utility function (25) and using the opti-
mal control law (8) again, the HJB equation with respect to
the modified optimal control problem becomes

0 = ρd2
M(x) + (∇J∗(x)

)T
f (x)

− 1

4

(∇J∗(x)
)T

g(x)R−1gT(x)∇J∗(x)

= HR(
x, u∗(x),∇J∗(x)

)
, J∗(0) = 0. (27)

We first show the stability of the closed-loop form of the
nominal system based on the approximate optimal control law.

Theorem 1 [118]: For the nominal system (1) and cost
function (3) with modified utility function (25), the approxi-
mate optimal control law obtained by (18) guarantees that the
closed-loop system state is UUB.

Then, we show how to guarantee the robust stabilization
of the matched uncertain system (24) based on the designed
near-optimal control law.

Theorem 2 [123]: For the nominal system (1) and cost
function (3) with modified utility function (25), the approx-
imate optimal control obtained by (18) guarantees that the
closed-loop form of the uncertain nonlinear plant (24) pos-
sesses UUB stability if ρ > λmax(R).

Theorems 1 and 2 exhibit the closed-loop UUB sta-
bility of the nominal plant (1) and uncertain plant (24),
respectively, when applying the designed near-optimal con-
trol law (18). One should pay special attention to the fact

that the closed-loop form of the uncertain plant is UUB when
using the approximate optimal controller, not the same as the
asymptotic stability result when adopting exactly the optimal
controller [118]. The proof is performed via the Lyapunov
stability theory by regarding J∗(x) as the Lyapunov function
candidate.5

Next, we discuss the optimality of the robust controller by
adding a feedback gain π to the optimal feedback control
law (8) of system (1) such that

ū(x) = πu∗(x) = −1

2
πR−1gT(x)∇J∗(x). (28)

As is shown in [119], [120], and [126], the feedback con-
trol law computed by (28) ensures the closed-loop form of
system (1) to be asymptotically stable if π ≥ 1/2. Moreover,
there exists a positive number π∗

1 ≥ 1, such that when the
gain value π > π∗

1 , the control law derived by (28) ensures
that the closed-loop form of the uncertain system (24) is also
asymptotically stable (i.e., achieves robustness).

For system (24), we define a cost function as [119], [120]

J̄(x0) =
∫ ∞

0

{
Q̄(x(τ )) + 1

π
ūT(x(τ ))Rū(x(τ ))

}
dτ (29)

where the new state-related utility is

Q̄(x) = d2
M(x) − (∇J∗(x)

)T
g(x)d̄(x)

+ 1

4
(π − 1)

(∇J∗(x)
)T

g(x)R−1gT(x)∇J∗(x) (30)

and the term d̄(x) therein satisfying d(x) = R1/2d̄(x). By
introducing (1/(π − 1))dT(x)d(x) to (30) and considering the
condition ‖d(x)‖ ≤ dM(x), we can obtain the inequality

Q̄(x) ≥ π − 2

π − 1
d2

M(x). (31)

It is clear that there exists a positive number π∗
2 ≥ 2 rendering

the function Q̄(x) to be positive definite when π > π∗
2 . In this

sense, the cost function (29) for the uncertain system (24) is
well defined.

Theorem 3 [119], [120]: Considering system (24) and the
new cost function (29), there exists a positive number π∗ �
max{π∗

1 , π∗
2 } such that the control law (28) achieves optimality

if the feedback gain π > π∗. That is to say, (28) is the robust
optimal control law of the uncertain dynamics plus a specified
cost function.

Here, we find that the value of the feedback gain π can
affect the control performance of the nominal and uncertain
systems. To be clear, the relationship between the feedback
gain and the controller achievement can be seen in Table I.

According to Theorem 3, we should perform the optimal
control design regarding the nominal plant and then attain the
robust optimal feedback stabilization of the original system.
Therefore, we can employ the ADP method to design the
robust optimal controller using actor-critic structure and neural
network technique.

5According to the definition of the optimal cost function (6), J∗(x) > 0 for
any x �= 0 and J∗(x) = 0 when x = 0, which means that J∗(x) is a positive
definite function.



3436 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 10, OCTOBER 2017

TABLE I
RELATIONSHIP BETWEEN THE GAIN AND CONTROLLER ACHIEVEMENT

Algorithm 2 Model-Free Integral Policy Iteration Scheme
1: Initialization

Let the initial iteration index be k = 0 and J(0)(·) = 0.
Give a small positive number ε as the stopping threshold.
Start iterating from an initial admissible control law u(0).

2: Policy Evaluation and Improvement
Based on the control law u(k)(x), solve J(k+1)(x) and
u(k+1)(x) simultaneously from the integral equation

J(k+1)(x(t + T))−J(k+1)(x(t))

= −2
∫ t+T

t
u(k+1)T(τ )Rϑ(τ)dτ

−
∫ t+T

t

{
ρd2

M(x(τ )) + u(k)T(τ )Ru(k)(τ )
}
dτ. (34)

3: Stopping Criterion
If |J(k+1)(x) − J(k)(x)| ≤ ε, stop and obtain the approxi-
mate optimal control law; else, set k = k + 1 and go back
to Step 2.

B. Other ADP-Based Robust Control Methods

To reduce the requirement of the nominal dynam-
ics, the integral policy iteration algorithm [107]–[109]
can be employed to develop the ADP-based robust con-
troller [126], [127]. To this end, we should consider the
nonlinear system explored by a known bounded probing signal
ϑ(t) given as follows:

ẋ(t) = f (x(t)) + g(x(t))[u(t) + ϑ(t)]. (32)

The online model-free integral policy iteration scheme is given
in Algorithm 2. Different from the Algorithm 1, it iterates from
k = 0 with the following mode:

u(0)(x) →
{

J(1)(x), u(1)(x)
}

→
{

J(2)(x), u(2)(x)
}

→ · · ·
(33)

Since the terms f (x) and g(x) do not appear in the integral
equation (34), it is significant to find that the integral policy
iteration can be conducted without using the system dynamics.

In [128], the combined sliding mode controller is designed
as u = ua + us, where the former part ua is the ADP-based
control law used to stabilize the sliding mode dynamics and
guarantee a nearly optimal performance while the latter part
us is a discontinuous control action designed to reduce the
effect of disturbance and ensure the reachability of the sliding
manifold. It incorporates the idea of sliding mode control and
extends the results of [118], [120], [121], [124], and [125].

The robust ADP method [129]–[133] can be viewed as an
important extension of classical ADP to linear and genuinely

nonlinear systems with dynamical uncertainties. The backstep-
ping, robust redesign, and small-gain techniques in modern
nonlinear control theory are incorporated into the robust ADP
method, such that the system model is input-to-state stable
with an arbitrarily small gain [134]. In [131], a class of
genuinely nonlinear systems were considered with the form

ς̇ = δς (ς, x) (35a)

ẋ = f (x) + g(x)[u + δ(ς, x)] (35b)

where ς is the unmeasurable part of the state, δς and δ are
unknown locally Lipschitz functions. The design objective
is to find an online control law that stabilizes the uncertain
system at the origin. Moreover, in the absence of the dynamic
uncertainty (i.e., δ = 0 and the ς -subsystem is absent), the
designed control law becomes the optimal controller that min-
imizes the cost function of the nominal system. Here, the
robustness is for the uncertain system while the optimality
is discussed with the nominal system. Furthermore, the robust
ADP methodology is also extended to nonlinear systems with
unmatched dynamic uncertainties [131] and subsequently to
large-scale systems [132], [133]. Hence, systematic robust
ADP-based online learning algorithms have been proposed to
derive stabilizing controllers with appropriate optimality.

At the end of this section, we present the comparison of
several ADP-based robust control methods, which is shown in
Table II, with the uncertain term and main techniques included.

IV. ADP FOR NONLINEAR GUARANTEED COST CONTROL

DESIGN WITH UNMATCHED UNCERTAINTIES

Section III mainly focuses on the ADP-based robust control
of nonlinear systems with matched uncertainties, which does
not represent the general situation. We should also consider
uncertain nonlinear systems with unmatched uncertainties.
Though in [116], [117], [124], and [130]–[133], the proposed
robust control methods are applicable to nonlinear systems
with unmatched uncertainties, only the robustness is discussed,
which does not include the cost function with respect to
the uncertain plant. In guaranteed cost control design, we
not only concern with the robustness, but also pay atten-
tion to the boundedness of the corresponding cost function.
Based on [137]–[141], we revisit ADP method for nonlinear
guaranteed cost control design in this section.

Consider a class of continuous-time uncertain nonlinear
dynamical systems given by

ẋ(t) = f (x(t)) + g(x(t))u(t) + �f (x(t)) (36)

where �f (x(t)) is the nonlinear perturbation of the corre-
sponding nominal system formed as (1). Before proceeding,
we give an assumption to the system uncertainty as used
in [137], [138], [150], and [151].

Assumption 2: The dynamical uncertainty �f (x) satisfies

�f (x) = G(x)fG(ϕ(x)) (37a)

f T
G(ϕ(x))fG(ϕ(x)) ≤ yT(ϕ(x))y(ϕ(x)) (37b)

where G(·) ∈ R
n×r and ϕ(·) with ϕ(0) = 0 are known func-

tions showing the architecture of uncertain term, fG(·) ∈ R
r is
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TABLE II
COMPARISON OF SEVERAL ADP-BASED ROBUST CONTROL METHODS, INCLUDING THE UNCERTAIN TERM AND THE MAIN TECHNIQUES THEREIN

an uncertain function satisfying fG(0) = 0, and y(·) ∈ R
r is a

given function with y(0) = 0.
We consider system (36) with cost function defined as in (3)

and utility function given by (2). In order to handle the guaran-
teed cost control design, we should derive a feedback control
law u(x) and determine an upper bound function �(u), such
that the closed-loop system is robustly stable and meanwhile
the related cost function satisfies J ≤ �. Note that �(u) is
called the guaranteed cost function. Only when �(u) is mini-
mized, it becomes the optimal guaranteed cost and is denoted
as �∗. Besides, the corresponding controller ŭ∗ is called the
optimal guaranteed cost control law. In this sense, we focus
on deriving �∗ = minu �(u) and ŭ∗ = arg minu �(u).

According to [137] and [138], it has been proven that
designing the optimal guaranteed cost controller of system (36)
can be transformed into deriving the optimal controller of the
nominal system (1) and the guaranteed cost of the uncertain
nonlinear dynamics is closely related to the modified cost func-
tion of the nominal plant. These facts can be verified from the
following lemma, which is derived by rechecking and relaxing
the conditions of [152].

Lemma 2 [137], [138]: Assume that there exist a continu-
ously differentiable cost function V(x) satisfying V(x) > 0 for
all x �= 0 and V(0) = 0, a bounded function �(x) satisfying
�(x) ≥ 0, as well as a feedback control function u(x) such
that

(∇V(x))T�f (x) ≤ �(x) (38a)

U(x, u) + �(x) + (∇V(x))T( f + gu) = 0. (38b)

Then, under the action of the feedback control function u(x),
there exists a neighborhood of the origin such that the original
uncertain system (36) is asymptotically stable. Moreover

J(x(t), u) ≤ V(x(t)) = J̆(x(t), u) (39)

where J̆(x(t), u) is defined by

J̆(x(t), u) =
∫ ∞

t

{
U(x(τ ), u(x(τ ))) + �(x(τ ))

}
dτ (40)

as the modified cost function of system (1).
Lemma 2 exhibits the existence of the guaranteed cost func-

tion with respect to the uncertain plant (36). Actually, the
function �(x) suitably bounds the term (∇V(x))T�f (x), which
is important to design the optimal guaranteed cost controller.

TABLE III
UTILITY FUNCTIONS OF THE DIFFERENT CONTROL TOPICS

For providing a specific form of �(x), we define6

�(x) = yT(ϕ(x))y(ϕ(x)) + 1

4
(∇V(x))TG(x)GT(x)∇V(x) (41)

based on [137], [138], and [150]–[152] and find that (38a)
is satisfied according to Assumption 2. Moreover, we ought
to minimize the upper bound function J̆(x0, u) regarding u so
as to determine the optimal guaranteed cost controller. It also
means that, the effort should be put on designing the opti-
mal controller of system (1), where V(x(t)) = J̆(x(t), u) is
seen as the cost function and UG(x, u) = U(x, u) + �(x) is
regarded as the utility function. The comparison of different
utility functions of normal optimal control, matched robust
control, and guaranteed cost control is given in Table III.
Note that the choice of the utility function is not unique.
Fox example, in matched robust control design, one can also
select ρd2

M(x) + U(x, u) as the utility [127]. In many situa-
tions, this distinction just reflects the objective and interest of
designers.

For system (1) and cost function (40), we can obtain

U(x, u) + �(x) + (∇ J̆(x)
)T

( f + gu) = 0. (42)

Clearly, (42) is formed the same as (38b). Hence, (38b) or (42)
is an infinitesimal version of the modified cost function (40)
and is nothing but the nonlinear Lyapunov equation. In such
situation, we define the Hamiltonian as the following form:

HG(x, u(x),∇ J̆(x)) = U(x, u(x)) + �(x)

+ (∇ J̆(x)
)T

[ f (x) + g(x)u(x)]. (43)

The optimal cost function is defined similarly as (6) and the
optimal feedback controller is still formed as (8), where the
modified HJB equation of this situation becomes

0 = U(x, u∗) + (∇ J̆∗(x))T(
f + gu∗) + yT(ϕ(x))y(ϕ(x))

+ 1

4

(∇ J̆∗(x)
)T

G(x)GT(x)∇ J̆∗(x) (44)

6The form of �(x) is not unique. One can also introduce an adjustable
positive coefficient to build a different bounded function and then define a
new utility (and cost function) and subsequently construct the parameterized
HJB equation [139].
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with J̆∗(0) = 0. The following theorem exhibits how to derive
the optimal guaranteed cost controller for system (36).

Theorem 4 [137], [138]: Consider the uncertain
system (36) with cost function (3) and the correspond-
ing nominal system (1) with cost function (40). Suppose
that the modified HJB equation (44) has a continuously
differentiable solution J̆∗(x). Then, for any u ∈ A (�), the
cost function (3) satisfies J(x0, u) ≤ �(u), where

�(u) � J̆∗(x0) +
∫ ∞

0

(
u − u∗)T

R
(
u − u∗)dτ. (45)

Furthermore, the optimal guaranteed cost function of the orig-
inal nonlinear system is �∗ = �(u∗) = J̆∗(x0). Meanwhile,
the optimal guaranteed cost control law is just ŭ∗ = u∗.

According to Theorem 4, once the modified HJB equa-
tion (44) with respect to system (1) is solved, we can construct
the optimal guaranteed cost control strategy of the uncertain
plant (36). The ADP-based method can be employed to serve
as the important role of solving the modified optimal control
problem. Note that the finite-horizon guaranteed cost con-
trol [139] and guaranteed cost tracking control [140] are also
studied under the framework of ADP.

V. ADP FOR NONLINEAR DECENTRALIZED CONTROL

DESIGN WITH MATCHED INTERCONNECTIONS

In this section, we present how to apply ADP method
to large-scale systems by designing the decentralized con-
troller for nonlinear dynamics with matched and bounded
interconnections [119], [144]–[147]. This is also closely
related to the ADP-based robust control design. Note that in
this section, the subscript symbol i denotes the ith subsystem.

Consider a nonlinear system composed of N subsystems
with interconnections given by

ẋi(t) = fi(xi(t)) + gi(xi(t))
[
ūi(t)+Ii(X (t))

]
, i ∈ N

+ (46)

where xi(t) ∈ �i ⊂ R
ni and ūi(t) ∈ �ui ⊂ R

mi are the state
variable and the control variable of the ith subsystem, respec-
tively, and X = [xT

1 , xT
2 , . . . , xT

N]T ∈ R
N is the overall state

with N = n1 + n2 + · · · + nN . Note that for the subsystem i,
fi(xi), gi(xi), and gi(xi)Ii(X ) stand for the nonlinear internal
dynamics, the control function matrix, and the interconnected
term, respectively. Here, x1, x2, . . . , xN are called local system
states while ū1, ū2, . . . , ūN are called local control inputs. Let
xi(0) = xi0 be the initial state vector with respect to the ith
subsystem, i ∈ N

+.
For the interconnected terms, we assume that

‖Ii(X )‖ ≤
N∑

�=1

βi��i�(x�), i ∈ N
+ (47)

where βi�, i, � ∈ N
+ are non-negative constants and

�i�(x�), i, � ∈ N
+ are positive semidefinite functions. Defining

��(x�) = max{�1�(x�), �2�(x�), . . . , �N�(x�)}, � ∈ N
+, we

further obtain the relationship

‖Ii(X )‖ ≤
N∑

�=1

β̄i���(x�), i ∈ N
+ (48)

which satisfies β̄i���(x�) ≥ βi��i�(x�) with β̄i�, i, � ∈ N
+

being non-negative constants. Note that (48) is important to
perform adaptive decentralized control design since it relates
the interconnection term with a combination of separate terms
corresponding to each subsystem.

We focus on finding the decentralized feedback control strat-
egy of system (46). To this end, we should derive N state
feedback control laws ū1(x1), ū2(x2), . . . , ūN(xN), such that
the constituted control pair (ū1(x1), ū2(x2), . . . , ūN(xN)) can
stabilize system (46). It has been proven in [144], the decen-
tralized control strategy can be developed through tackling
the optimal feedback stabilization with respect to N isolated
subsystems described by

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(t), i ∈ N
+. (49)

Note that the basic assumptions with respect to the
interconnected plant (46) and the isolated plants (49), in terms
of equilibrium, differentiability, Lipschitzness, and control-
lability, can be found by referring to [144]. The designed
feedback control ui(xi) should be admissible with ui ∈
Ai(�i), i ∈ N

+, which is defined similar as A (�) but con-
sidering the subsystem symbol. Letting �i(xi) ≤ Qi(xi) and
according to [144], we can derive a set of optimal feed-
back control laws u∗

i (xi), i ∈ N
+ to minimize the local cost

functions

Ji(xi(t), ui(t)) =
∫ ∞

t
UD

i (xi(τ ), ui(τ ))dτ, i ∈ N
+ (50)

where the utility is

UD
i (xi(t), ui(t)) = Q2

i (xi(t)) + uT
i (t)Riui(t) (51)

and Ri = RT
i > 0. Note that when starting from t = 0, these

cost functions becomes Ji(xi(0)), i.e., Ji(xi0), i ∈ N
+. Then,

using the symbol of optimal cost functions J∗
i (xi), that is

J∗
i (xi) = min

ui∈Ai(�i)
Ji(xi, ui), i ∈ N

+ (52)

and considering the expression of the optimal control laws

u∗
i (xi) = −1

2
R−1

i gT
i (xi)∇J∗

i (xi), i ∈ N
+ (53)

the HJB equations of isolated subsystems are given as

0 = Q2
i (xi) + (∇J∗

i (xi)
)T

fi(xi)

− 1

4

(∇J∗
i (xi)

)T
gi(xi)R

−1
i gT

i (xi)∇J∗
i (xi), i ∈ N

+ (54)

with J∗
i (0) = 0. The main decentralized stabilization result is

shown as follows.
Theorem 5 [144]: For isolated subsystems (49) and cost

functions (50), the optimal control laws are given by (53).
There exist N positive numbers, ζ1, ζ2, . . . , ζN , such that the
state feedback control laws

ūi(xi) = ζiu
∗
i (xi) = −1

2
ζiR

−1
i gT

i (xi)∇J∗
i (xi), i ∈ N

+ (55)

can form a control pair (ū1(x1), ū2(x2), . . . , ūN(xN)), which is
the decentralized control scheme of the original interconnected
system (46).
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TABLE IV
SUMMARY OF ADP METHOD FOR OPTIMAL CONTROL, ROBUST STABILIZATION, GUARANTEED COST

CONTROL, AND DECENTRALIZED STABILIZATION

In this circumstance, we point out that for coping with the
optimal feedback stabilization, the Hamiltonian of system (49)
should be defined as

HD
i (xi, ui(xi),∇Ji(xi))

= Q2
i (xi) + uT

i (xi)Riui(xi)

+ (∇Ji(xi))
T[ fi(xi) + gi(xi)ui(xi)], i ∈ N

+. (56)

Then, we turn to compute the optimal controllers formed
as (53) based on the idea of ADP and after that we can con-
struct the decentralized control law. Subsequently, as shown
in [145], when the dynamics of isolated subsystems are
unknown, the model-free decentralized control scheme of
interconnected systems can also be derived. Similar to the
robust optimal control design, the decentralized optimal con-
trol problem for a class of large-scale systems can be addressed
with ADP formulation as well [119].

So far, we have discussed the ADP method for optimal reg-
ulation, robust stabilization, guaranteed cost control design,
and decentralized stabilization for different kinds of nonlin-
ear plants. A summary can be found in Table IV, describing
the important properties, i.e., convergence, stability, optimality,
robustness, and boundedness of the four control topics.

Note that in Table IV, the ADP-based robust control cannot
always achieve optimality of uncertain systems at the current
stage, so it is “sometimes optimality.” In addition, the ADP-
based guaranteed cost control can also fulfill the boundedness
of the guaranteed cost function, so it is “including bounded-
ness.” Incidentally, though some expected properties are not
pointed out in Table IV, it is not implied that they are unreach-
able goals. For example, the decentralized control design of
interconnected systems with unmatched interconnections is
worth performing further study.

VI. ADVANCED TECHNIQUE AND FURTHER DISCUSSION

FOR ADP-BASED ROBUST CONTROL DESIGN

In this section, we present an advanced technique for
ADP-based nonlinear robust control design to save the com-
munication resource and the further discussion on improving
the learning rule of the critic network.

A. Saving the Communication Resource

With the rapid development of network-based systems,
more and more control loops are closed through com-
munication mediums. The growing interest in saving the
computational load of networked control systems brings an
extensive attention to the development of event-triggering
mechanism [153], [154]. Using event-driven approaches, the

actuators are updated only when certain conditions are satisfied
to guarantee the stability performance and control efficiency
of the target plants. Hence, it has a good potential to combine
event-triggering mechanism with adaptive critic technique, so
as to save the computational burden and meanwhile attain
intelligent optimization [155]–[162]. A novel optimal adaptive
event-triggered method for nonlinear continuous-time systems
was proposed based on actor-critic framework and neural
network approximation [155]. An event-triggered state feed-
back neural controller of nonlinear continuous-time systems
was designed in [156]. By measuring the input–output data,
an event-triggered ADP control approach for continuous-time
affine nonlinear systems with unknown internal states was
developed in [157]. An event-triggered optimal control method
for partially unknown systems with input constraints was
proposed based on ADP [159]. Furthermore, by incorporating
dynamical uncertainties, the event-based robust control design
has also been considered [160]–[162]. Therein, the event-
driven adaptive robust control scheme of nonlinear systems
with uncertainties via neural dynamic programming was devel-
oped. In this part, we focus on discussing how to save the
communication resource by using the event-triggered mech-
anism and aim to establish the event-based adaptive robust
control method for nonlinear systems.

Under the framework of event-triggered control mechanism,
we define a monotonically increasing sequence of trigger-
ing instants {sj}∞j=0, where sj represents the jth consecutive
sampling instant, j ∈ N. Then, the output of the sampling com-
ponent is a sequence of sampled state denoted as x̂j = x(sj) for
all t ∈ [sj, sj+1). Define the gap function between the current
and the sampled states as the event-triggering error

ej(t) = x̂j − x(t),∀t ∈ [
sj, sj+1

)
. (57)

During the event-triggered control design, the triggering
instants are determined by a triggering condition. An event is
triggered when the triggering condition is violated at t = sj. At
every triggering instant, the system state is sampled so that the
event-triggering error ej(t) is reset to zero, and then, the feed-
back control law u(x(sj)) = u(x̂j) � μ(x̂j) is updated. Note that
the control sequence {μ(x̂j)}∞j=0 becomes a continuous-time
signal by adopting a component of zero-order hold. A diagram
of the event-based nonlinear control design under networked
environment is depicted in Fig. 2.

Next, we revisit the robust control design of the uncertain
system (24) but based on the event-triggering mechanism. The
cost function is still defined as (3) and the utility is set as

ŪR(x(t), u(t)) = ρd2
M(x(t)) + xT(t)Qx(t) + uT(t)Ru(t) (58)
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Fig. 2. Structure of the network-based event-triggered control design. The
sampling component can be built via the function of a communication channel.
It, together with the zero-order hold, forms the main components of time/event
transformation.

where Q = QT > 0. In the time-triggered case, with the new
utility (58), the HJB equation can be written as

H̄R(
x, u∗(x),∇J∗(x)

) = ρd2
M(x) + xTQx + u∗T(x)Ru∗(x)

+ (∇J∗(x)
)T[

f (x) + g(x)u∗(x)
]
.

(59)

Considering the fact that x̂j = x(t)+ej(t) and using the control
signal μ(x̂j), the nominal system (1) becomes a sampled-data
version as follows:

ẋ(t) = f (x(t)) + g(x(t))μ
(
x(t) + ej(t)

)
,∀t ∈ [

sj, sj+1
)
. (60)

With the event-triggering mechanism, the control signal is
derived based on the sampled state x̂j instead of the real state
vector x(t). In this circumstance, the time-based optimal feed-
back control function (8) becomes the event-triggered version
given by

μ∗(x̂j
) = −1

2
R−1gT(

x̂j
)∇J∗(x̂j

)
(61)

where ∇J∗(x̂j) = (∂J∗(x)/∂x)|x=x̂j . Then, the HJB equation
can be written as

HE(
x, μ∗(x̂j

)
,∇J∗(x)

)
= ρd2

M(x) + xTQx + μ∗T(
x̂j

)
Rμ∗(x̂j

)
+ (∇J∗(x)

)T[
f (x) + g(x)μ∗(x̂j

)]
= ρd2

M(x) + xTQx + (∇J∗(x)
)T

f (x)

− 1

2

(∇J∗(x)
)T

g(x)R−1gT(
x̂j

)∇J∗(x̂j
)

+ 1

4

(∇J∗(x̂j
))T

g
(
x̂j

)
R−1gT(

x̂j
)∇J∗(x̂j

)
. (62)

It is important to note that (62) is called the event-triggered
HJB equation, which in general, is not equal to zero. Instead,
the time-triggered HJB equation (59) and the event-triggered
HJB equation (62) satisfy the relationship

H̄R(x, u∗(x),∇J∗(x)) − HE(
x, μ∗(x̂j

)
,∇J∗(x)

)
= −[

u∗(x) − μ∗(x̂j
)]T

R
[
u∗(x) − μ∗(x̂j

)]
. (63)

The event-triggered optimal control approach [155] pro-
vides the possibility of extending its result to robust control
design. Now, we present the main theorem reflecting the
transformation of the robust and optimal control problems
under event-triggering mechanism. The following assumption
is needed.

Assumption 3 [155], [160]: The control law u(x) is
Lipschitz continuous with respect to the event-triggering error

‖u(x(t)) − u
(
x̂j

)‖
= ‖u(x(t)) − u(x(t) + ej(t))‖ ≤ Lu‖ej(t)‖ (64)

where Lu a positive real constant.
Theorem 6 [160]: Suppose that Assumption 3 holds. For

the uncertain nonlinear system (24), consider its nominal
system (1) with cost function (3), utility (58), and the sampled-
data system (60). The sampled-data control law is developed
by (61) for all t ∈ [sj, sj+1), j ∈ N. If the triggering condition
is defined as

‖ej(t)‖2 ≤ (1 − η)λmin(Q)‖x‖2

2‖R‖2L2
u

− (2‖R‖2 − ρ)d2
M(x)

2‖R‖2L2
u

� eT (65)

where the matrix R satisfies R = RTR, eT is the threshold,
and η ∈ (0, 1) is a design parameter of the sample frequency,
then, with the event-triggered control law (61), the system (24)
achieves robust stabilization.

Note that according to [155], the triggering condition can
be given as

‖ej(t)‖2 ≤ (1 − η)λmin(Q)‖x‖2

2‖R‖2L2
u

� ēT (66)

when studying the event-triggered optimal control problem
without considering the uncertain term but using another
threshold ēT . It is also shown that in such event-triggered
control design problem, by increasing η to close to 1, one can
asymptotically approach the performance of the time-triggered
controller (8) [155].

If we perform neural network implementation based on the
critic component (15), the event-triggered approximate optimal
control law can be formulated as

μ̂∗(x̂j
) = −1

2
R−1gT(

x̂j
)(∇σc

(
x̂j

))T
ω̂c. (67)

Then, a new triggering condition with a different threshold êT

can be derived during the adaptive critic control implementa-
tion and the UUB stability of the closed-loop system can be
analyzed when applying the event-based controller (67) [160].

The ADP-based event-triggered robust control design can
be implemented in Algorithm 3. There are two main phases
included therein, i.e., the adaptive critic learning and the robust
control implementation. Note that the neural learning phase
and the robust implementation phase are separated and are
performed successively. However, there is a transmission of
the weight vector between them. The critic network is first
trained to facilitate learning the event-triggered optimal control
law of the nominal system. After that, the converged weights
are applied to achieve the event-triggered robust stabilization
of the original controlled plant with uncertainties.

At last, it is worth mentioning that, using the comparison
lemma [154], [163], the minimal intersample time

�smin = min
j∈N

{
sj+1 − sj

}
(68)
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Algorithm 3 ADP-Based Event-Triggered Robust Control
1: Select an appropriate activation function σc(x) and initial-

ize the weight vector of the critic neural network.
2: Choose the learning rate αc and conduct adaptive critic

learning by employing the weight updating rule and the
triggering condition with threshold êT .

3: Keep the converged weight vector unchanged after the
online learning process and then go to the robust control
implementation.

4: Choose the constant parameter Lu and perform the robust
adaptive critic control design by considering the triggering
condition (65) with threshold eT .

5: Obtain the event-triggered robust control law and then stop
the algorithm.

is proven to be lower bounded by a nonzero positive con-
stant [161]. Therefore, the infamous Zeno behavior7 of the
event-triggered robust control design is avoided expectedly.

B. Improving the Critic Learning Rule

The traditional adaptive-critic-based design always depends
on the choice of an initial stabilizing controller [58], [66],
[120], [131], [132], [157], [160]–[162], which is difficult to
obtain in practical control activities and also narrows the appli-
cation scope of ADP to a certain extent. Generally, we should
choose a specified weight vector to create an initial stabiliz-
ing control law by the trial-and-error approach and then start
the training process. Otherwise, an unstable control may lead
to the instability of the closed-loop system. This fact moti-
vates researchers’ effort to relax the initial condition [71],
[119], [137], [140], [164]–[166], where the interesting idea
was from [164]. Therein, a piecewise function is utilized to
reduce the proposed initial condition and check the stability,
but the theoretical proof is a bit complicated. In this section,
we focus on improving the critic learning rule to reduce the
initial condition with a simpler manner. To this end, we add
a meaningfully reinforced but easily accessible component to
the traditional adaptive critic framework, so as to achieve the
online optimal regulation and then robust stabilization. An
assumption is given here which is the same as [71], [119],
[137], [140], and [164]–[166].

Assumption 4: Consider system (1) with cost function (3)
and its closed-loop form with the action of the optimal feed-
back control (17). Let Js(x) be a continuously differentiable
Lyapunov function candidate that satisfies

J̇s(x) = (∇Js(x))
T[

f (x) + g(x)u∗(x)
]

< 0. (69)

There exists a positive definite matrix � ∈ R
n×n such that

(∇Js(x))
T[

f (x) + g(x)u∗(x)
]

= −(∇Js(x))
T�∇Js(x) ≤ −λmin(�)‖∇Js(x)‖2. (70)

Note that during the implementation process, Js(x) can be
obtained by suitably selecting a polynomial with respect to
the state vector, such as the form Js(x) = (1/2)xTx.

7The minimal intersample time might be zero which causes the accumula-
tion of interexecution times [153], [154].

When applying the approximate optimal control (18) to the
controlled plant, we should certainly exclude the case that the
closed-loop system is unstable, that is

(∇Js(x))
T[

f (x) + g(x)û∗(x)
]

> 0. (71)

Hence, we utilize an additional term to improve the training
process by adjusting J̇s(x) along the negative gradient direction
with respect to ω̂c, which is

˙̂ωs
c = −αs

∂
[
(∇Js(x))T(

f (x) + g(x)û∗(x)
)]

∂ω̂c
(72)

where αs > 0 is the adjusting rate of the additional stabi-
lizing term. This parameter affects the extent of the criterion
improvement and can be determined by control practitioners
according to their design objectives. Therefore, the improved
critic learning rule is developed by [123], [167], [168]

˙̂ωI
c = −αc

φ(
1 + φTφ

)2
ec + ˙̂ωs

c. (73)

The learning rule (73) reflects an efficient improvement to the
traditional criteria, such as those used in [66], [71], [119],
[120], [137], [140], [157], [160]–[162], and [164]–[166]. It
highlights the elimination of the original stabilizing control
law. As a result, the weight vector of the critic network can
be simply initialized as zero when we implement the adaptive
neural control algorithm. Using Assumption 4, the closed-
loop stability with the improved learning rule can also be
analyzed.

VII. COMPARISON REMARKS BETWEEN ADP-BASED

ROBUST CONTROL AND H∞ CONTROL DESIGNS

As is shown in previous sections, the wide existence
of uncertain parameters or disturbances of the dynamical
plant always leads to the necessity of designing robust con-
trollers. There exists a class of H∞ control methods [169],
which focuses on constructing the worst-case control law for
specified plants including additive disturbances or dynamical
uncertainties. From the point of minimax optimization, the
H∞ control problem can be formulated as a two-player zero-
sum differential game. In order to obtain a controller that
minimizes the cost function in the worst-case disturbance, it
incorporates the requirement of finding the Nash equilibrium
solution corresponding to the Hamilton–Jacobi–Isaacs (HJI)
equation. However, it is intractable to acquire the analytic solu-
tion for general nonlinear systems. This issue is similar to the
difficulty of solving the HJB equation in nonlinear optimal
regulation design discussed in the previous sections. Hence,
using the idea of ADP, iterative methods have been developed
to solve the H∞ control problems. Similar to the adaptive critic
optimal regulation, this is known as the adaptive-critic-based
H∞ control design (see [170]–[180] and the related references
therein).

Consider a class of continuous-time affine nonlinear systems
with external perturbations described by

ẋ(t) = f (x(t)) + g(x(t))u(t) + h(x(t))v(t) (74a)

z(t) = Q(x(t)) (74b)
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where v(t) ∈ R
q is the perturbation vector with v(t) ∈

L2[0,∞), z(t) ∈ R
p is the objective output, and h(·) is

differentiable in its argument.
In nonlinear H∞ control design, we need to find a feed-

back control law u(x) such that the closed-loop dynamics is
asymptotically stable and has L2-gain no larger than �, that is
∫ ∞

0

[‖Q(x(τ ))‖2 + uT(τ )Ru(τ )
]
dτ ≤ �2

∫ ∞

0
vT(τ )Pv(τ )dτ

(75)

where ‖Q(x)‖2 = xT(t)Qx(t) and Q, R, and P are symmetric
positive definite matrices with appropriate dimensions. If the
condition (75) is satisfied, the closed-loop system is said to
have L2-gain no larger than �. Note that the solution of H∞
control problem is the saddle point of zero-sum game theory
and is denoted as a pair of laws (u∗, v∗), where u∗ and v∗
are called the optimal control and the worst-case disturbance,
respectively.

Based on [170]–[180], we generally let the utility be

U(x(t), u(t), v(t)) = xT(t)Qx(t) + uT(t)Ru(t) − vT(t)Pv(t)

(76)

and define the infinite horizon cost function as

J (x(t), u, v) =
∫ ∞

t
U(x(τ ), u(τ ), v(τ ))dτ. (77)

The design goal is to find the feedback saddle point solution
(u∗, v∗), such that the Nash condition

J ∗(x0) = min
u

max
v

J (x0, u, v) = max
v

min
u

J (x0, u, v) (78)

holds, where the asterisked symbol J ∗(x0) represents the
optimal cost. For an admissible control u ∈ A (�), if
the related cost function (77) is continuously differentiable,
then its infinitesimal version is the nonlinear Lyapunov
equation

0 = U(x, u, v) + (∇J (x))T[ f (x) + g(x)u + h(x)v] (79)

with J (0) = 0. Define the Hamiltonian of system (74a) as

H(x, u, v,∇J (x)) = U(x, u, v) + (∇J (x))T[ f + gu + hv].

(80)

According to Bellman’s optimality principle, the optimal cost
function J ∗(x) guarantees the so-called HJI equation

min
u

max
v

H(x, u, v,∇J ∗(x)) = 0. (81)

The saddle point solution (u∗, v∗) satisfies the stationary con-
dition [177], which can be used to obtain the optimal control
law and the worst-case disturbance law as follows:

u∗(x) = −1

2
R−1gT(x)∇J ∗(x) (82a)

v∗(x) = 1

2�2
P−1hT(x)∇J ∗(x). (82b)

Considering the two formulas in (82), the HJI equation
becomes the form

0 = H(
x, u∗, v∗,∇J ∗(x)

)
= xTQx + (∇J ∗(x)

)T
f (x)

− 1

4

(∇J ∗(x)
)T

g(x)R−1gT(x)∇J ∗(x)

+ 1

4�2

(∇J ∗(x)
)T

h(x)P−1hT(x)∇J ∗(x) (83)

with J ∗(0) = 0. Note that the HJI equation (83) is difficult
to solve in theory. This inspires us to devise an approximate
control strategy to overcome the difficulty by virtue of ADP.

Incorporating the critic neural network, the approximate
values of the control and disturbance laws are

û(x) = −1

2
R−1gT(x)(∇σc(x))

Tω̂c (84a)

v̂(x) = 1

2�2
P−1hT(x)(∇σc(x))

Tω̂c. (84b)

The closed-loop system is also proven to be UUB with the
approximate control (84a) and disturbance law (84b). Recently,
there are also some results of event-triggered H∞ control based
on ADP [179], [180]. Therein, the H∞ control problem for
continuous-time affine nonlinear systems was investigated with
network-based event-triggering formulation.

The ADP-based robust control and ADP-based H∞ control
methods are both developed to cope with the external pertur-
bations. Basically, both of them concern with the uncertainties
or disturbances and guarantee the robustness of the controlled
plants. However, there are also some apparent differences
between them, listed as follows.

1) The design objective of ADP-based robust control
and ADP-based H∞ control is not totally the same.
Achieving robust stability is the single task of the
robust control design while attaining certain L2-gain
performance level is the additional objective of the H∞
control design. It means that, the H∞ control scheme is
established with the purpose of disturbance attenuation.

2) The cost functions, or specifically the utilities are defined
differently. In ADP-based robust control design, we
define a modified utility in terms of the state variable
reflecting the bound of the uncertainty and the control
variable. However, in ADP-based H∞ control design,
what we give is an utility composed of the state, control,
and disturbance variables. As a result, the ADP method
is employed to solve the modified HJB equation in the
former while it is adopted to cope with the HJI equation
in the latter.

3) The feedback controller in the ADP-based robust control
design is not the same as the H∞ control design. In
the robust control framework, the uncertain term is not
incorporated to the expression of the feedback controller.
However, the H∞ method contains another law called
disturbance except the control law, which also should
be formulated during the design process.

Though there exist great distinctions, it is certainly con-
vinced that the ADP method is applicable to both robust
control and H∞ control problems. The involvement of ADP
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Fig. 3. Block diagram of the proposed power system.

to robust and H∞ designs bring the adaptive and self-
learning properties into the traditional control methods. Hence,
with ADP formulation, the adaptive, learning, and intelligent
systems are widely constructed under uncertain environment.
All of these research demonstrates the necessity and signifi-
cance of adaptive-critic-based nonlinear robust control designs.

VIII. APPLICATIONS

There are many successful applications with ADP-based
control design. Among them, complex industrial systems, such
as power systems [30], [44], [67], [84], [129]–[133], [158],
[181]–[186], mechanical systems [32], [36], [41], [44], [71],
[123], [125], [131], [187], [188], and intelligent transporta-
tion systems [189], [190] are the most common application
areas. In particular, with adaptive-critic-based robust control
methods, there are some direct applications in fields such as
interceptor-target engagement [125], jet engine [131], power
systems [130]–[133], and so on. In this section, we first take a
practical power system to perform event-triggered optimal reg-
ulation and then apply the ADP-based optimal control scheme
to achieve robust stabilization of an overhead crane, thereby
demonstrating the applicability of theoretical results.

A. Power System Application

Smart grids including various load changes and multiple
renewable generations have been acquiring intensive attention
in recent years [191]–[194]. In modern power systems, many
kinds of distributed and renewable energies have been con-
sidered to integrate into micro-grids. However, the imbalance
between load consumptions and power generations may result
in the frequency deviation, especially for micro-grids. Hence,
the frequency stability of micro-grids has been a significant
topic to the development of modern power systems. In this
example, we consider a power system described in Fig. 3,
which is composed of a turbine generator, a system load, and
an automatic generation control [67]. Let ξf , ξg, and ξG be the
incremental change of the frequency deviation, the generator
output, and the governor value position, respectively, while let
the control input u represent the incremental speed change of
positive deviation. If we define x = [ξf , ξg, ξG]T ∈ R

3 as the
state vector, where x1 = ξf , x2 = ξg, and x3 = ξG, then the
state-space description of the power system can be written as

ẋ =

⎡
⎢⎢⎢⎢⎢⎣

− 1

TG
0 − 1

FrTG
Kt

Tt
− 1

Tt
0

0
Kg

Tg
− 1

Tg

⎤
⎥⎥⎥⎥⎥⎦

x +
⎡
⎢⎣

1

TG
0
0

⎤
⎥⎦u (85)

where the related parameters are described in Table V.

TABLE V
PARAMETERS OF THE PROPOSED POWER SYSTEM

Fig. 4. Convergence of the weight vector of the neural network.

In this simulation, we select the parameters as TG = 5,
Tt = 10, Tg = 10, Fr = 0.5, Kt = 1, and Kg = 1. The
cost function is defined as (3) with utility being chosen as
U(x, u) = 1.5xTx + uTu. The initial state vector is set as
x0 = [0.2,−0.2, 0.1]T. The critic network is constructed to
approximate the optimal cost function as

Ĵ∗(x) = ω̂c1x2
1 + ω̂c2x1x2 + ω̂c3x1x3

+ ω̂c4x2
2 + ω̂c5x2x3 + ω̂c6x2

3. (86)

Note that σc(x) = [x2
1, x1x2, x1x3, x2

2, x2x3, x2
3]T and ω̂c =

[ω̂c1, ω̂c2, ω̂c3, ω̂c4, ω̂c5, ω̂c6]T are the activation function and
the estimated weight vector of the neural network, respec-
tively. Choosing η = 0.5 and adding a probing noise for
persistence of excitation, we perform the simulation with
the sampling time being set as 0.1 s. After the critic learn-
ing stage with αc = 1.8, the weight vector converges to
[2.8392, 0.1313, 2.0318, 4.0852, 2.6303, 1.3715]T, showing in
Fig. 4. It is found that the convergence has occurred at
t = 350 s and after that we remove the probing signal. The
time-based controller uses 4000 samples of state while the
event-based control law only requires 1571 samples, showing
in Fig. 5, which reduces the controller updates by 60.73%
during the learning session.

At last, by applying the approximate optimal controller to
system (85) for t = 100s, we obtain the 3-D view of the state
trajectory shown in Fig. 6. This substantiates the effective-
ness of the ADP-based event-triggered optimal state feedback
control strategy.
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Fig. 5. Sampling period in the learning process.

Fig. 6. 3-D view of the state trajectory.

TABLE VI
PARAMETERS OF THE PROPOSED OVERHEAD CRANE PLANT

B. Overhead Crane System Application

The overhead traveling cranes, which transport loads from
one place to another and play an important role in industry,
incorporate complex nonlinearities and difficult control design

Fig. 7. Diagram of the proposed overhand crane.

tasks [195], [196]. In general, an overhead crane plant consists
of a trolley, a load, and a rope. The simple structure of a typical
overhead crane is shown in Fig. 7. The parameters used in the
whole plant are given in Table VI. Note that here, the stiffness
and mass of the rope are not considered and the load is seen
as a point mass, which are reasonable if a multiwire rope
is adopted in practice [195]. Based on [195] and [196], the
dynamical model of the overhead crane can be formulated as

(Mt + Ml)χ̈ + MlLr
[
θ̈ cos(θ) − θ̇2 sin(θ)

] = ft (87a)

χ̈ cos(θ) + Lr θ̈ + ga sin(θ) = 0. (87b)

For obtaining the state space description of plant (87), we
define u = ft as the control input and x = [x1, x2, x3, x4]T

as the system state, where x1 = χ , x2 is the trolley velocity,
x3 = θ , and x4 is the angular velocity of the load. Then, the
dynamics (87) can be rewritten as (88), shown at the bottom
of this page. Clearly, it is a nonlinear system with 4-D state
variable and 1-D control variable.

For the simulation purpose, we set Mt = 1.2 kg,
Ml = 0.8 kg, and Lr = 0.5 m and choose ga = 9.8 m/s2

and then make a modification to the plant (88) by introduc-
ing an uncertain term d(x) = 2�x1 sin(x2

2x3) cos(x3x2
4) with

� ∈ [−0.5, 0.5], so as to help to evaluate the robustness of
the controlled plant. Then, we find that the bounded func-
tion can be selected as dM(x) = ‖x‖ and the modified utility
function can be written as UR(x, u) = 2‖x‖2 + uTu. In this
example, for using the ADP method, the optimal cost function
is approximated by

Ĵ∗(x) = ω̂c1x2
1 + ω̂c2x1x2 + ω̂c3x1x3

+ ω̂c4x1x4 + ω̂c5x2
2 + ω̂c6x2x3

+ ω̂c7x2x4 + ω̂c8x2
3 + ω̂c9x3x4 + ω̂c10x2

4. (89)

⎡
⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x2

MlLrx2
4 sin(x3) + Mlga sin(x3) cos(x3)

Mt + Ml sin2(x3)
x4

− (Mt + Ml)ga sin(x3) + MlLrx2
4 sin(x3) cos(x3)(

Mt + Ml sin2(x3)
)
Lr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1

Mt + Ml sin2(x3)
0

− cos(x3)(
Mt + Ml sin2(x3)

)
Lr

⎤
⎥⎥⎥⎥⎥⎥⎦

u (88)
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Fig. 8. Convergence of the weight vector (part I).

Fig. 9. Convergence of the weight vector (part II).

We choose the initial state vector as x0 = [2.5, 0, 0, 0]T, select
the learning rate parameters as αc = 2.9 and αs = 0.1, and
then employ a probing noise for guaranteeing the persistence
of excitation condition. By performing a sufficient learning
stage, the weight vector of the critic network converges to
[3.4771, 5.5064, 0.1333, 1.0377, 4.7870, 0.0116, 1.5098,

0.0620, −0.7923, 0.2821]T, as illustrated in Figs. 8 and 9.
In this simulation, we find that the convergence has occurred
at t = 450s and then we remove the probing signal.

Finally, the performance of robust stabilization is checked
by selecting � = 0.5 and applying the derived control law
to the uncertain system for t = 25 s. The system and control
trajectories are depicted in Fig. 10. Clearly, under the action
of the developed controller, the state vector is driven to zero
as time goes on, which validates the good robustness property
with respect to the dynamical uncertainty.

IX. SEVERAL NOTES ON FUTURE PERSPECTIVES

Although there are many excellent results in terms of
ADP-based intelligent control design at present, further stud-
ies on various fundamental issues are still needed, such as

Fig. 10. State and control trajectories.

convergence of the iterative algorithm, stability of the con-
trolled system, as well as optimality and robustness of the
feedback controller. For instance, the stability and robust-
ness of finite horizon optimal control [59], [62] and dis-
counted optimal control [82], [197], [198] are important
to improve the existing ADP-related control design when
combining with advanced learning mechanisms and iterative
algorithms. From the view of convergence and optimal-
ity, the generalized value iteration and policy iteration for
discrete-time systems [60], [63], [96] as well as the general-
ized policy iteration and value iteration for continuous-time
systems [84], [88], [96] should be given special attention.
They are all advanced iteration algorithms compared with
traditional opinions that value iteration is for discrete-time
systems [27], [47], [52], [55], [59] while policy iteration is for
continuous-time systems [28], [66], [69], [77], [82]. Besides,
avoiding the weaknesses of neural network approximation and
achieving global optimal stabilization [83] are worth further
study as well. Establishing the uniqueness of HJB solution
and studying the convergence of value and policy iterations
with abstract dynamic programming [199], [200] are also inter-
esting and important. Actually, there are many future study
topics indicated in the previous surveys [86], [87], [92], [93].
Greater efforts should be put to establish perfect methodol-
ogy for ADP-related research in theory. Meanwhile, more and
more practical applications of ADP and reinforcement learning
with significant economic impact are of great demand.

As is known, most of the techniques in reinforcement learn-
ing can be viewed as attempts to achieve much the same
effect as dynamic programming, with less computation and
without assuming a perfect model of the environment. The
ADP method is also developed for performing optimization
of complex systems with unknown and uncertain dynamics.
A common and significant aspect of ADP and reinforce-
ment learning is the model-free design property. Hence, it is
extremely necessary to use effectively the data information
to establish more advanced data-driven control approaches.
The parallel/computational control method [12], [100], iter-
ative neural dynamic programming algorithm [105], [106],
the integral reinforcement learning technique [107]–[109], and
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the concurrent learning algorithm [180] are all of meaningful
attempts. When considering the uncertainty and robustness,
the robust optimal control strategy with efficient data-driven
component is indeed called for further study.

How to combine data-based approach [46], [54], [55],
[76], [78], [80], [81], [93], [105]–[109] with event-triggered
mechanism [155]–[162] to conduct the mixed data/event
driven control [201], [202] also should be considered. With
this new formulation and by virtue of the discussion on
robustness [116]–[133], an effective robust optimal control
methodology of complex nonlinear systems with dynamical
uncertainties can be developed, which reduces the require-
ment of the dynamical model and saves the communication
resource simultaneously. Thus, it is beneficial to study the
mixed data/event driven control design for complex non-
linear systems. In addition, when extending the existing
results to multiagent systems, distributed cooperative opti-
mization [203], [204] can be attained. The communication
factor is always considered in distributed control design, which
may be quite useful to network-based systems. Consequently,
the distributed design together with the previously discussed
decentralized control design involving the idea of ADP may be
another promising direction for dealing with intelligent control
of complex systems, especially under uncertain environment.

However, it is far from enough, since practical processes
often contain big data resources and complicated situations.
This is becoming more and more apparent along with the trend
of emerging high technologies, such as artificial intelligence,
big data, cloud computing, cyber-physical systems, deep learn-
ing, and knowledge automation [12], [100]. Particularly, deep
reinforcement learning is able to output control signal directly
based on input images, which incorporates both advantages of
the perception of deep learning and the decision making of
reinforcement learning [1], [3], [4], [6], [12]. This mechanism
makes the artificial intelligence much close to human thinking
modes. Combining deep learning with ADP and reinforcement
learning will benefit us to construct more intelligent systems
and accomplish higher level brain-intelligence.

X. CONCLUSION

This survey reviews the main results of adaptive-critic-based
(or ADP-based) robust control of nonlinear continuous-time
systems. In summary, the ADP-based robust stabilization of
nonlinear systems with matched uncertainties, nonlinear guar-
anteed cost control design of unmatched case, nonlinear decen-
tralized control design of interconnected case, and further
discussions on event-based robust control design, improvement
of the critic learning rule, nonlinear H∞ control design, as
well as several future perspectives are included. It is a com-
prehensive survey of ADP-based robust control in terms of
motivation, method, analysis, design, and application.

Repeatedly, the idea of ADP is proposed to achieve
optimal decision and control of complex systems with
uncertain and unknown dynamics in an online manner. As
Werbos [205]–[208] pointed out, ADP may be the only
approach that can achieve truly brain-like intelligence. More
and more evidence has accumulated, suggesting that optimality

is an organizing principle for understanding brain intelli-
gence [206]–[208]. There has been a hot interest in brain
research around the world in recent years. We certainly hope
ADP can make considerable contributions to brain research in
general and to brain-like intelligence in particular. Continuing
efforts are still being made in the quest for finding solutions
to dynamic programming problems with manageable amount
of computation and communication as well as inclusive guar-
antee of stability, convergence, optimality, and robustness.
Consequently, the research on robust adaptive critic control
design will certainly attain greater progress in the future.
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