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AMDO: an Over-Sampling Technique for
Multi-Class Imbalanced Problems
Xuebing Yang, Qiuming Kuang, Wensheng Zhang, and Guoping Zhang

Abstract—Multi-class imbalanced problems have attracted growing attention from the real-world classification tasks in engineering.
The underlying skewed distribution of multiple classes poses difficulties for learning algorithms, which becomes more challenging when
considering overlapping between classes, lack of representative data and mixed-type data. In this work we address this problem in a
data-oriented way. Motivated by a recently proposed over-sampling technique designed for numeric data sets, Mahalanobis
Distance-based Over-sampling (MDO), we use this technique to capture the covariance structure of the minority class and to generate
synthetic samples along the probability contours for learning algorithms. Based on MDO, we further improve the over-sampling strategy
and generalize it for mixed-type data sets. The established technique, Adaptive Mahalanobis Distance-based Over-sampling (AMDO),
introduces GSVD (Generalized Singular Value Decomposition) for mixed-type data, develops a partially balanced resampling scheme
and optimizes the sample synthesis. Theoretical analysis is conducted to demonstrate the reasonability of AMDO. Extensive
experimental testing is performed on 15 multi-class imbalanced benchmarks and two data sets for precipitation phase recognition in
comparison with several state-of-the-art multi-class imbalanced learning methods. The results validate the effectiveness and
robustness of our proposal.

Index Terms—multi-class imbalanced problems, over-sampling, MDO, mixed-type data
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1 INTRODUCTION

1 THE imbalanced data originate from a variety of real-2

world applications, such as activity recognition [1],3

disease diagnosis [2] and fraud detection [3]. The skewed4

class distribution of imbalanced data sets causes perfor-5

mance degradation in many conventional machine learning6

algorithms. How to learn from imbalanced data sets has7

been defined as a challenge for the data mining research8

community [4]. The purpose of imbalanced learning is9

to provide high accuracy for the minority class without10

severely jeopardizing the accuracy of the majority class [5].11

During the past two decades researchers have made great12

efforts to tackle this problem. For a comprehensive review13

of imbalanced learning, please refer to [6].14

In this work we focus on multi-class imbalanced prob-15

lems, which appear frequently but are not as well-developed16

as their binary counterpart. In the scenario of binary classifi-17

cation, it is straightforward to balance the class distribution18

using resampling techniques or to shift classifiers towards19

the minority class. However, the situation becomes more20

complicated for multi-class classification [7]: 1) the relations21

among classes are no longer obvious; 2) the boundaries22

among the classes may overlap. Thus, for our problems, the23

methods designed for the binary case may not be directly24

applicable or may suffer from lower performance [8].25
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An intuitive and widely used strategy to combat multi- 26

class imbalanced problems is to apply class decomposition 27

to reduce the problem to a set of binary subproblems. Two 28

class decomposition strategies are common: one-versus- 29

one (OVO) [9] and one-versus-all (OVA) [10]. Fernández 30

et al. [40] developed an experimental study and verified 31

the good behavior of OVO and OVA with resampling 32

techniques/cost-sensitive learning. Various researches have 33

worked on resampling techniques with class decomposition 34

[11], [12], [13]. Combining OVO/OVA with ensemble learn- 35

ing has also shown promising results in recent years [14], 36

[15]. 37

By contrast, Wang and Yao [42] considered decompo- 38

sition unnecessary and suggested direct learning from the 39

entire data set for multi-class imbalanced problems. Without 40

class decomposition, a specific design is required to modify 41

the existing methods. At the data level, Lin et al. [16] 42

and Fernández-Navarro et al. [39] utilized dynamic over- 43

sampling to finely tune neural networks. At the algorithm 44

level, several learning algorithms have been generalized to 45

solve this problem, such as support vector machines [17], 46

[18] and extreme learning machines [19], [20]. 47

A novel over-sampling technique, Mahalanobis 48

Distance-based Over-sampling (MDO), was recently 49

proposed by Abdi and Hashemi [21]. This approach, which 50

is a data level solution, generates synthetic samples for 51

minority classes without class decomposition. In contrast 52

to the well-known Synthetic Minority Over-sampling 53

TEchnique (SMOTE) [22], the samples obtained by MDO 54

maintain the same Mahalanobis distance [23] from the 55

corresponding class mean. Experimental research and 56

theoretical analysis in [21] confirmed that MDO has great 57

potential even for multi-class imbalanced problems with 58

overlap between classes. 59
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Unfortunately, the use of MDO is limited because MDO60

is only applicable to data sets with numeric attributes.61

In real-world data mining problems, the data sets with62

mixed-type attributes are extremely common. For example,63

the data set for precipitation phase recognition is a multi-64

class imbalanced data set with overlap between classes. It65

consists of multiple meteorological observations (numeric)66

and climatic conditions (nominal). For such cases, MDO67

should be adapted to address mixed-type attributes. More-68

over, two drawbacks of MDO are often found in practice: 1)69

MDO generates excessive synthetic samples for the minority70

classes, which may jeopardize the accuracy of the majority71

class; 2) MDO may generate unrealistic samples, which can72

make the sampling process less computationally efficient.73

Improved sampling strategies are needed to improve the74

effectiveness and efficiency of this technique.75

In this paper we extend Abdi and Hashemi’s [21] study76

and propose Adaptive Mahalanobis Distance-based Over-77

sampling (AMDO). The main contributions of this paper are78

summarized as follows:79

• We adapt MDO to effectively handle multi-class im-80

balanced data sets with mixed-type attributes.81

• We improve the performance of MDO by introducing82

a partially balanced resampling scheme and develop-83

ing a new strategy to obtain adaptive samples.84

• We conduct theoretical analysis for the necessity and85

relatively low computational complexity of AMDO.86

• We conduct an extensive evaluation of AMDO on87

several numeric and nominal/mixed-type problems.88

The results confirm the advantages of our proposed89

technique and demonstrate the potential of AMDO90

in multi-class imbalanced problems.91

The rest of this paper is organized as follows. Section 292

introduces related works, including a brief review of MDO.93

In Section 3 we describe our proposed approach in detail94

and analyze its computational complexity. Experimental95

study, including comparison of the results and analyses, are96

presented in Section 4. Finally, we conclude the paper and97

present our future work in Section 5.98

2 RELATED WORK99

As our proposed method is a type of over-sampling tech-100

nique, we first briefly review the resampling technique101

in this section. Next, related studies using resampling for102

multi-class imbalanced problems are reviewed. Then, we in-103

troduce our inspiration, MDO, and describe the motivation104

for our extensions and improvements to MDO.105

2.1 Resampling Technique106

Resampling techniques are applied directly to balance107

skewed distributions. They are versatile because their use108

is independent of the selected classifiers [40]. In general,109

resampling methods fall into three groups: over-sampling,110

under-sampling and hybrid.111

The simplest resampling techniques involve duplicating112

the minority samples and/or eliminating some of the major-113

ity samples, which may cause over-fitting or a loss of useful114

information. Deciding which samples should be eliminated115

and which samples should be duplicated requires further 116

investigation [24]. 117

Another widely-used approach to balance the class dis- 118

tribution is SMOTE [22]. The nature of SMOTE is similar 119

to interpolation. SMOTE selects one of the K-nearest neigh- 120

bours of a minority sample xi and calculates the difference 121

between them; then, the obtained difference is multiplied 122

by a random number in the range [0, 1] and is added to 123

xi to generate a synthetic sample. However, SMOTE may 124

increase the overlap between different classes and worsen 125

the decision boundaries, especially in multi-class cases [25]. 126

A considerable number of variations have been proposed 127

to overcome the drawbacks of SMOTE, such as Safe-Level- 128

SMOTE [26], Borderline-SMOTE [27], ADASYN [28], and 129

SMOTE+ENN [29]. 130

SMOTE is not the only way to generate synthetic sam- 131

ples. Chetchotsak et al. [30] proposed GRSOM to create new 132

data using a self-organizing map. Das et al. [31] used the 133

joint probability distribution of data attributes and Gibbs 134

sampling to generate new minority class samples. In con- 135

trast to SMOTE, these sampling strategies show that taking 136

the individual properties of classes and their mutual rela- 137

tions into account has potential for multi-class imbalanced 138

problems. 139

2.2 Utilizing Resampling Techniques for Multi-Class 140

Imbalanced Problems 141

The existing methods mostly use resampling techniques in 142

the framework of class decomposition, namely, OVO/OVA. 143

Liao [11] adopted OVA to conduct multi-class classification 144

of weld flaws with 22 over-sampling and under-sampling 145

methods. Zhao et al. [32] used OVA and a combination 146

of under-sampling and SMOTE for protein classification. 147

However, the drawbacks of class decomposition are that the 148

training process may suffer from unacceptable time cost in 149

OVO and the imbalanced situation may worsen in OVA. 150

Sáez et al. [48] applied SMOTE according to the class 151

and type of samples and highlighted the importance of the 152

analysis of sample difficulty. Fernández-Navarro et al. [39] 153

proposed that SMOTE should be applied for most imbal- 154

anced cases and developed a special mechanism to obtain a 155

partially balanced class distribution through SMOTE. Then, 156

they optimized the radial basis function neural networks 157

through a memetic algorithm. Similarly, Lin et al. [16] 158

proposed a dynamic sampling procedure, DyS, to train 159

multilayer perceptrons (MLP). They iteratively estimated 160

the probability of samples being selected for training MLP to 161

make the final MLP suitable for multi-class imbalanced clas- 162

sification. Wang and Yao [42] used random over-sampling 163

for their proposed AdaBoost.NC to make the method not 164

ignore minority classes. 165

Although not yet a popular approach, Abdi and Hashe- 166

mi [21] attempted to directly apply resampling. They de- 167

veloped a technique, MDO, to generate synthetic samples 168

and obtained classifiers that performed well in multi-class 169

imbalanced scenarios. This technique is reviewed below. 170
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2.3 Review: Mahalanobis Distance-Based Over-171

Sampling Technique172

To combat multi-class problems, MDO generates synthetic173

samples for each minority class1. It takes the Principal Com-174

ponent (PC) space into consideration and obtains new sam-175

ples in this space. As a result, synthetic samples are shifted176

toward the variation of the corresponding class, preserving177

the covariance structure of the data in the minority classes.178

The algorithm is described in Algorithm 1.179

Let us consider a data set of c classes and p1 numeric180

attributes. For a given minority class Xs ∈ Rns×p1 , in181

steps 4-11 of Algorithm 1 MDO first selects minority class182

candidates that are located in the dense areas of Xs and183

assigns weights to them. MDO then computes the K2184

nearest neighbours from Xs. Among theK2 neighbours, the185

number of neighbours belonging to Xs is denoted as num.186

For the ith data point, if num(i) is larger than a threshold187

K1, MDO selects it as a candidate and assigns it a selection188

weight. This process can ensure that new synthetic samples189

are generated along the probability contours of the samples190

with more neighbours in the same class. Then, in steps 12-191

13 the considered n′s samples are normalized to have zero192

mean. Thus, in the original data space samples with the193

same Euclidean distance from the class mean are located in194

several circle contours with the origin as the center. By using195

a parameter α, the circle contour of sample (x1, ..., xd) is:196

x21
α

+
x22
α

+ · · ·+ x2i
α

+ · · ·+ x2d
α

= 1. (1)

To achieve the goal of synthesizing samples that pre-197

serve the covariance structure of Xs, a vector of coefficients198

(V1, ..., Vd) is required to make the components with high199

variability receive higher weights. Instead of circle contours,200

ellipse contours based on the Mahalanobis distance are201

required:202

x21
α · V1

+
x22

α · V2
+ · · ·+ x2i

α · Vi
+ · · ·+ x2d

α · Vd
= 1. (2)

In steps 14-15 QΣsQ
T = cov(Xs) is the eigenvalue203

decomposition of Xs. In this way the PC space (XsQ)204

is constructed. In this space, data are uncorrelated and205

(ς1(Xs), ..., ςp1(Xs)) can be regarded as the vector of co-206

efficients to describe the variance of each dimension, where207

ςi(Xs) is the ith largest coefficient. Then, in steps 16-27 xs is208

selected from the PC space through weighted sampling and209

a synthetic sample x is generated along the ellipse contour210

that xs belongs to by solving (2) with (ς1(Xs), ..., ςp1(Xs)).211

This procedure is repeated nmaj − n′s times, where nmaj212

is the number of samples in the majority class. Finally, in213

step 28 the synthetic samples are transformed to the original214

space and added to the original data set.215

MDO was shown to be suitable for multi-class imbal-216

anced problems in [21]. However, as the authors point out,217

the technique cannot handle data with nominal/mixed-type218

attributes. Furthermore, there are risks of over-generation219

and generating unrealistic samples for MDO. The above220

viewpoints motivate our following extensions and improve-221

ments of MDO.222

1. In this paper, imbalanced multiple classes refers to multiple minor-
ity classes and a single majority class.

Algorithm 1: MDO
Input: Training data set S, parameters K1, K2
Output: A new training data set S∗

1 Obtain c and nmaj with respect to S;
2 for s = 1 : c− 1 do
3 Obtain Xs ∈ Rns×p1 ;
4 for i = 1 : ns do
5 Compute the K2 nearest neighbours of Xs(i)

using Euclidean distance as the metric;
6 Obtain num(i);
7 Assign weights num(i)

K2
for Xs(i);

8 if num(i) < K1 then
9 Remove Xs(i) from Xs;

10 end
11 end
12 Xs ∈ Rn

′
s×p1 , µs =

1
n′s

∑n′s
i=1 Xs(i);

13 Xs = Xs − µs;
14 Compute Q and Σs via eigenvalue decomposition:

QΣsQ
T = cov(Xs);

15 Obtain the vector of coefficients by
(ς1(Xs), ..., ςp1(Xs)) = diag(Σs);

16 if nmaj − n′s > 0 then
17 for j = 1 : nmaj − n′s do
18 Choose a random sample xs from XsQ

according to the weights;
19 Compute α by solving (2) with xs and

(ς1(Xs), ..., ςp1(Xs));
20 Let x be the synthetic sample,

x = (x1, ..., xp1);
21 for k = 1 : p1 − 1 do
22 xk = choose a random number from[

−
√
α · ςi(Xs),

√
α · ςi(Xs)

]
;

23 end
24 Compute xp1 by solving (2) with

(x1, ..., xp1−1) and (ς1(Xs), ..., ςp1(Xs)), and
randomly choose one from two solutions;

25 Add x to Xs+;
26 end
27 end
28 Xs+ = Xs+QT + µs;
29 end
30 Add labels for the synthetic samples of each minority

class and obtain S+;
31 S∗ = S + S+;
32 Return A new training data set S∗.

3 THE PROPOSED APPROACH 223

In this section we describe the details of our proposed 224

technique, AMDO. Fig. 1 shows the AMDO flowchart. The 225

framework of over-sampling remains the same as that of 226

MDO: 1) suitable samples are chosen and assigned weights; 227

2) samples are transformed to the PC space; and 3) new 228

synthetic samples are generated. Our work extends and im- 229

proves MDO in three aspects. We first adapt MDO to handle 230

mixed-type attributes by using HVDM [33] and GSVD [35]. 231

Next, to reduce the risk of over-generation, we propose a 232

partially balanced resampling scheme to generate an adap- 233

tive class distribution for learning algorithms. Finally, for 234

the sampling strategy in PC space, we provide theoretical 235

analysis about why unrealistic samples can be generated by 236

MDO in most cases and develop a new strategy to obtain 237

adaptive synthetic samples. The pseudocode of AMDO is 238

presented in Algorithm 2. 239
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Fig. 1. The flowchart of AMDO.

3.1 Handling Mixed-type Data240

From numeric attributes to mixed-type attributes, two is-241

sues must be considered. For mixed-type data, Euclidean242

distance cannot be used to select minority class candidates243

(Algorithm 1, step 5). When constructing the PC space,244

eigenvalue decomposition also cannot be used for mixed-245

type data (Algorithm 1, steps 12-15). In the following we246

address these issues by applying HVDM as a metric to247

search neighbours and by using GSVD to transform the248

mixed-type data to the PC space.249

As mixed-type data include both numeric and nominal250

attributes, we use HVDM as the distance metric. Given two251

samples x and z, the HVDM distance between them can252

be computed according to [33]. HVDM provides a way to253

approximately scale the two types of measurements into254

the same range and makes each attribute have a similar255

influence on the overall distance between x and z. Thus, the256

K2 nearest neighbours in HVDM can be easily computed257

and the minority class candidates can be obtained.258

In addition to eigenvalue decomposition, SVD is an al-259

ternative method to transform the data points in the original260

space to PC space [34]. For the selected samples of one261

class Xs, Xs also needs to be normalized before SVD. Let262

Xs = UΣVT be the SVD of Xs; then, Xs is transformed263

to the PC space by XsV. For mixed-type data, we can264

generalize matrix SVD to achieve the corresponding PC265

space using the GSVD [35] procedure.266

After the minority class candidates are obtained, Xs is267

updated to be a n′s × (p1 + p2) data matrix, where the first268

p1 columns correspond to the p1 numeric attributes of the269

n′s samples and the subsequent p2 columns correspond to270

the p2 nominal attributes. For each nominal attribute, we271

represent the different levels as discrete numeric values.272

As the levels of each nominal attribute are finite, we can273

construct an n′s × m indicator matrix for the p2 nominal274

attributes, where m denotes the total number of levels. In275

this way a numeric version of Xs, denoted by X′s, can be276

constructed with dimensions n′s × (p1 + m). Similarly, X′s277

is normalized (see Algorithm 2, steps 14-15) to ensure that278

the origin of the PC space is the center of every ellipse279

contour. As Xs has been changed to X′s, metrics are needed280

to introduce weights to the rows and columns of X′s to281

construct the appropriate PC space. GSVD can provide a282

matrix decomposition of X′s using the two positive definite283

square matrices N and M, where N is a metric on Rn284

and M is a metric on Rp1+m. The GSVD of X′s can be285

obtained by performing the standard SVD of the matrix286

Algorithm 2: AMDO
Input: Training data set S, attribute indicator A,

parameters K1, K2
Output: A new training data set S∗

1 Obtain c, p1, p2, m and D with respect to S and A;
2 Obtain Orate(1), ..., Orate(c− 1) by using Algorithm 3;
3 for s = 1 : c− 1 do
4 Obtain Xs ∈ Rns×(p1+p2);
5 for i = 1 : ns do
6 Compute the K2 nearest neighbours of Xs(i)

using HVDM as the metric;
7 Obtain num(i);
8 Assign weights num(i)

K2
for Xs(i);

9 if num(i) < K1 then
10 Remove Xs(i) from Xs;
11 end
12 end
13 Transform the last p2 columns of Xs into m columns

and obtain X′s ∈ Rn
′
s×(p1+m);

14 µs =
1
n′s

∑n′s
i=1 X′s(i), σs =

√
1
n′s

∑n′s
i=1(X

′
s(i)− µs)

2;

15 X′s =
X′s−µs

σs
;

16 Compute N and M via (3);
17 X̃′s = N1/2X′sM

1/2;
18 Compute V′ via GSVD: X̃′s = U′Σ′V′T;
19 Obtain the vector of coefficients using (4);
20 if Orate(s) > 0 then
21 for j = 1 : Orate(s) do
22 Choose a random sample xs from X̃′sV

′

according to the weights;
23 Compute α by solving (2) with xs and

(ς1(X
′
s), ..., ςp1+m(X′s));

24 Let x be the synthetic sample,
x = (x1, ..., xp1+m);

25 Generate p1 +m positive random numbers
r1, ..., rp1+m and make them sum to one;

26 for k = 1 : p1 +m do
27 xk = randomly choose one solution from

solving x2k
α·ςk(X′s)

= rk;
28 end
29 Add x to X′s+;
30 end
31 end
32 X′s+ = σs(N

−1/2X′s+VTM−1/2) + µs;
33 Transform the last m columns of X′s+ into p2 columns

and obtain Xs+;
34 end
35 Add labels for the synthetic samples of each minority

class and obtain S+;
36 S∗ = S + S+;
37 Return A new training data set S∗.
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X̃′s = N1/2X′sM
1/2, that is, X̃′s = U′Σ′V′T. The metrics287

of N and M are as follows:288 
N =

1

n′s
In

M = diag(1, ..., 1︸ ︷︷ ︸
p1

, n′s/n(1), ..., n
′
s/n(m)︸ ︷︷ ︸

m

)
, (3)

where n(i) denotes the number of samples that belong to289

the ith level.290

After GSVD of X′s, the matrix of data points in the PC291

space is X̃′sV
′. Synthetic samples are generated in X̃′sV

′.292

As V′ is orthogonal and n′s � (p1 + m) in this study, the293

vector of coefficients (ς1(X′s), ..., ςp1+m(X′s)) describing the294

covariance structure of X′s can be obtained by computing295

the covariance of X̃′sV
′:296 ς1(X

′
s)

. . .
ςp1+m(X′s)

 = cov(X̃′sV
′). (4)

Thus, for any data points xs in PC space, the297

corresponding ellipse contour can be obtained with298

(ς1(X
′
s), ..., ςp1+m(X′s)) according to (2). The new sample299

is then generated along the same ellipse contour of xs.300

3.2 Partially Balanced Resampling Scheme301

The main aim of over-sampling is to balance the class distri-302

bution. However, there is no consensus in the research com-303

munity on which type of distribution should be achieved for304

imbalanced data sets. As mentioned before, MDO generates305

nmaj − n′s synthetic samples for Xs. Usually, n′s < ns for306

Xs, which makes the final number of samples in Xs larger307

than nmaj . As a result, MDO imposes a handicap on the308

classifiers due to the risk of over-generation/over-fitting.309

In this study we use the imbalance ratio (IR) [36] to310

identify whether a data set is imbalanced. IR is computed as311

the proportion of nmaj to nmin, where nmin is the smallest312

number of class samples among the minority classes. A data313

set is considered to be imbalanced if IR>1.5, as suggested314

by [37] and [38]. The purpose of our proposed partially315

balanced resampling scheme is to adjust the IR of the current316

data set to be less than 1.5 (IR≤1.5).317

We now consider a data set with c classes of distribution318

D. Initially, we can obtain nmin and the number of total319

samples in the data set, N . Inspired by the dynamic over-320

sampling approach reported in [39], we develop our pro-321

posal, which is detailed in Algorithm 3. The procedure is322

applied for several iterations (we explain how to determine323

the maximum number of iterations later). In each iteration,324

we first obtain the current class distribution D∗. According325

to D∗, the current number of total samples, N∗ and the326

number of samples in the current minimum class, ncurrcmin327

can be obtained. Next, we take the current minimum ratio328

pmin into consideration, where pmin = ncurrmin /N∗ denotes329

the minimum of the current prior probabilities. If pmin is330

less than a threshold θ, the current class distribution is331

considered to be imbalanced. Then, the current class with332

the minimum size is selected, and the same number of333

samples that it had in the original data set is added.334

Algorithm 3: Partially Balanced Resampling
Input: Number of classes c, class distribution D
Output: Over-sampling rate for each minority class,

Orate(1), ..., Orate(c− 1)

1 Obtain nmin, N via D;
2 maxit = dnmax·(c−1)

nmin
e;

3 Initialize D∗ = D, N∗ = N ;
4 for i = 1 : maxit do
5 Obtain the current minimum class cmin and its

current size ncurrcmin via D∗;
6 Compute the current minimum ratio pmin =

ncurr
cmin
N∗

;
7 if pmin ≤ 2

3c−1
then

8 ncurrcmin = ncurrcmin + ncmin;
9 end

10 Update D∗, N∗;
11 end
12 Compare D∗ and D and obtain Orate(1), ..., Orate(c− 1);
13 Return Orate(1), ..., Orate(c− 1).

The corresponding θ is the stopping criterion to make 335

IR≤1.5 in the final data set: 336

pmin > θ. (5)

In each iteration, ncurrcmin changes, while nmaj is a constant. 337

As c ≥ 3 and IR > 1 in our study, we can rewrite (5) as: 338

θ <
nmaj

(ncurrmin +
∑c−2
i=1 n

curr
i + nmaj)IR

, (6)

where ncurr1 , ..., ncurrc−2 are the sizes of the other c− 2 classes, 339

with values between ncurrmin and nmaj . To ensure IR≤1.5 in 340

the final data set, we set θ as the lower bound of the right- 341

hand formula in (6), that is: 342

nmaj

(ncurrmin +
∑c−2
i=1 n

curr
i + nmaj)IR

>
1

1 + (c− 1)IR
≥ 2

3c− 1
.

(7)
Hence, we set θ = 2

3c−1 for this study. Note that when 343

focusing on imbalanced data sets with other IR constraints, 344

θ should be adjusted accordingly. 345

At the end of this subsection let us return to the max- 346

imum number of iterations for the resampling procedure. 347

After each iteration the size of the current minimum class 348

has changed. According the above analysis, a minority class 349

will take at most dnmaj

nmin
e iterations to increase its size to 350

be larger than the majority class. Consequently, for our 351

multi-minority imbalanced problems, we set the maximum 352

number of iterations to be dnmaj ·(c−1)
nmin

e. It should be noted 353

that the iterations will stop earlier in practice. Finally, we 354

can obtain the over-sampling rate for each minority class, 355

Orate(1), ..., Orate(c− 1), by comparing D∗ and D. 356

3.3 Adaptive Synthetic Sample 357

Similar to the original MDO procedure, our proposal gen- 358

erates synthetic samples in the PC space. The difference is 359

in the way new sample x is obtained along the same ellipse 360

contour of xs. We first introduce the following theorem and 361

discuss why MDO usually generates unrealistic samples. 362

Theorem 1. For a d(d > 2) dimensional synthetic sample x of 363

class s, when i = 1, 2, ..., d − 1, let xi randomly take a value 364

from
[
−
√
α · ςi(Xs),

√
α · ςi(Xs)

]
, where α · ςi(Xs) > 0, for 365
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i = 1, 2, ..., d. Then, xd is obtained by solving
∑
i

x2
i

α·ςi(Xs)
= 1.366

With probability 1− 1
(d−1)! , xd has an imaginary component.367

The proof can be found in the Appendix. Theorem 1368

indicates that with probability 1− 1
(d−1)! , the last dimension369

of the samples generated by MDO in PC space will have370

an imaginary component. As the transformation from PC371

space to the original space is a linear operation with real372

matrices, the new samples are unrealistic for data sets with373

real values. Note that this probability is relatively high for374

most data sets (e.g. nearly 99.2 % for d = 5). Thus, it is375

necessary to improve the method used to generate x in the376

PC space.377

Given xs and (ς1(X
′
s), ..., ςp1(X

′
s)), the corresponding378

parameter α can be computed by solving (2). Then, given379

(ς1(X
′
s), ..., ςp1(X

′
s)) and α, we need to determine each di-380

mension of (x1, ..., xd) to satisfy (2). Here, we first generate381

d (in this study, d = p1 + m) positive random numbers382

r1, ..., rd and make them sum to one. Thus, for the ith383

dimension we can randomly choose one solution (posi-384

tive/negative) from solving x2
i

α·ςi(Xs)
= ri as its value to385

generate adaptive synthetic samples.386

3.4 Computational Complexity387

Since AMDO generates synthetic samples for each minority388

class, we can first consider the computational complexity389

of over-sampling for one minority class. The computational390

bottleneck of the over-sampling procedure lies in obtaining391

candidates of Xs ∈ Rns×(p1+p2) and performing SVD of392

X̃′s ∈ Rn
′
s×(p1+m). When searching for candidates, calculat-393

ing the K2 nearest neighbours dominates the computation394

in each iteration. It takes O(ns(p1 + p2) + nslog(ns)) in395

each iteration, and O(n2s(p1 + p2) + n2slog(ns)) to obtain396

all candidates for Xs. For SVD, as n′s � (p1 + m) in this397

study, it takes O(n′2s (p1 + m)). Hence, the computational398

complexity of over-sampling for one minority class is399

O(n2s(p1 + p2) + n2slog(ns)) +O(n′2s (p1 +m)). (8)

Because p2 ≤ m and n′s ≤ ns, (8) is actually400

O(n2smax(log(ns), (p1 +m))). (9)

For a data set with N samples, we have
∑
s n

2
s < N2

401

and
∑
s n

2
slog(ns) < N2log(N). So, the computational402

complexity of Algorithm 2 is403

O(N2max(log(N), (p1 +m))). (10)

Note that (10) is simply an upper bound. For large-404

scale data sets, (10) can be reduced with some approxima-405

tions. Combining the FLANN software package [53] with406

the LazySVD method [54] can reduce the complexity to407

O(N(p1 +m)max(log(N),
√
p1 +m)).408

4 EXPERIMENTAL STUDY409

In this section experiments are performed with a double410

purpose. First, the aim is justification of our proposed411

technique compared with MDO and other multi-class im-412

balanced learning algorithms for numeric data sets. Second,413

the goal is to verify the performance of AMDO for mixed-414

type data sets.415

We first give a description of the data sets, competitors, 416

parameters and evaluation metrics for the performance 417

evaluation. Then, the experimental results, statistical tests 418

and analysis are presented in subsequent subsections. 419

4.1 Data Sets 420

The proposed method is applied to 15 multi-class data sets 421

from the UCI2 and KEEL3 repositories, of which 10 data 422

sets are numeric and 5 data sets are nominal/mixed-type. 423

Two additional data sets described in Section 4.1.1, which 424

correspond to a real-world problem of precipitation phase 425

recognition for the meteorological service, are included. In 426

this work, as stated in Section 3.2, only data sets with 427

IR>1.5 are selected. Furthermore, to ensure fair comparison 428

via cross-validation, we do not include data sets where the 429

number of samples in the minimum class is less than 10. 430

Table 1 summarizes the characteristics of the selected 431

data sets. We remove the samples with missing values (from 432

Dermatology) from the data set. Furthermore, we eliminate 433

the classes with fewer than 10 samples in Ecoli and Nursery. 434

The experiments are conducted using five-fold cross- 435

validation with 10 independent runs, except for the Pre2D 436

and PreND data sets. 437

4.1.1 Description and Experimental Design of the ”Pre2D” 438

and ”PreND” Data Sets 439

The original data sets were provided by the Public Meteoro- 440

logical Service Center of the China Meteorological Admin- 441

istration (CMA) and describe the precipitation phase (rain, 442

snow or sleet). The class sleet has a significantly smaller 443

number of samples than rain and snow. The Pre2D data 444

consist of two continuous attributes (surface temperature 445

and dew-point temperature), which are widely used in 446

operation. To better describe the relationship between the 447

local vertical profile of temperature and precipitation phase, 448

additional numeric attributes of the temperature and height 449

at 700, 850, 925 and 1000 hPa, relative humidity, wind infor- 450

mation and location information are included. Furthermore, 451

PreND contains five meteorological characteristics (nominal 452

attributes): season, climate, city level, coastal region and 453

land use. 454

Both Pre2D and PreND were obtained from 888 automat- 455

ic weather stations in North China from September 2004 to 456

April 2015. In this study the data from September 2004 to 457

April 2013 are used for training and the data from Septem- 458

ber 2013 to April 2015 are used for testing. The experiments 459

are conducted with ten runs for Pre2D and PreND since the 460

tested methods are stochastic algorithms. 461

4.2 Competitors and Parameters 462

Our proposed technique is first compared with MDO [21]. 463

However, we have demonstrated that MDO produces un- 464

realistic values in most cases, which should be removed to 465

ensure the classifiers’ operation. We compare our method 466

with two related techniques: MDO and MDO+. For MDO, 467

all unrealistic samples are eliminated after performing Al- 468

gorithm 1. For MDO+, the strategy detailed in Section 3.3 is 469

2. http://mlr.cs.umass.edu/ml/datasets.html
3. http://sci2s.ugr.es/keel/datasets.php
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TABLE 1
Summary Description of the Data Sets

Data Set Size Attr. Cl. Class Distribution IR

Balance 625 4(4/-) 3 288/49/288 5.88
Hayes-roth 132 4(4/-) 3 51/51/30 1.70
New-thyroid 215 5(5/-) 3 150/35/30 5.00
Page-blocks 5472 10(10/-) 5 4913/329/28/87/115 175.46
Dermatology 358 34(34/-) 6 111/60/71/48/48/20 5.55
Breast-tissue 106 9(9/-) 6 21/15/18/16/14/22 1.57
User-knowledge-modelling (UKM) 403 5(5/-) 4 50/102/129/122 2.58
Vertebral-column 310 6(6/-) 3 60/150/100 2.50
Ecoli 327 7(7/-) 5 143/77/52/35/20 7.15
Pre2D 58876 2(2/-) 3 40374/2112/16390 19.12
Contraceptive 1473 9(6/3) 3 629/333/511 1.89
Flare 1066 11(-/11) 6 331/239/211/147/95/43 7.70
Thyroid 7200 21(6/15) 3 166/368/6666 40.16
Car 1728 6(-/6) 4 1210/384/69/65 18.62
Nursery 12958 8(-/8) 4 4320/328/4266/4044 13.17
Splice 3190 60(-/60) 3 767/768/1655 2.16
PreND 57907 21(16/5) 3 39762/2090/16055 19.02

Attr.: number of attributes(numeric/nominal), Cl.: number of classes.

applied to ensure that no unrealistic samples are generated.470

The performance of MDO and MDO+ is tested for only 10471

numeric data sets because they canot be used for mixed-type472

data sets.473

Furthermore, we also compare the proposed technique474

with four other well-known and representative methods for475

multi-class imbalanced problems:476

• SSMOTE [39]4 : refers to Static-SMOTE. This method477

develops a mechanism to iteratively generate syn-478

thetic samples via SMOTE in c steps and to modify479

the distribution of classes in the training data set.480

• GCS [41]: refers to RESCALEnew. For cost-sensitive481

learning, this method generalizes the rescaling ap-482

proach for multi-class problems. If the costs are483

consistent, rescaling is conducted directly; otherwise,484

rescaling is applied after pairwise coupling.485

• ABNC [42]: refers to AdaBoost.NC. This method486

combines the AdaBoost algorithm [43] with negative487

correlation learning [44]. The ensemble diversity can488

be emphasized in this way.489

• OSMOTE [40]: refers to OVOSMOTE. This method490

uses SMOTE as an ad hoc approach after OVO491

decomposition.492

OSMOTE is a representative technique of the combination of493

binarization techniques and ad hoc approaches [40]. More-494

over, in [21] the authors compared MDO with several two-495

class over-sampling approaches applying OAA and demon-496

strated the potential of MDO. Hence, in our experiments we497

do not consider two-class over-sampling approaches that498

use class decomposition except for OSMOTE.499

We use the Matlab programming language to implement500

all the tested methods except ABNC, which is implemented501

4. SSMOTE only refers to the preprocessing stage, as a uniform
classifier is applied for learning. A description can be found in Section
3.1 of [40].

using the KEEL software tool [46]. To perform a fair compar- 502

ison, we use a uniform and widely adopted base classifier in 503

the learning stage. Here, the C4.5 decision tree [45] with the 504

default settings which is implemented in KEEL is selected. 505

Because the previous study in [21] showed similar results 506

with different base classifiers, we do not conduct additional 507

experiments using different base classifiers in this study. 508

We set the parameter values for different methods ac- 509

cording to the recommendations of the corresponding au- 510

thors. In the case of SSMOTE and OSMOTE, 5 nearest 511

neighbours of the minority class are considered. For GCS, 512

we perform rescaling through instance-weighting. For AB- 513

NC, the penalty strength λ is set to 2, and the number of 514

classifiers composing the ensemble is 51. In MDO, MDO+ 515

and AMDO, K1 and K2 are set to 5 and 10, respectively, 516

except for two data sets (Balance and Breast-tissue), because 517

we could not find any candidates for some of the minority 518

classes in this setting. Thus, we set K1 = 1 and K2 = 10 519

for Balance and Breast-tissue. 520

4.3 Evaluation Metrics 521

Considering the characteristics of imbalanced problems, we 522

consider both the overall performance and the accuracy of 523

the minority class in this study. Pmin is used to reflect the 524

precision of the minority class with the minimum size [21] 525

[42]. The precision of the ith class can be computed as: 526

Pi =
TPi

TPi + FPi
, (11)

where TPi is the number of well-classified samples in the 527

ith class, and FPi is the number of samples with incorrect 528

predictions in the ith class. Correspondingly, we use Pavg to 529

reflect the average precision over all classes [47] (also called 530

the average accuracy in [40] [48]): 531

Pavg =
1

c

c∑
i=1

Pi. (12)
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TABLE 2
Means and Standard Deviations of Pmin (%) and Pavg (%) Results

from MDO, MDO+ and AMDO

Pmin (%)

Data Set MDO MDO+ AMDO
Balance 2.004.47 0.000.00 10.220.50

Hayes-roth 100.000.00 100.000.00 100.000.00

New-thyroid 83.3316.67 96.677.45 100.000.00

Page-blocks 75.3316.26 93.339.13 96.677.45

Dermatology 95.0011.18 95.0011.18 100.000.00

Breast-tissue 60.0027.89 53.3329.81 60.0027.89

UKM 86.0013.42 86.0013.42 94.008.94

Vertebral-column 68.3322.36 66.6728.87 86.679.50

Ecoli 75.0030.62 90.0013.69 90.0013.69

Pre2D 33.448.77 33.339.53 48.656.55

Average 67.84 71.43 78.62
Mean rank 2.35 2.45 1.20

Pavg (%)

Data Set MDO MDO+ AMDO
Balance 57.282.92 55.451.66 60.372.06

Hayes-roth 84.916.71 84.976.74 84.976.74

New-thyroid 89.816.84 94.983.59 96.542.99

Page-blocks 81.241.79 86.132.48 88.771.92

Dermatology 95.672.05 96.061.62 96.880.26

Breast-tissue 63.223.74 66.562.17 63.223.74

UKM 91.452.48 91.922.50 94.232.14

Vertebral-column 78.225.55 76.567.41 81.892.38

Ecoli 77.247.03 82.305.21 82.445.08

Pre2D 74.165.21 74.035.27 77.154.88

Average 79.32 80.90 82.65
Mean rank 2.65 2.15 1.20

The best result is in bold face, and the second best result is
in italics.

AUC is also widely used [49] [47] [21] [42]; thus, we also532

consider MAUC to describe the average ability to separate533

any pair of classes [50] [51]:534

MAUC =
2

c(c− 1)

∑
i<j

Ai,j +Aj,i
2

, (13)

where Ai,j is the AUC between class i and class j. Note that535

for multi-class problems, Ai,j and Aj,i may not be equal.536

Correspondingly, we develop the AUC of the minority class537

(AUCm) to reflect how the minority class with minimum538

size can be separated from the other classes:539

AUCm =
1

c− 1

∑
i6=min

Ai,min +Amin,i
2

. (14)

In summary, with respect to precision, we regard Pmin540

and Pavg as the evaluation metrics, while we consider541

AUCm and MAUC for AUC. For each of the metrics, the542

higher it is, the better the performance is.543

4.4 Comparison of AMDO with MDO and MDO+544

In this subsection the proposed AMDO is compared with545

MDO and MDO+ on 10 numeric data sets. The purpose of546

this section is to show that our considerations in Section 3.2547

and Section 3.3 improve the classifier performance. Table548

2 and Table 3 show the performance results of C4.5 for549

each data set when applying MDO, MDO+ and AMDO. We550

summarize the results as follows:551

TABLE 3
Means and Standard Deviations of AUCm (%) and MAUC (%) Results

from MDO, MDO+ and AMDO

AUCm (%)

Data Set MDO MDO+ AMDO
Balance 57.402.78 56.600.88 60.611.24

Hayes-roth 94.342.52 94.362.53 94.362.53

New-thyroid 91.856.74 97.042.94 98.371.41

Page-blocks 87.904.66 93.972.91 95.512.07

Dermatology 97.323.46 97.483.23 98.980.26

Breast-tissue 76.807.31 77.308.09 76.807.31

UKM 93.333.88 93.553.92 96.453.02

Vertebral-column 81.136.76 79.548.76 86.041.72

Ecoli 86.389.56 91.974.61 91.594.19

Pre2D 72.826.83 72.446.91 76.725.21

Average 83.93 85.43 87.54
Mean rank 2.65 2.05 1.30

MAUC (%)

Data Set MDO MDO+ AMDO
Balance 67.962.19 66.591.25 70.271.54

Hayes-roth 88.685.03 88.735.06 88.735.06

New-thyroid 92.365.13 96.242.69 97.402.24

Page-blocks 88.271.12 91.331.55 92.981.20

Dermatology 97.401.23 97.630.97 98.130.16

Breast-tissue 77.932.24 79.931.30 77.932.24

UKM 94.301.65 94.611.67 96.151.42

Vertebral-column 83.674.16 82.425.55 86.421.78

Ecoli 85.774.39 88.933.26 89.033.18

Pre2D 80.626.22 80.526.27 82.864.99

Average 85.70 86.70 88.00
Mean rank 2.65 2.15 1.20

The best result is in bold face, and the second best result
is in italics.

• Based on the individual results for each data set, 552

AMDO performs the best for most of the considered 553

data sets. The average performance and mean ranks 554

of AMDO verify this conclusion. Compared with 555

MDO, improvements of 15.89% in the average Pmin, 556

4.20% in the average Pavg , 4.30% in the average 557

AUCm and 2.68% in the average MAUC are obtained 558

by AMDO. Compared with MDO+, improvements of 559

10.07% in the average Pmin, 2.16% in the average 560

Pavg , 2.47% in the average AUCm and 1.50% in 561

the average MAUC are obtained by AMDO. Thus, 562

AMDO is better than the original MDO method with 563

respect to both overall performance and the accuracy 564

of the minority class. 565

• In some data sets (e.g. Hayes-roth and Breast-tissue) 566

AMDO performs worse than MDO/MDO+, indicat- 567

ing that the partially balanced resampling scheme 568

may not always be the best for this type of over- 569

sampling. 570

• From MDO to MDO+, the number of adaptive syn- 571

thetic samples is increased and the performance is 572

generally improved. However, for Pre2D, a data set 573

with two numeric attributes, MDO performs similar- 574

ly to MDO+, which can be regarded as a justification 575

of Theorem 1 because MDO does not generate unre- 576

alistic samples when d = 2. 577

To evaluate the significance of the results in Table 2 578

and Table 3, we apply Wilcoxon’s test [52] to compare 579
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TABLE 4
Results of Wilcoxon’s Test after Comparing MDO, MDO+ and AMDO
using Each of the Evaluation Metrics (Pmin, Pavg , AUCm, MAUC)

Comparison R+ R− p p∗

Pmin

MDO+/MDO 25.5 19.5 ≥0.2 0.6784
AMDO/MDO 53.5 1.5 0.0049 0.0069
AMDO/MDO+ 53.5 1.5 0.0049 0.0069

Pavg

MDO+/MDO 42.0 13.0 0.1602 0.1263
AMDO/MDO 45.0 0.0 0.0039 0.0064
AMDO/MDO+ 38.0 7.0 0.0742 0.0580

AUCm
MDO+/MDO 38.0 17.0 ≥0.2 0.2622
AMDO/MDO 45.0 0.0 0.0039 0.0064
AMDO/MDO+ 42.0 3.0 0.0195 0.0178

MAUC
MDO+/MDO 42.0 13.0 0.1602 0.1263
AMDO/MDO 45.0 0.0 0.0039 0.0064
AMDO/MDO+ 39.0 6.0 0.0547 0.0440

p: exact p-value, p∗: asymptotic p-value.

the differences statistically via pairwise comparisons. The580

Wilcoxon signed-rank test is applied, and the p-values and581

asymptotic p-values (p∗) corresponding to different pairs of582

comparisons for the 10 numeric data sets are obtained in583

Table 4. Additionally, for each comparison, the sum of the584

ranks in favor of the first algorithm (R+) and the sum of the585

ranks in favor of the second algorithm (R−) are provided.586

The p-values represent the degree of difference between two587

algorithms and enable us to determine whether they are588

significantly different. In this paper, we consider a difference589

to be significant at p < 0.05.590

The results in Table 4 show that there are no statisti-591

cal differences between MDO and MDO+ for any of the592

evaluation metrics. When comparing AMDO with MDO,593

AMDO always obtains a higher R+ and the associated p-594

values show statistical differences for Pmin, Pavg , AUCm595

and MAUC. At the same time, although AMDO always596

performs better than MDO+, the two algorithms are sig-597

nificantly different only for Pmin and AUCm.598

To explain the results of this statistical analysis, let us599

recall the procedures of MDO and MDO+. MDO often600

generates unrealistic synthetic samples, which are removed601

before learning, while MDO+ ensures that no unrealistic602

samples are generated. Since for Xs, n′s < ns, after MDO+,603

the size of Xs is actually nmaj − n′s + ns, that is, the size of604

any minority class is larger than that of the majority class.605

As a result, the synthetic samples of MDO are insufficient for606

learning, while the excessive synthetic samples of MDO+607

may cause over-fitting.608

In general, the statistical analysis supports that our609

proposed AMDO can result in significant improvement in610

performance compared to MDO technique.611

4.5 Comparison of AMDO with Other Multi-Class Imbal-612

anced Learning Algorithms613

In this subsection the proposed AMDO is compared with614

4 other multi-class imbalanced learning algorithms on 10615

numeric data sets and 7 nominal/mixed-type data sets. As616

a baseline, we provide the performance results obtained617

directly by C4.5 (Base).618

Similarly, we also conduct non-parametric statistical619

analysis to evaluate whether the obtained results are signifi-620

cantly different. As recommended in [52], the Friedman test621

is applied. If the null hypothesis stating that all algorithms 622

perform equally in mean rank is rejected, the correspond- 623

ing post hoc (Bonferroni-Dunn) test is used to compare 624

all algorithms to each other. Here, we also reject the null 625

hypothesis in the case of p < 0.05 for the Friedman test. 626

For the post hoc test, AMDO is selected as the ”control” 627

method. The performance of any algorithm and AMDO is 628

deemed significantly different if their mean ranks differ by 629

at least the associated critical difference (CD): 630

CD = qα

√
K(K + 1)

6D
, (15)

where K is the number of comparative algorithms, D is 631

the number of data sets and qα is the critical value. In the 632

following qα=0.05 is considered for all post hoc tests. 633

4.5.1 Numeric Data Sets 634

In Table 5 and Table 6 the means and standard deviations of 635

the performance are provided for each numeric data set. The 636

results of the Friedman test and corresponding Bonferroni- 637

Dunn tests for the numeric data sets are shown in Table 7. 638

From a purely statistical point of view, AMDO does 639

not demonstrate overwhelming superiority, except for Pmin, 640

where AMDO yields the best result for eight data sets. 641

Taking the average performance over ten data sets and 642

the mean ranks into account, we obtain three remarkable 643

findings: 644

• First, the C4.5 decision tree is outperformed by each 645

multi-class imbalanced learning algorithm for Pmin, 646

Pavg , AUCm and MAUC. This observation supports 647

the advantages of applying ad hoc methods for this 648

type of problem. 649

• Second, AMDO achieves the best average results and 650

mean ranks for Pmin, Pavg , AUCm and MAUC. 651

• Third, with repsect to the second best performance, 652

the situation is more complex. OSMOTE obtains the 653

second best result for the average Pmin, whereas 654

GCS yields the second best results for the average 655

Pavg , AUCm and MAUC. However, ABNC always 656

achieves the second best mean ranks results. 657

According to Table 7, we reject the null hypothesis for 658

Pmin (p = 0.0344) and AUCm (p = 0.0135) at a significance 659

level of 0.05. Based on the rejection, a post hoc test is 660

conducted, and the rank differences between the compar- 661

ative method (Base, SSMOTE, GCS, ABNC and OSMOTE) 662

and control method (AMDO) are computed. In this case 663

CD = 2.596
√

6·7
6·10 = 2.16. As a result, AMDO significantly 664

outperforms Base with respect to Pmin and AUCm, GCS 665

with respect to Pmin and SSMOTE with respect to AUCm. 666

Further, this post hoc test suggests that the performance of 667

ABNC and AMDO are comparable for Pmin and AUCm. 668

However, this conclusion is inconsistent with the third find- 669

ings from Table 5 and Table 6 because the average results 670

are more sensitive to the performance for a single data 671

set (e.g. Breast-tissue and Pre2D) than are the mean ranks. 672

Thus, although GCS produces the best result in only a few 673

data sets, the absolute values are prominent, which leads to 674

lower mean ranks. On the other hand, ABNC is more robust 675

to some degree (i.e., there is no prominent advantage or 676
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TABLE 5
Means and Standard Deviations of Pmin (%) and Pavg (%) Results from Base, SSMOTE, GCS, ABNC, OSMOTE and AMDO for the Numeric

Data Sets

Data set
Pmin (%) Pavg (%)

Base SSMOTE GCS ABNC OSMOTE AMDO Base SSMOTE GCS ABNC OSMOTE AMDO

Balance 0.000.00 8.449.18 6.449.83 2.224.97 12.4413.41 10.220.50 56.381.75 58.382.94 56.654.03 62.333.29 57.862.78 60.372.06

Hayes-roth 100.000.00 100.000.00 100.000.00 100.000.00 100.000.00 100.000.00 84.916.71 84.675.06 85.335.58 83.527.08 84.976.74 84.976.74

New-thyroid 83.3311.79 90.0014.91 93.339.13 93.339.13 90.009.13 100.000.00 88.866.02 91.083.02 93.144.55 93.591.45 92.546.61 96.542.99

Page-blocks 82.6711.88 78.676.91 93.3314.91 72.6724.99 93.339.13 96.677.45 84.302.14 84.571.88 88.774.49 79.705.57 89.612.98 88.771.92

Dermatology 95.0011.18 95.0011.18 90.0013.69 100.000.00 90.0013.69 100.000.00 95.672.05 95.731.83 93.502.71 97.100.75 95.312.45 96.880.26

Breast-tissue 60.0027.89 40.0036.51 46.6729.81 60.0027.89 53.3329.81 60.0027.89 63.223.74 60.893.94 68.785.77 66.004.88 65.837.05 63.223.74

UKM 88.0013.04 92.0013.04 90.0010.00 94.008.94 88.0016.43 94.008.94 92.182.02 92.574.85 91.032.00 94.492.45 91.782.32 94.232.14

Vertebral-column 65.0016.03 65.0019.00 60.0019.90 61.6718.26 66.675.89 86.679.50 76.442.65 77.224.66 75.675.86 76.673.12 77.004.71 81.892.38

Ecoli 65.0037.91 70.0027.39 55.0032.60 70.0027.39 55.0032.60 90.0013.69 74.647.88 72.8112.01 72.7311.35 76.237.14 73.128.72 82.445.08

Pre2D 3.000.00 47.456.23 88.890.55 27.6313.23 81.981.21 48.656.55 66.190.00 78.015.24 90.240.78 71.867.06 87.131.70 77.154.88

Average 64.20 68.66 72.37 68.15 73.08 78.62 78.28 79.59 81.58 80.15 81.52 82.65
Mean rank 4.30 3.90 4.00 3.45 3.60 1.75 4.75 3.90 3.80 3.00 3.35 2.20

The best result is in bold face, and the second best result is in italics.

TABLE 6
Means and Standard Deviations of AUCm (%) and MAUC (%) Results from Base, SSMOTE, GCS, ABNC, OSMOTE and AMDO for the Numeric

Data Sets

Data set
AUCm (%) MAUC (%)

Base SSMOTE GCS ABNC OSMOTE AMDO Base SSMOTE GCS ABNC OSMOTE AMDO

Balance 56.951.91 58.123.27 57.103.43 60.522.89 58.583.18 60.611.24 67.291.31 68.792.20 67.493.02 71.752.47 68.392.09 70.271.54

Hayes-roth 94.342.52 94.251.90 94.502.09 93.822.65 94.362.53 94.362.53 88.685.03 88.503.79 89.004.18 87.645.31 88.735.06 88.735.06

New-thyroid 91.405.33 93.904.45 95.433.76 95.762.37 94.045.11 98.371.41 91.644.52 93.312.27 94.863.41 95.191.09 94.404.96 97.402.24

Page-blocks 90.753.57 89.842.16 94.814.66 86.827.87 94.963.16 95.512.07 90.191.34 90.351.18 92.982.80 87.313.48 93.511.86 92.981.20

Dermatology 97.323.46 97.393.27 95.554.17 99.050.28 96.094.09 98.980.26 97.401.23 97.441.10 96.101.62 98.260.45 97.191.47 98.130.16

Breast-tissue 76.807.31 72.1810.10 75.809.99 78.308.92 76.929.75 76.807.31 77.932.24 76.532.36 81.273.46 79.602.93 79.504.23 77.932.24

UKM 94.143.65 94.945.27 94.193.04 96.412.61 94.014.64 96.453.02 94.791.34 95.053.23 94.021.33 96.321.64 94.521.54 96.151.42

Vertebral-column 79.253.17 79.965.56 78.386.36 79.425.04 80.042.48 86.041.72 82.331.99 82.923.50 81.754.39 82.502.34 82.753.53 86.421.78

Ecoli 83.0711.54 83.4310.88 79.7811.44 84.789.21 79.7411.00 91.594.19 84.154.93 83.017.50 82.967.10 85.154.46 83.205.45 89.033.18

Pre2D 63.020.00 77.257.74 91.530.80 70.528.86 88.191.33 76.725.21 74.640.00 83.515.32 92.680.55 78.899.77 90.351.46 82.864.99

Average 82.70 84.13 85.71 84.54 85.69 87.54 84.90 85.94 87.31 86.26 87.25 87.99
Mean rank 4.75 4.00 3.90 3.10 3.45 1.80 4.75 3.90 3.80 3.00 3.35 2.20

The best result is in bold face, and the second best result is in italics.

TABLE 7
Friedman Test with Corresponding Post Hoc Test for the Numeric Data

Sets Using AMDO as the Control Method

Friedman test Bonferroni-Dunn test (rank difference)
(p-value) Base SSMOTE GCS ABNC OSMOTE

Pmin 0.0344 2.55 2.15 2.25 1.70 1.85
Pavg 0.0661 - - - - -
AUCm 0.0135 2.95 2.20 2.10 1.30 1.65
MAUC 0.0661 - - - - -

α = 0.05, CD = 2.16, the value larger than CD, indicating a significant difference,
is in bold face.

disadvantage of ABNC), which leads to higher mean ranks677

but lower average results.678

Hence, for numeric data sets, AMDO is recommended to679

improve the performance of C4.5 for multi-class imbalanced680

problems. Both the overall performance (Pavg and MAUC)681

and accuracy for the minority class (Pmin and AUCm) are682

improved, and the improvements in Pmin and AUCm are683

significant.684

4.5.2 Nominal/Mixed-Type Data Sets685

This set of experiments is devoted to verifying whether686

AMDO has successfully adapted MDO to nominal/mixed-687

type cases. The detailed results of seven nominal/mixed- 688

type data sets can be found in Table 8 and Table 9. The 689

corresponding statistical tests are shown in Table 10. 690

The trend is quite different from that of the numeric data 691

sets, where AMDO shows very promising behaviour, except 692

for Thyroid. Generally, AMDO achieves the best perfor- 693

mance for three data sets with respect to Pmin, six data sets 694

with respect to Pavg , five data sets with respect to AUCm 695

and six data sets with respect to MAUC. The highest average 696

results and mean ranks also support AMDO’s superiority. 697

The results obtained by GCS are the second best and com- 698

parable to those of AMDO. Surprisingly, ABNC, for which 699

we observed very robust performance for the numeric data 700

sets, shows an obvious decrease in performance. 701

We observe that the performance of AMDO decreases 702

with respect to the baseline for Thyroid, where it is clear that 703

all the classes have been well classified. As AMDO gener- 704

ates synthetic samples and increases diversity, the synthetic 705

samples may alter the boundaries of well-classified classes 706

and have a negative impact on classification in this case. 707

Meanwhile, we also observe that the mean ranks of 708

Pmin and AUCm are inconsistent, while the mean ranks 709

of Pavg and MAUC are consistent. This phenomenon is 710
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TABLE 8
Means and Standard Deviations of Pmin (%) and Pavg (%) Results from Base, SSMOTE, GCS, ABNC, OSMOTE and AMDO for the

Nominal/Mixed-type Data Sets

Data set
Pmin (%) Pavg (%)

Base SSMOTE GCS ABNC OSMOTE AMDO Base SSMOTE GCS ABNC OSMOTE AMDO

Contraceptive 43.556.04 38.126.78 40.245.81 36.024.51 47.1012.20 45.366.98 52.072.15 48.303.56 49.240.74 49.212.19 51.863.04 52.522.09

Flare 2.224.97 20.5614.65 30.286.39 20.5612.36 6.679.94 25.5618.26 59.841.51 61.373.40 63.041.93 58.021.58 58.571.80 63.451.74

Thyroid 96.402.49 97.012.99 97.612.47 95.792.68 98.811.64 93.992.97 96.701.58 96.960.49 97.340.89 96.550.74 97.720.81 95.670.98

Car 63.0822.03 61.5419.61 89.236.88 67.6926.87 61.5426.09 98.463.44 77.265.59 76.814.82 91.724.12 78.545.63 80.379.40 91.971.31

Nursery 67.713.70 68.646.64 77.456.54 66.483.31 64.366.46 93.902.85 90.121.19 90.321.94 93.451.78 89.841.05 89.311.86 95.751.20

Splice 93.993.50 93.593.96 95.162.87 90.986.17 93.464.78 94.513.02 94.231.28 93.970.98 93.901.23 91.162.67 94.251.13 94.790.73

PreND 61.140.00 77.412.53 87.651.31 87.651.22 85.542.65 87.881.53 86.230.00 91.371.99 95.230.64 95.510.78 93.901.35 95.580.85

Average 61.16 65.27 73.95 66.45 65.35 77.09 79.49 79.87 83.42 79.83 80.85 84.25
Mean rank 4.29 4.14 2.14 4.29 4.00 2.14 4.00 4.29 2.86 4.71 3.43 1.71

The best result is in bold face, and the second best result is in italics.

TABLE 9
Means and Standard Deviations of AUCm (%) and MAUC (%) Results from Base, SSMOTE, GCS, ABNC, OSMOTE and AMDO for the

Nominal/Mixed-type Data Sets

Data set
AUCm (%) MAUC (%)

Base SSMOTE GCS ABNC OSMOTE AMDO Base SSMOTE GCS ABNC OSMOTE AMDO

Contraceptive 64.232.14 60.413.20 60.781.44 61.571.32 64.043.10 64.632.39 64.051.61 61.222.67 61.930.55 61.911.64 63.892.28 64.391.56

Flare 63.180.96 67.424.40 70.281.76 66.683.30 63.932.43 69.534.81 75.910.90 76.822.04 77.821.16 74.810.95 75.141.08 78.071.04

Thyroid 97.841.11 98.080.86 98.370.94 97.630.87 98.820.66 96.841.07 97.531.19 97.720.37 98.000.67 97.410.55 98.290.60 96.750.73

Car 81.646.67 81.085.80 94.523.03 82.997.54 82.949.49 95.521.08 84.843.73 84.543.21 94.482.75 85.693.75 86.926.27 94.640.87

Nursery 88.531.33 88.822.32 92.122.23 88.151.18 87.422.24 96.651.20 93.410.79 93.541.29 95.631.18 93.230.70 92.871.24 97.160.80

Splice 95.541.27 95.361.21 95.361.29 93.312.51 95.451.33 95.991.01 95.670.96 95.470.73 95.430.92 93.372.00 95.690.85 96.090.55

PreND 84.980.00 90.843.25 95.000.34 95.120.47 93.741.99 95.150.55 89.680.00 93.522.53 96.420.23 96.630.42 95.430.78 96.700.48

Average 82.28 83.14 86.63 83.64 83.76 87.76 85.87 86.12 88.53 86.15 86.89 89.11
Mean rank 3.29 3.57 2.43 3.86 3.14 1.71 4.00 4.29 2.86 4.71 3.43 1.71

The best result is in bold face, and the second best result is in italics.

to be expected. A higher Pmin indicates that a classifier is711

good at recognizing the minority class, but it is still possible712

that samples of other classes may be misclassified, which is713

harmful for separating the minority class from other classes714

and decreases AUCm. However, a higher Pavg indicates715

every class should be recognized better without severely716

jeopardizing the precision of other classes, which in turn,717

requires good separation of each pair of classes, producing718

a higher MAUC.719

As shown in Table 10, the null hypothesis is rejected720

for Pmin (p = 0.0359), Pavg (p = 0.0362) and MAUC721

(p = 0.0362) at a significance level of 0.05. Here, CD =722

2.576
√

6·7
6·7 = 2.58. AMDO significantly outperforms ABNC723

in Pavg and MAUC. Additionally, the post hoc test demon-724

strates that the performances of GCS and AMDO are similar725

especially for Pmin, where the rank difference between them726

is zero.727

The results indicate that AMDO is comparable to728

GCS for nominal/mixed-type data sets. Furthermore, in729

most cases, AMDO achieves the best performance, which730

confirms that AMDO has successfully adapted MDO to731

nominal/mixed-type case.732

4.5.3 All Data Sets733

To complete our experimental study, we compare AMDO734

with SSMOTE, GCS, ABNC, and OSMOTE for all data sets.735

We aim to justify the effectiveness and robustness of AMDO736

when considering all data sets.737

TABLE 10
Friedman Test with Corresponding Post Hoc Test for the

Nominal/Mixed-type Data Sets Using AMDO as the Control Method

Friedman test Bonferroni-Dunn test(rank difference)
(p-value) Base SSMOTE GCS ABNC OSMOTE

Pmin 0.0359 2.14 2.00 0 2.14 1.86
Pavg 0.0362 2.29 2.57 1.14 3.00 1.71
AUCm 0.0863 - - - - -
MAUC 0.0362 2.29 2.57 1.14 3.00 1.71

α = 0.05, CD = 2.58, the value larger than CD, indicating a significant difference,
is in bold face.

In Table 11 the average results and mean ranks (present- 738

ed in parentheses) are shown for all data sets. The situations 739

of Pmin, Pavg , AUCm and MAUC are very similar: AMDO 740

has the best performance, followed by GCS. We provide 741

the results of the statistical analysis in Table 12. In this 742

case the Friedman test shows that the effect of the method 743

used is statistically significant at the level of 0.05. Here, CD 744

is 2.498
√

5·6
6·17 = 1.35. AMDO is significantly better than 745

SSMOTE (for Pmin, Pavg , AUCm and MAUC), ABNC (for 746

Pmin and AUCm) and OSMOTE (for Pmin and AUCm). 747

Although AMDO outperforms GCS in general, the statistical 748

study indicates that the two methods are comparable. 749

Meanwhile, the improvement obtained by AMDO in 750

Pmin is more significant than that in Pavg , AUCm and 751

MAUC. We wonder whether this implies a reduced per- 752

formance in other classes, especially in the worst classified 753
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class. To clearly show the influence of applying ad hoc754

methods in the worst classified class, we refer to minimum755

sensitivity [39] and compare AMDO with other competitors.756

Note that the minimum sensitivity metric can measure the757

performance for the worst classified class. The average per-758

formance results are briefly shown in Table 13. We conclude759

that AMDO improves the performance not only in the760

minority class but also in the worst classified class.761

TABLE 11
Average Results (%) and Mean Ranks from SSMOTE, GCS, ABNC,

OSMOTE and AMDO for All Data Sets

SSMOTE GCS ABNC OSMOTE AMDO

Pmin 67.26(3.59) 73.02(2.85) 67.45(3.44) 69.90(3.32) 77.99(1.79)
Pavg 79.71(3.71) 82.34(3.03) 80.02(3.29) 81.24(3.03) 83.31(1.94)
AUCm 83.72(3.79) 86.09(3.09) 84.17(3.18) 84.90(3.21) 87.63(1.74)
MAUC 86.01(3.71) 87.81(3.03) 86.22(3.29) 87.10(3.03) 88.45(1.94)

The best result is in bold face, the second best result is in italics, and the mean
rank is presented in parentheses.

TABLE 12
Friedman Test with Corresponding Post Hoc Test for All Data Sets

Using AMDO as the Control Method

Friedman test Bonferroni-Dunn test(rank difference)
(p-value) SSMOTE GCS ABNC OSMOTE

Pmin 0.0061 1.79 1.06 1.65 1.53
Pavg 0.0205 1.76 1.09 1.35 1.09
AUCm 0.0034 2.06 1.35 1.44 1.47
MAUC 0.0205 1.76 1.09 1.35 1.09

α = 0.05, CD = 1.35, the value larger than CD, indicating a significant
differencet, is in bold face.

TABLE 13
Average Results (%) and Mean Ranks of Minimum Sensitivity from

Base, SSMOTE, GCS, ABNC, OSMOTE and AMDO for All Data Sets

Base SSMOTE GCS ABNC OSMOTE AMDO

52.94(4.47) 58.21(3.94) 64.86(2.91) 57.10(4.03) 61.28(3.56) 65.18(2.09)

The best result is in bold face, the second best result is in italics, and the mean rank
is presented in parentheses.

4.6 Analysis of AMDO for the Precipitation Phase762

Recognition Problem763

Pre2D and PreND are two typical cases where overlapping764

occurs between classes. The authors in [21] claim that765

for multi-class cases, the existing over-sampling techniques766

usually produce synthetic samples that increase the overlap767

between class regions, which worsens the performance of768

learning algorithms. They show that MDO can increase769

the generalizability of the classifier and reduce the risk770

of overlap. We want to examine whether AMDO, as an771

extension of MDO, can perform well for mixed-type data772

sets with overlap between classes.773

In the case of mixed-type data sets, it is difficult to774

visualize the data to see the phenomenon of overlapping.775

However, we can rely on num (detailed in Section 2.3) to776

describe this situation. As shown in Fig. 2, the percentage777

of num of rain, snow and sleet in the PreND data set778

are provided. Note that num < 5 indicates that samples779

that belong to one class are surrounded by more samples780
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Fig. 2. Percentage of num of rain, snow and sleet in PreND data set.

of other classes. Thus, we can consider that samples with 781

num < 5 are located in the overlapping regions. According 782

to Fig. 2, more than 72% of the sleet samples suffer from 783

overlapping. Table 8 and Table 9 show that AMDO results 784

in improvements of 43.74% in Pmin, 10.84% in Pavg , 11.97% 785

in AUCm and 7.83% in MAUC compared to the direct use of 786

C4.5. Additionally, AMDO shows the best performance for 787

PreND among the different multi-class imbalanced learning 788

algorithms, which confirms that AMDO can handle mixed- 789

type data sets with overlap between classes. 790

The synthetic samples generated by AMDO maintain 791

the covariance structures of the different classes. If the 792

dimensions of the data are low, preserving the covariance 793

structures may not be a good choice. This can be seen 794

from the performance of AMDO in Pre2D (see Table 5 and 795

Table 6), where the improvements produced by AMDO are 796

limited. At the same time, we should highlight the effect 797

of new attributes included in PreND for precipitation phase 798

recognition. 799

5 CONCLUSION AND FUTURE WORK 800

This paper addressed multi-class imbalanced problems, 801

generating adaptive synthetic samples for classifiers. Our 802

proposed technique, AMDO, generalizes the original MDO 803

[21] and improves its performance. AMDO inherits the 804

core idea of MDO, that is, synthetic samples are generated 805

while maintaining the same Mahalanobis distance from 806

their corresponding class mean. Meanwhile, AMDO adapts 807

MDO to mixed-type data sets, develops a new scheme to 808

partially balance the class distribution and optimizes the 809

method used to synthesize samples. AMDO is realized with 810

a theoretical guarantee and relatively low computational 811

complexity. Our proposal was applied to 15 multi-class 812

imbalanced benchmarks and two real-world classification 813

problems of precipitation phase recognition. 814

The results confirm that AMDO improves both the ac- 815

curacy of the minority class and the overall performance of 816

the classifier in most data sets, showing promising precision 817

and AUC. The experimental study indicates that AMDO 818

successfully adapted MDO to mixed-type data sets and 819

outperformed MDO for numeric data sets. With respect to 820

all data sets, AMDO yielded the best results. Based on the 821

statistical analysis, we concluded that AMDO significantly 822
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outperformed SSMOTE (for Pmin, Pavg , AUCm and MAUC)823

and ABNC and OSMOTE (for Pmin and AUCm) and was824

competitive with GCS. It is important to note that the825

performance of AMDO may be limited for low-dimensional826

data sets.827

Future research will include the following: 1) as AMDO828

increases the diversity of samples, the combination of AM-829

DO and ensemble learning will be investigated; 2) a more830

efficient approach to speed up the AMDO procedure; and 3)831

suitable parameter-optimizing methods for AMDO.832
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