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Abstract—If a piece of disinformation released from a 
terrorist organization propagates on Twitter and this
adversarial campaign is detected after a while, how emergence 
responders can wisely choose a set of source users to start the 
counter campaign to minimize the disruptive influence of 
disinformation in a short time? This practical problem is 
challenging and critical for authorities to make online social 
networks a more trustworthy source of information. In this 
work, we propose to study the time critical disinformation 
influence minimization problem in online social networks 
based on a continuous-time multiple campaign diffusion 
model. We show that the complexity of this optimization 
problem is NP-hard and provide a provable guaranteed 
approximation algorithm for this problem by proving several 
critical properties of the objective function. Experimental 
results on a sample of real online social network show that the 
proposed approximation algorithm outperforms various 
heuristics and the transmission temporal dynamics knowledge
is vital for selecting the counter campaign source users, 
especially when the time window is small. 
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I. INTRODUCTION

Recent years have witnessed an explosive growth of 
various social media sites such as online social networks, 
blogs, microblogs, social news websites and virtual social 
worlds. These different kinds of social media platforms have 
many benefits as a fast and widespread information 
propagation medium to report eye-witness accounts and 
share information on disasters, terrorist attacks and social 
crises as a collective effort [1]. In spite of these advantages, 
many warnings have been raised about the dark side of social 
media [2], [3]. For example, various social media platforms 
can be used by terrorist organizations and their supporters for 
a wide range of purposes, including recruitment, propaganda, 
incitement to commit acts of terrorism, and the dissemination 
of disinformation for terrorist purposes [4]. The 
disinformation can go viral and cause highly disruptive 
effects if emergency responders fail to take effective 
measures to contain the disinformation influence on social 
media.

In order for online social networks to serve as a more 
trustworthy source of information and a more reliable 
platform for disseminating critical messages, clearly it is 
urgent to have tools to limit the disruptive effects of 

disinformation soon after the disinformation cascade is 
detected by authorities. Borrowing the idea of viral 
marketing in business [5], one cost-effective strategy for 
emergence responders is to select the most influential source 
user set of a given size for counter information in online 
social networks. A counter information diffusion process that 
begins in such an influential set of users is expected to reach 
the greatest number of users in s short time, who would have 
been infected by the disinformation if emergence responders 
don’t start the counter campaign. By making sure that most 
users hear about the correct information before the 
misleading one, the disruptive influence of disinformation 
can be minimized.

Although some recent work start to work on influence 
optimization problem in the context of competitive 
information diffusion on social networks [6]–[10], they build 
their work on discrete time models. However, it is common 
sense that social media users perform behaviors (i.e., retweet 
a post) asynchronously and artificially discretizing the time 
axis into bins may lead to not appropriate problem 
representation [11]. Besides, discrete time models fail to 
capture the important fact that different user pair may have 
different information transmission rate. For instance, if user 
A usually checks the status updates of her friend B, but pays 
a little attention on the other friend C, as a result, information 
transmission rate between user B and A can be quite 
different from that between user C and A. In this case, the 
solution to influence minimization problem based on discrete 
time models cannot be optimal since the rich temporal 
dynamics between users are neglected.

In this work, we propose to study the time critical 
disinformation influence minimization problem in online 
social networks based on the continuous time model of 
diffusion recently introduced by Gomez-Rodriguez et al. 
[12]–[14]. This model is able to account for different 
information transmission rates across different edges in the 
network. We will first build the continuous time multiple 
campaign diffusion model based on their model. Then we 
show that the optimization problem is a NP-hard problem. 
Fortunately, by utilizing several critical properties of the 
objective function, we are able to present a provable 
guaranteed approximation algorithm to find a set of source 
users for the counter campaign, which can minimize the 
disruptive influence of disinformation in a time window in 
online social networks.
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The rest of the work is organized as follows. We 
introduce the related work in section II. The diffusion model 
and problem definition will be presented in section III. The 
problem definition will be given in section IV. The problem 
hardness and key properties of the objective function will be 
discussed in section V. The greedy algorithm and heuristics 
will be presented in section VI and VII respectively. Then 
we perform the experimental evaluation in section VIII.
Finally, we give the conclusion in section IX.

II. RELATED WORK

Richardson and Domingos [15], [16] were the first to 
study influence maximization as an algorithmic problem, 
motivated by marketing applications. In their work, they 
proposed heuristics for choosing a set of influential 
customers by modeling the social network as a markov
random field. Kempe et al. [5] posed influence maximization 
in a social network as discrete optimization problem. They 
showed that solving the problem exactly is NP-hard for 
several models of influence such as Independent Cascade 
Model and Linear Threshold Model [17], and provide a 
simple greedy algorithm which can obtain an approximation 
guaranteed solution based on a natural diminishing property 
of the problem, submodularity. Since then, there have been 
substantial developments that build on their seminal work. 
Various efficient heuristics have been proposed to speed up 
the optimization problem [18]–[20]. Gomez-Rodriguez et al. 
[14] studied influence maximization in continuous time 
diffusion networks. Although our multiple campaign 
diffusion model is based on their work, we study the problem 
of time critical disinformation influence minimization as 
opposed to maximization.

Recently, influence maximization has also been studied 
on the context of competing cascades. Bharathi et al. [6]
studied the game of innovation diffusion with multiple 
competing innovations such as when multiple companies 
market competing products using viral marketing. They 
presented a (1-1/e) approximation algorithm for computing 
the best response to an opponent's strategy. Goyal and 
Kearns [21] developed a game-theoretic framework for the 
study of competition between firms. This framework yields a 
rich class of competitive strategies. He et al. [7] studied 
influence blocking maximization in social networks under 
the competitive linear threshold model and proved the 
objective function is submodular under that model. Perhaps 
the work of Budak et al. [8] is the most similar to ours. They 
also proposed to study how to limit the spread of 
disinformation in social network. However, they built their 
work on the discrete time independent cascade model 
without considering information transmission time between 
people. In contrast to their work, we study how to minimize 
the disinformation influence in a timely manner by taking 
advantage of different pairwise transmission rate in the social 
network.

III. DIFFUSION MODEL

We will first introduce pairwise transmission function
[11] to model the transmission time along directed edges in 

social networks. Then we will present the continuous-time 
multiple campaign diffusion model based on the 
transmission function defined on each edge. 

A. Pairwise Transmission Function
To capture the observation that different pairwise 

interactions between nodes in the network occur at different 
rates, given a directed diffusion network G = (V, E), this 
model associates each edge j � i with a transmission 
function, or the waiting time distribution, denoted as f(ti | tj;�ji). Formally, the transmission function f(ti | tj; �ji) for 
directed edge j � i is the conditional density of node i getting 
infected at time ti given that node j was infected at time tj,
where �ji is the information transmission rate between node j
and node i, representing how fast the information spreads 
from node j to node i in the social network. Further, we 
assume this transmission function is time shift invariant. In 
other words, it depends on the time difference �ij = ti – tj, and 
the pairwise transmission rate �ji. Moreover, it takes positive 
values when �ij � 0, and the value of zero otherwise, and as 
�ji � 0, the expected transmission time between node j and 
node i becomes arbitrarily long. Specifically, we follow the 
previous work [11], [12] to consider the exponential 
distribution to model the information diffusion between 
nodes as shown in equation 1. 
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     Essentially, the transmission function f(ti | tj; �ji) defines a 
probability distribution of the information transmission time 
from node j to node i in the social network. This is different 
from previous discrete time independent cascade model 
which associates each edge with a fixed diffusion probability. 
The probability distribution of information transmission time 
f(�; �ji) along a directed edge j � i is presented in equation 2,
where �ji is the information transmission rate of this edge, 
representing how fast the information spreads along the 
directed edge in the social network. We further assume that 
the transmission rate is information independent. In other 
words, the pairwise transmission time has no relationship 
with the kind of information propagating along the edge.

���; �
	� = �
	����� (2)

B. Continuous-Time Multiple Campaign Diffusion Model
Based on the pairwise transmission function described 

before, now we present the Continuous-Time Multiple 
Campaign Diffusion Model (CTMCDM) which models the 
diffusion of two campaigns propagating simultaneously in a 
social network. One of the two is the adversarial campaign, 
the purpose of which is to disseminate the disinformation or 
a rumor in a social network. The other one is the counter 
campaign which aims to limit the devastating effects of the 
adversarial campaign in a short time efficiently.

Let the initial set of active nodes for the adversarial and 
counter campaign be denoted by SA and SC, respectively. The 
diffusion process of adversarial campaign starts when the 
source node set SA becomes infected (i.e., users adopt the 
disinformation) at time t = 0 by action of an external source 
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Figure 1. An example of continuous-time multiple campaign diffusion process. The number along each edge is the 
transmission time which is sampled from the probability distribution f(�; �ji). (a) The disinformation is released by A at time t
= 0. If there is no counter information, 8 users (in blue color) will be infected up to time t = 10. (b) If the counter information 
is released by C at time t = 1.5, 6 users will be infected by disinformation and 2 users (in green color) will be “saved” by 
counter campaign. (c) If the counter information is released by E, only 4 users will be infected and 4 users will be “saved”. 

to the network. Then the disinformation is transmitted from 
the adversarial sources SA along their out-going edges to their 
direct neighbors. Each transmission through an edge j � i
entails a random spreading time, �, drawn from the 
probability distribution f(�; �ji). We assume transmission 
times are independent and possibly distributed differently 
across edges since different edges are associated with 
different transmission rate �ji. After some time delay d, the 
adversarial campaign is detected at time t = d and the 
diffusion of counter information starts from the source node 
set SC. When a node v first becomes active in adversarial or 
counter campaign at time t, the disinformation or counter 
information will be transmitted from node v along its out-
going edges to its direct neighbors. The spreading time �
along an edge j � i is drawn from the distribution f(�; �ji).
For some pairwise transmission time distribution, it may 
happen that � � � and node i is never infected. We assume 
that a node w becomes infected by the disinformation or 
counter information as soon as one of its parents (i.e., 
neighbors who are able to reach node w through an out-going 
edge) infects it, and later infections by other parents do not 
contribute anymore to the evolution of the diffusion process. 
In the case of the disinformation and counter information 
reaching a node w at the same time, we assume that the node 
w always adopts the counter information. Once a node 
becomes active in one campaign, it never becomes inactive
or change campaigns. The diffusion process continues until 
there is no newly activated node in either campaign.

IV. PROBLEM DEFINITION

Suppose that an adversarial campaign starts propagating 
from a set of nodes SA at time t = 0 and it is detected after a 
time delay d, at that point a counter campaign is initiated 
from a set of nodes SC. The disinformation and counter 
information propagate in the social network as described 
with the Continuous-Time Multiple Campaign Diffusion 
Model.

We define N(SC; T, SA, d) as the set of nodes infected by 
the adversarial campaign up to time t = T, and M(SC; T, SA, d)
as the set of nodes that the counter campaign prevents from 
adopting adversarial campaign up to time t = T. In other 
words, M(SC; T, SA, d) is the set of “saved” nodes which 
would be infected by the disinformation if there is no counter 
information propagating in the social network. To limit the 
devastating influence of the adversarial campaign, the 
objective is to minimize the number of nodes that end up 
adopting the disinformation. Equivalently, we aim to 
maximize the number of “saved” nodes. Since the 
information propagation is a probabilistic process, we define 
the influence function �(SC; T, SA, d) as the average total 
number of nodes saved up to time t = T, i.e., �(SC; T, SA, d) 
= �[|M(SC; T, SA, d)|].

Formally, given the social network G = (V, E), the set of 
source nodes of adversarial campaign SA, the detection time 
delay d, our goal is to find the set of source nodes of counter 
campaign SC such that the diffusion of counter information in 
G saves the greatest number of nodes before a window cut 
off T, on average. Thus, we aim to solve:

��� = argmax
|��|��

�(��; !, �", #) (3)

where the source set SC is the variable to optimize and the 
time window T, the source set SA for adversarial campaign, 
the detection time delay d, the source set cardinality k are 
given.

V. KEY PROBLEM PROPERTIES

We will first prove that the proposed problem is a NP-
hard problem, and then present the monotone and 
submodular proof of the objective function of the 
optimization problem. 
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A. NP-hardness
Theorem 1. The proposed optimization problem is NP-

hard for the Continuous-Time Multiple Campaign Diffusion 
Model.

Proof. If we let the time window T �$ +�, the 
independent cascade model is a particular case of our 
Continuous-Time Multiple Campaign Diffusion Model. 
Then, we can follow the idea of Kempe et al. [5] to prove the 
NP-hardness of our optimization problem.

Consider an instance of the NP-complete Set Cover 
problem, defined by a collection of subsets S1, S2, …, Sm for 
a universe set U = {u1, u2, …, un}; we will to know whether 
there exist k of the subsets whose union is equal to U. We 
show that this can be viewed as a special case of our 
optimization problem, in which the time window T �$ +�,
the disinformation and counter information propagate 
according to the independent cascade model, and the set of 
source nodes of adversarial campaign SA contains only one 
node. Given an arbitrary instance of the Set Cover problem, 
we define a corresponding directed bi-partite graph with 
m+n+1 nodes: there is a node i corresponding to each set Si,
a node j corresponding to each element uj, and a directed 
edge (i, j) with activation probability pij = 1 whenever uj % Si.
In addition, there is an adversary node w and a directed edge 
(w, j) for all uj with activation probability pwj = 1. The Set 
Cover problem is equivalent to deciding if there is a set of k
nodes SC (i.e., the source node set of the counter campaign) 
in this graph with �(SC; T, SA, d) � n+k, when the time 
window T �$ +�, the adversarial source set SA = {w}, the 
detection time delay d = 0. Note that for the instance we 
have defined, the evolution of the diffusion process is a 
deterministic, as all probabilities are 0 or 1. Initially 
activating the k nodes corresponding to sets in a Set Cover 
solution results in saving all n nodes corresponding to the 
ground set U, and if any set of k nodes SC has �(SC; T, SA, d) 
� n+k, then the Set Cover problem must be solvable.

B. Monotone
By construction, the objective function �(SC; T, SA, d) �

0 and if SC = &, then �(SC; T, SA, d) = 0. It also follows 
trivially that �(SC; T, SA, d) is monotonically non-decreasing 
in the adversarial source node set SC, i.e., �(SC; T, SA, d) '
�(SC’; T, SA, d), whenever SC * SC’. 
C. Submodular

A set function F: 2U � - mapping subsets of a finite set 
U to the real numbers is submodular if whenever A *$ B * U
and s % U \ B, it holds that F(A . {s}) – F(A) � F(B . {s}) – 
F(B), i.e., adding s to the set A provides a bigger marginal 
gain than adding s to the set B. 

Theorem 2. Given the social network G = (V, E), the set 
of source nodes of adversarial campaign SA, the detection 
time delay d and a time window T, the objective function 
�(SC; T, SA, d) is a submodular function in the set of counter 
source node set SC. 

Proof. Since a node can only be infected by one 
campaign, a directed edge j � i will only be visited at most 
once. When the disinformation or counter information 
propagates from node j to node i, the diffusion time � is 
sampled from the distribution f(�; �ji). In fact, it does not 
matter whether the diffusion time � is sampled at the moment 
when node j starts transmitting the information, or if it was 
sampled before the whole propagation process and stored to 
be examined at the time when node j starts transmitting the 
information. So, although the whole information propagation 
is a probabilistic process, for a specific instance of 
information propagation, we can pre-sampled all the pairwise 
transmission time distribution f(�; �ji) to determine the time 
used for information propagates along this edge.

The key observation is that if we treat the pairwise 
transmission time as the stochastic edge length, then the state 
of a node is depended on the length of the stochastic shortest 
path from the adversarial source nodes to the node LA and the 
length of the stochastic shortest path from the counter source 
nodes to the node LC. Specifically, given the time window T
and detection time delay d, if LC + d ' LA and LA ' T, this 
node will be saved by the counter information up to time t =
T. And if LC + d > LA and LA ' T, this node will be infected 
by the disinformation up to time t = T. 

Consider the probability distribution of all possible 
transmission time along each directed edge in the social 
network. Thus, given a sample /� in the probability space, 
for 0a % SA, we define R(a; T) as the set of nodes that can be 
reached from node a in a time shorter than T if there is no 
counter campaign. Define IA as the set of nodes that are 
infected by the disinformation by time t = d. Define P(v, w)
as the length of the shortest path from node v to node w. As a 
result, the proposed time critical disinformation influence 
minimization problem is equivalent to maximizing the 
number of nodes reachable from SC in a new network G’ =
(V’, E’), in which V’ = {v | v % V 1 v 2 IA} and E’ = {(v, w) | 
v V’, w % V’ 1 w % Wv} where Wv is defined as shown in 
equation 4. 

34 = 56|6 % .7%�8 9:�(<; !)  1  ?:�(@, 6) + #
' min7%�8

?:�(<, 6) ' !A
(4)

     Since the reachability problem in a network is 
submodular and a non-negative linear combination of 
submodular functions is also submodular [5], the objective 
function of the proposed optimization here is submodular.

Algorithm 1 The greedy algorithm to select the counter 
source node set.
    Initialize N0 B & 
    for i = 1 to k do
        Set Ni B Ni-1 . argmaxu%V �(Ni-1 . {u}; T, SA, d) 
    end for
    Set SC B Nk 
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Figure 2. Evaluation of the greedy algorithm and the three heuristics in terms of the limited disinformation influence (i.e., 
percent of users infected by disinformation). X-axis denotes the number of source users for the counter campaign and Y-axis 
denotes the disinformation influence. 

VI. GREEDY ALGORITHM

By proving that the objective function of the time critical 
disinformation influence minimization problem is a 
monotonic submodular function, we are able to find a 
guaranteed near-optimal solution to the proposed problem.
Specifically, we can apply the greedy algorithm which 
provides a (1-1/e) approximation of the optimal [22]. This 
algorithm builds the counter source node set SC one node at a 
time, always greedily adding the node which results in the
largest marginal gain in the objective function, i.e., the 
number of nodes that are saved by the counter campaign up 
to time T. 

      The value of function �(Ni-1 . {u}; T, SA, d) can be 
estimated by simulating the random process. More 
specifically, we simulate the process multiple times for the 
set of Ni-1 . {u}, resampling the transmission time along 
each directed edge in the social network from the distribution 
f(�; �ji) every time. Then a good estimate of �(Ni-1 . {u}; T, 
SA, d) can be obtained by averaging all the sample values at 
each time.

VII. HEURISTICS

Because of the complexity of the proposed problem and 
the large scale of real world social network, even the 
polynomial time greedy algorithm may be too costly. We 
consider three different heuristics which can potentially 
perform well compared with the greedy algorithm.

The first two heuristics are structure-based including the 
“degree centrality” and “eigenvector centrality” [23], [24]
which have been used to identify influential people in social 
network. The third heuristic is called “adversarial vanguard” 

which is the nodes that are expected to be infected by the 
disinformation just after the adversarial campaign is detected 
at time t = d. We will choose these adversarial vanguards as 
the source nodes for the counter information, since they are 
likely to drive the later propagation of disinformation. 
Specifically, we can implement this heuristic by running 
several rounds of simulation of disinformation propagation 
from SA. For each round of simulation, we record the earliest 
infected k nodes after time t = d. The number of records of 
each node is its score. Then we select the top k nodes 
according to the score as the source node set for the counter 
campaign.

VIII. EXPERIMENT

We evaluate the proposed greedy algorithm and three 
heuristics including degree centrality, eigenvector centrality, 
and adversarial vanguard, on a sample of real online social 
network. We show that the greedy algorithm outperforms the 
three heuristics consistently and the rich transmission 
temporal dynamics information is critical in selecting the set 
of source users for counter campaign to limit disinformation 
influence in a time window.

A. Experimental setup
In order to evaluate the effectiveness of the greedy 

algorithm, we employ a Facebook-like social network 
originated from an online community for students at 
University of California, Irvine introduced in [25]. This 
online social network includes 1899 users that sent or 
received at least one message and 20296 directed edges 
among these users. To speed up the experiment process and 
focus on the solution quality evaluation, we further obtain a 
sample network from the original network by using Random 
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Jumping graph sampling algorithm [26]. The resulted social 
network G contains 500 users and 738 directed edges among 
these users.

For each directed edge j � i in the sample network, we 
associate it with a transmission rate �ji drawn from a uniform 
distribution �ji D U(0, 10). The transmission rate �ji model 
how fast information spreads along the directed edge j � i.
We further suppose that the disinformation is released by 
three random users (i.e., |SA|=3) at time t = 0. After a 
detection time delay d, the disinformation campaign is 
detected by authorities. Given the social network G = (V, E), 
the set of source nodes of adversarial campaign SA, the 
detection time delay d, our aim is to find the set of source 
nodes of counter campaign SC such that the percent of users 
infected by the disinformation is minimized up to time t = T. 

B. Experimental results
We set the time window T = 5. Fig 2(a) shows the 

percent of users infected by disinformation when the 
detection time delay d = 0 (the upper subgraph), d = 0.5 (the 
middle subgraph), d = 1.0 (the lower subgraph), respectively.

It is clear that the greedy algorithm outperforms the three 
heuristics consistently and degree centrality is the best 
among the three heuristics. We can also see that as the size K
of the set of source users for counter campaign increases, the 
percent of users infected by disinformation decreases to a 
stable value generally. In addition, when the detection time 
delay d = 0, the stable percent of users infected by 
disinformation achieved by the greedy algorithm (K = 10) is 
nearly zero percent, while it can only be 64% when the delay 
d = 1.0. In other words, it is very vital for emergence 
responders to detect the disinformation campaign as quickly 
as possible.  

Fixing the value of the detection time delay d = 0.4, Fig
2(b) shows the percent of users infected by disinformation 
when the time window T = 2 (the upper subgraph), T = 4
(the middle subgraph), T = 6 (the lower subgraph), 
respectively. Similar to the previous result, the greedy 
algorithm outperforms others and degree centrality is the best 
among the three heuristics generally. In addition, in terms of 
the disinformation influence limitation result, the difference 
between the greedy algorithm and the degree centrality 
heuristics is greater for smaller time window. In other words, 
the smaller the time window is, the more valuable the 
transmission temporal dynamics information become when 
selecting the set of source users of a given size for the 
counter campaign.

IX. CONCLUSION

In this paper, we have studied the problem of time critical 
disinformation influence minimization in online social 
networks. We mathematically formulize it as an optimization 
problem based on a continuous-time multiple campaign 
diffusion model. This model is able to account for different 
information transmission rates across different edges in the 
network. Even though this optimization problem turns out be 
a NP-hard problem, we present a provable guaranteed 

approximation algorithm by utilizing the monotone 
submodular property of the objective function. This 
approximation solution is able to find a set of source users 
for the counter campaign, which can minimize the disruptive 
influence of disinformation in online social networks in a 
time window. Experimental results show the presented 
approximation algorithm outperforms a set of heuristics for 
the optimization problem. In addition, the transmission 
temporal dynamics information is vital for selecting the set 
of source users for the counter campaign, especially when 
the time window is small.

Our future work lies in four aspects. First, we plan to 
consider more efficient heuristics to speed up the 
optimization problem and evaluate their effectiveness on real 
online social networks. Second, suppose every social 
network user has a damage cost representing how much loss 
she will suffer after being infected by the disinformation, 
then how to select a set of source users for counter campaign 
to minimize the total loss in a short time is an interesting 
question. Third, it would be interesting to take advantage of 
social balance theory [27] to address influence limitation
problem in signed networks. Fourth, if the exact knowledge 
of who is the source of disinformation is not available to 
authorities, how to optimally limit the disinformation 
influence under the case of data missing is a promising 
direction.

We believe our work on time critical disinformation 
influence minimization in online social networks can help 
emergence responders effectively face the threats of 
increasing use of social media by terrorist organizations for 
adversarial purposes.
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