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5.1 INTRODUCTION

With the wide use of smartphones and tablets, large amounts of private data
such as chat logs and photos are stored on mobile devices. The security of
private data has become a growing concern. While traditional passwords
and personal identification numbers (PINs) are easy to crack by guessing
or by dictionary attacks, biometrics provides encouraging personal recog-
nition solutions with benefits of its high universality and distinctiveness.
At present, fingerprint and face recognition are available on many mobile
devices. However, fingerprints left on screens can be replicated for spoof
attacks and the accuracy of face recognition is unsatisfactory for high-level
security requirements. Iris texture is difficult to be replicated and highly dis-
criminative. More and more mobile phones, such as Fujitsu’s Arrows NX
F-04G, Microsoft’s Lumia 950, and Samsung Galaxy Note 7, have been
equipped with iris recognition to enhance the security.

The foremost challenge in iris recognition on mobile devices is image
capture. The melanin pigment in irises will absorb a large amount of vis-
ible wavelength (VW) light. Hence, VW light can reveal plentiful texture
information for light-colored irises but only little texture information for
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Figure 5.1 NIR and VW iris images captured by mobile devices. The texture of NIR iris
images is much richer than that of VW images.

dark irises. The absorption is weak for wavelengths longer than 700 nm,
which makes near-infrared (NIR) light suitable for both light-colored and
darkly pigmented iris imaging. Furthermore, optical filters which pass NIR
wavelengths and block VW wavelengths can be utilized to avoid specular
reflections of ambient light on the cornea, as shown in Fig. 5.1. In order to
ensure the quality of iris images, it is necessary to mount additional NIR
illuminators and cameras on the front panel of mobile devices.

Currently, the quality of iris images on mobile devices is inferior to that
on specialized iris imaging devices due to the space, power, and heat dis-
sipation limitations. The comparison of iris images obtained by a mobile
device and IrisGuard AD100 is shown in Fig. 5.2. We can see that the iris
radius in the left image is much smaller than iris radius in the right im-
age. The sensor noise on the left image is clearly visible, and impairs the
sharpness and contrast of iris texture. Both the camera sensor size and focal
length are small on mobile devices. Therefore, the iris radiuses are often
less than 80 pixels, which do not satisfy the requirement described in the
international standard ISO/IEC 29794-6.2015 [1]. Moreover, iris radiuses
decrease rapidly as the stand-off distances increase. As shown in Fig. 5.3,
the diameter of the iris decreases from 200 pixels to 135 pixels as the stand-
off distance increases only 10 cm. The usage scenarios of mobile devices
are usually less constrained, various stand-off distances and environments
will introduce a large number of low quality images with low resolution,
out-of-focus blur, motion blur, off-axis, or specular reflections.

The accuracy of iris recognition on mobile devices will drop dramati-
cally if low quality iris images are not processed appropriately. This chapter
is intended to investigate how to improve the accuracy by elaborately de-
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Figure 5.2 Iris images obtained by a mobile device and IrisGuard AD100.

Figure 5.3 Example images of one person at three different stand-off distances. The
diameter (D) of the iris decreases obviously when the distance increases.

signed preprocessing, feature extraction, and multimodal biometrics fusion
algorithms. We will briefly introduce some classic methods, and will fo-
cus more attention on the new progress brought by convolutional neural
networks (CNNs) [2].

5.2 PREPROCESSING

Iris images acquired by mobile devices usually contain not only periocu-
lar regions but also partial face regions. As shown in Fig. 5.4, the major
task for image preprocessing is to detect eye regions and then isolate the
valid iris regions from the background. Cho et al. [3,4] are among the first
researchers to investigate the iris segmentation algorithms specifically for
mobile phones. The intensity characteristics of iris images are exploited to
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Figure 5.4 Image preprocessing.

design real-time rule-based algorithms. In addition, floating point opera-
tions which are time-consuming on ARM CPU are removed to reduce the
processing time.

Although rule-based iris detection and segmentation methods are fast,
they cannot deal with low quality iris images. Since the computational
capability of mobile devices has been improved greatly, more complex pre-
processing algorithms can be utilized. For example, periocular regions are
first localized by Adaboost eye detectors [5]. Then, the inner and outer iris
boundaries and eyelids are localized by integro-differential operators [6] or
Hough transforms [7]. Thirdly, horizontal rank filtering and histogram fil-
tering can be successively used for eyelash and shadow removal [8]. Finally,
the isolated iris texture is unfolded to a rectangle image by the homoge-
neous rubber sheet model [6].

To solve the problem of low resolution iris images acquired by mobile
devices, a straightforward idea is to increase the resolution of iris images.
Super-resolution (SR) is widely used to increase image resolution. It usually
takes one or more low resolution (LR) images as input and maps them
to a high resolution (HR) output image. Single image super-resolution
(SISR) is a popular research topic nowadays. SR in many computer vision
tasks only focuses on visual effect [9], while SR in biometrics mainly aims
at improving the recognition rate [10]. After SR, higher resolution iris
images or enhanced feature codes are fed into the traditional recognition
procedure. In this way, the recognition accuracy is expected to be improved.

We evaluated two pixel level SISR methods which were proposed re-
cently. The first one is Super-Resolution Convolutional Neural Networks
(SRCNN) [11]. It learns the nonlinear mapping function between LR im-
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Figure 5.5 The SRCNN model with one normalized iris image as input.

ages and HR images. The convolutional neural networks (CNNs) have
a lightweight structure that only has three convolutional layers, as shown
in Fig. 5.5. The loss function is computed as the mean squared error be-
tween the reconstructed images and the corresponding ground-truth HR
images. It takes three days to train a SRCNN model using 91 images on
a GTX 770 GPU. The second method is Super-Resolution Forests (SRF)
[12]. Random forests have merits of being highly nonlinear, and are usually
extremely fast during both the training and evaluation phases. SRF build
on linear prediction models in leaf nodes. During tree growing, a novel
regularized objective function is adopted that operates on both output and
input domains. SRF can be trained within minutes on a single CPU core,
which is very efficient. The SR models for iris recognition are trained by
HR images acquired by IrisGuard and the corresponding downsampled LR
images. At the testing stage, we input one normalized LR iris image into
the trained model and the corresponding HR iris image is output.

Two mobile iris databases are used to evaluate the effectiveness of the
above two SISR methods in improving the recognition rate. The first
database is the CASIA-Iris-Mobile-V1.0 that includes 2800 iris images
from 70 Asians. The second database is CASIA-Iris-Mobile-V2.0 that con-
tains 12,000 iris images from 200 Asians. After super-resolution of LR nor-
malized images, we extract Ordinal Measures (OMs) [16] features from HR
images for recognition. Receiver operating characteristic (ROC) curves on
the first and second databases are shown in Fig. 5.6 and Fig. 5.7, respec-
tively.

Experiments on these two databases get similar conclusions: (i) the SR-
CNN and SRF methods get comparable recognition results. SRCNN takes
about 3 s on a single normalized image with size of 70×540 while the SRF
takes only about 0.3 s on the same image. The SRF is much faster; (ii) SISR
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Figure 5.6 ROC curves of SRCNN and SRF on CASIA-Iris-Mobile-V1.0 database.

Figure 5.7 ROC curves of SRCNN and SRF on CASIA-Iris-Mobile-V2.0 database.

has limited effectiveness in improving the recognition accuracy. The limi-
tations are as follows: pixel level SISR is not directly related to recognition
and may introduce artifacts; the SR model is trained with synthesized LR
images that are very different from real-world LR images. We need to focus
attention on how to access more information, e.g., by adopting multi-frame
SR that can use complementary information from different frames.

In order to directly boost the recognition accuracy, SR can be ap-
plied at the feature and code level. Nguyen et al. [13] propose a novel
feature-domain SR approach using 2D Gabor wavelets. The SR output
(a super-resolved feature vector) is directly employed for recognition. Liu
et al. [14] propose a code-level scheme for heterogeneous matching of LR
and HR iris images. They use an adapted Markov network to establish the
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statistical relationship between a number of binary codes of LR iris images
and a binary code corresponding to the latent HR iris image. Besides, the
co-occurrence relationship between neighboring bits of HR iris code is
also modeled through this Markov network. Therefore, an enhanced iris
feature code from the probe set of LR iris image sequences can be ob-
tained. Both of the above SR methods can achieve improved performance
compared to pixel level SR.

5.3 FEATURE ANALYSIS

Iris feature analysis in constrained environments is well developed after
more than 20 years of research. Local features, such as Gabor filters [6],
multi-channel spatial filters [15], ordinal measures (OMs) [16], can describe
the most discriminative texture information. Fig. 5.8 shows Gabor filters
of five scales and eight directions. Fig. 5.9 shows various ordinal filters that
differ in distance, scale, orientation, lobe numbers, location, and shape.

On the other hand, some researchers use correlation filters to directly
measure correlative information between two iris images. Wildes et al. [17]
implement the four-level Laplacian pyramid and the goodness of match-
ing is determined by the normalized correlation between two registered
iris images. Kumar and co-workers [18] apply advanced correlation fil-
ters and achieve good results. However, little work focuses on exploring
complementarity of local and correlative features. Zhang et al. [19] ap-
ply perturbation-enhanced feature correlation filters on Gabor filtered iris
images to encode both local and global features and acquire encouraging
results.

Iris recognition on mobile devices is an emerging application. How
to transfer traditional high performance iris feature analysis [20] to mo-
bile applications is challenging. At present, there are a number of works in
the literature about iris recognition on mobile devices. Most current work
about mobile iris authentication is based on the visible spectrum [21]. Barra
et al. [22] present a comprehensive approach to iris authentication/recogni-
tion on mobile devices based on spatial histograms. Raja et al. [23] propose
a feature extraction method based on deep sparse filtering to obtain robust
iris features for unconstrained mobile applications. However, Asians have
dark-colored irises which show clear texture information only under NIR
light. Jeong et al. [24] propose a method of extracting the iris code based on
Adaptive Gabor Filter in which the Gabor filter’s parameters depend on the
amount of blurring and sunlight in captured image. Park et al. [25] present
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Figure 5.8 Gabor filters of five scales and eight directions.

Figure 5.9 Various ordinal filters.
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Figure 5.10 The pairwise CNNs model.

an iris localization method for mobile phones based on corneal specular
reflections, and then extract iris features using Gabor filters.

Compared with these hand-crafted filters, the deep learning method can
learn filters automatically and has recently shown an explosive popularity,
especially CNNs which have been successfully applied in face recognition
and achieved outstanding results outperforming most traditional methods.
Liu et al. [26] use CNNs in heterogeneous iris verification and achieve bet-
ter results compared with traditional methods. They use a pairwise CNNs
model, as shown in Fig. 5.10. The input of this model is a pair of iris im-
ages. It can exploit a large number of training samples from a small database.
For example, a database contains 200 classes for training and each class has
30 images. Then there are 200∗30∗(30 − 1)/2 = 87,000 intra-input pairs.
The model is composed of nine layers including one pairwise filter layer,
one convolutional layer, two pooling layers, two normalization layers, two
local layers, and one full connection layer. This model can directly mea-
sure the similarities of local regions between the input pairs of iris images.
It outputs two predictions, 0 is the intra-class pair and 1 is the inter-class
pair.

We fuse ordinal measures features and deep learning features for iris
recognition on mobile devices to explore whether these two kinds of fea-
tures are complementary [27]. Experiments are conducted on 12,000 iris
images from 200 Asians. Three score level fusion methods are adopted: the
sum, max, and min rules. The equal error rate (EER), false rejection rate
(FRR) when the false acceptance rate (FAR) is 10−4, and discriminating
index (DI) are used to measure the performance. DI can measure the com-
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Table 5.1 The EER, FRR and DI values of three fusion methods
Method EER FRR@FAR = 10−4 DI
OMs 1.20% 9.13% 4.56
CNNs 0.80% 7.16% 5.67
Sum rule 0.48% 3.37% 6.64
Max rule 0.74% 6.97% 5.37
Min rule 0.80% 7.61% 6.34

Figure 5.11 The ROC curves of three fusion methods.

prehensive performance of the classifier [6] and can be calculated as:

DI = |m1 − m2|√
(δ2

1 + δ2
2)/2

where m1 and m2 are the mean value of intra-class and inter-class distri-
bution, respectively. δ2

1 and δ2
2 are the variance of intra-class and inter-class

distribution, respectively. The higher of the DI value, the greater the dif-
ference of intra- and inter-distributions. The EER, FRR, and DI values of
three fusion methods are listed in Table 5.1. The ROC curves are shown
in Fig. 5.11.

We can see that the fusion method based on the sum rule clearly im-
proves the recognition rate. The results demonstrate that these two kinds
of features are highly complementary. The major reason is that OMs can
acquire local details of an iris image, while the pairwise CNNs model can
measure the correlation of input iris pairs directly. OMs qualitatively encode
iris texture to binary codes, which may lose some detailed information.
While pairwise features learned by CNNs measure the correlation between
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two irises starting from the very beginning of the image level, which can
retain more detailed information.

5.4 MULTIMODAL BIOMETRICS

The iris images captured on mobile devices also contain periocular regions
or even the facial regions. It is promising to develop a multibiometric so-
lution for more accurate, secure and easy-to-use identity recognition on
mobile devices. De Marsico et al. [21] implement an embedded biometrics
application by fusing face and iris modalities at the score level. Santos et al.
[28] focus on biometric recognition in mobile devices using iris and peri-
ocular information as the main traits. Raja et al. [23] present a multimodal
biometric system using face, periocular and iris biometric for authentica-
tion.

We have fused face and iris biometrics on mobile devices using NIR
images [29]. Face images are aligned according to eye centers and then
represented by histograms of Gabor ordinal measures (GOM). Iris images
are cropped from face images and represented by ordinal measures (OMs).
Finally, the similarity scores produced by face and iris features are combined
at the score level by the sum rule. Experiments are conducted using 2800
iris images of 70 Asians. ROC curves of iris and face fusion are shown in
Fig. 5.12. We can draw conclusion that fusion of face and iris biometrics
can improve the recognition accuracy significantly.

Research of periocular recognition started to gain popularity after the
studies of Park et al. [30]. The periocular region refers to the skin around
the eye area, which can show rich skin texture details and strong eye struc-
ture information even under visible light. The periocular region can be
obtained easily with little cooperation and can be captured with iris simul-
taneously. It achieves a trade-off between the whole face (which can be
occluded at close distances) and the iris texture (which do not have enough
resolution at long distances) [31]. Therefore, it is very suitable to fuse iris
and periocular region to boost the performance.

The normalization of periocular region mainly depends on the iris. By
iris detection, we can get the outer boundary of iris that can be expressed
by a circle with the radius (R) and center (xi,yi). We define the size of
normalized periocular region as (H,W ) and the radius of iris as R′. Then
the relationship between the normalized periocular image I ′(x′,y′) and the



114 Human Recognition in Unconstrained Environments

Figure 5.12 ROC curves of iris and face fusion, where ‘Iris LR fusion’ represents the score
level fusion of left and right iris by the sum rule; ‘Face and iris fusion’ represents the
score level fusion of face and iris biometrics by the sum rule.

Figure 5.13 The normalization of periocular region.

raw image I(x,y) is as follows:

x =
(

x′ − W
2

)
× R

R′ + xi

y =
(

y′ − H
2

)
× R

R′ + yi

Through the above mapping, the normalized periocular image is ob-
tained by interpolation. The flow chart is shown in Fig. 5.13. Example
images of aligned periocular region are shown in Fig. 5.14. The scale and
certain translation changes can be overcome by normalization.

Feature analysis for periocular recognition can be classified into two ap-
proaches [31]: (i) global approaches extract properties of an entire region of
interest, such as texture, color, or shape features; (ii) local approaches detect
a sparse set of characteristic points with features describing the neighbor-
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Figure 5.14 Example images of aligned periocular region.

hood around characteristic points only. The most widely used methods
include Local Binary Patterns (LBP), Histogram of Oriented Gradients
(HOG), and Scale Invariant Feature Transform (SIFT). With the popu-
larity and effectiveness of deep learning methods, we can also use deep
learning methods to learn robust periocular features automatically.

The periocular region possesses complementary identity information
with iris, which will improve the accuracy of a single modality after fu-
sion. Fusion of iris and periocular region can be performed at the feature
level and score level [32]. Effective and efficient fusion methods will greatly
promote the application of biometrics on mobile devices.

5.5 CONCLUSIONS

Iris recognition is a promising technology for identity authentication on
mobile devices. However, its space, power and heat dissipation limitations
introduce many new challenges, such as low resolution, large iris radius
variations, low contrast, and noises. We have tried to improve the perfor-
mance of iris recognition on mobile devices from different perspectives. At
the image level, we employed two pixel level single image super-resolution
methods. Although direct super-resolution enhances the visual effect, it has
limited effectiveness in improving the recognition accuracy. At the feature
level, we fused ordinal measures features and deep learning features to fully
exploit their complementary information. Much better recognition results
have been achieved. In addition, we discussed a multimodal recognition
method which fuses iris, facial, and periocular information. Experimental
results have shown that multimodal fusion improves the overall accuracy
substantially.
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In our future work, we will adopt multi-frame super-resolution meth-
ods to integrate richer information. The super-resolution method will be
applied at both the feature and code level to boost the recognition accuracy
directly. In order to satisfy the speed requirements in practical applications,
more efficient iris preprocessing and feature extraction methods will be
designed. Besides, sophisticated multimodal fusion methods, such as the
weighted fusion and feature level fusion, will be designed to improve the
accuracy further.
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