
RotateConv: Making Asymmetric Convolutional
Kernels Rotatable

Jiabin Ma, Weiyu Guo, Wei Wang and Liang Wang
Center for Research on Intelligent Perception and Computing, CASIA, Beijing, China

National Laboratory of Pattern Recognition, CASIA, Beijing, China
University of Chinese Academy of Sciences, Beijing, China

Email: jiabin.ma@cripac.ia.ac.cn, weiyu.guo@ia.ac.cn, wangwei@nlpr.ia.ac.cn, wangliang@nlpr.ia.ac.cn

Abstract—In deep Convolutional Neural Networks(CNN), the
design of kernel shapes influences a lot on the model size and
performance. In this work, our proposed method, RotateConv,
applies a novel kernel shape to massively reduce the number
of parameters while maintaining considerable performance. The
new shape is extremely simple as a line segment one, and we
equip it with the rotatable ability which aims to learn diverse
features with respect to different angles. The kernel weights and
angles are learned simultaneously during end-to-end training via
the standard back-propagation algorithm. There are two variants
of RotateConv that only have 2 and 4 parameters respectively
depending on whether using weight sharing, which are much
compressed than the normal 3× 3 kernel with 9 parameters.
In experiments, we validate our RotateConv with two classical
models, ResNet and DenseNet, on four image classification
benchmark datasets, namely MNIST, CIFAR10, CIFAR100 and
SVHN.

I. INTRODUCTION

In recent years, CNN becomes a state-of-the-art technique
for computer vision tasks like Image Classification [1], [2],
Semantic Segmentation [3], [4] and Object Detection [5],
[6], [7] since it effectively extracts deep and valuable fea-
tures. Although deep models [2], [8], [9], [10], [11] are
very powerful, the large number of learnable parameters
consumes a lot of memory storage. For example, the parameter
numbers of ResNet101 [10] and DenseNet100 [11] are 39M
and 27M respectively, which imposes restrictions on device-
limited applications such as mobile systems. And among these
parameters, convolution weights are main parts.

Kernel factorization and weight pruning are two methods
to reduce the model size of deep neural networks. Kernel
factorization like Inception V3 [9] uses asymmetric kernels
like n× 1 and 1× n, and perpendicularly intersects them
to replace one normal square kernel. Because asymmetric
kernels have line segment shapes, the two-layer solution is
still 33% cheaper for the same number of output channels.
Weight pruning [12], [13] is a post processing method which
deletes the small weight parameters after pre-training. The
thoughts of two methods are both to get even smaller kernels
than original square kernels. But these two methods have their
limitations. Asymmetric kernels of kernel factorization only
have two kinds of angles as vertical and horizontal, which
somehow restricts the model capability of convolution. Weight
pruning can not be completed in one step as it needs to wait
for the whole kernel pre-training and finetune it later.

0o 90o 

45o 135o θ 

Fig. 1. Asymmetric kernels with different angles. In top-down and left-right
order, the former four kernels have different but fixed angles as 0◦, 90◦,
45◦ and 135◦. The last one is an illustration of our RotateConv kernel that
is asymmetric but rotatable, which means the angle θ is learnable during
training.

In this work, we propose a novel kernel deformation which
makes up the deficiency of both above two methods. Compared
with asymmetric kernels of kernel factorization, RotateConv
kernels, shown as the last kind in Figure 1, are much more
flexible considering that they can have any continuous angles
from 0◦ to 180◦ instead of 0◦ and 90◦. Compared with weight
pruning, RotateConv kernels do not need to cut the kernel first
as they are born with line segment shape and have much less
weights than the square one, so that we can train the network
in only one step.

RotateConv is inspired by the kernels visualization of
AlexNet [2] and Gabor [14]. As shown in Figure 2(a), AlexNet
has learned a variety of frequency- and orientation-selective
kernels. Simple as these kernels are, they can model much
more complicated patterns in combination, which is similar to
the thought of calculus. Figure 2(b) shows some Gabor filters
with respect to different directions, which are very similar
with the ones in AlexNet. We can infer from these figures
that directions are important for both gray-like and colored
kernels so as to extract abundant information.

Aiming at simulating the direction attributes in the kernel
weights distribution, we propose a new kernel deformation
method, RotateConv. RotateConv Kernel is shown as the
last one in Figure 1. As we can see, the basic shape of
RotateConv kernel is a line segment, which means that it only
has 3 weights for convolution. But besides weights, it has
an additional learnable variable, angle θ. Note that making



(a). Kernels visualization of AlexNet

(b). Kernels visualization of Gabor

Fig. 2. (a) 96 convolutional kernels of size 11× 11× 3 learned in the first
convolutional layer in AlexNet. (b) Gabor filters visualization with respect to
12 different angles.

the kernel rotatable is achieved by making the variable θ
continuous and learnable. Due to the existence of θ, this 3-
weights kernel can have a larger receptive field like 3× 3,
so its modeling capacity is guaranteed. Considering different
emphases on the model size and performance, we propose
two variants of our rotatable kernels. One has 4 parameters
consisting of 3 weights and 1 angle as explained above, and
the other has 2 parameters consisting of 1 weight and 1
angle because of the use of weight sharing. Accordingly the
compress ratios are 4/9 and 2/9 respectively. Experiments of
image classification are executed to validate the effectiveness
of our proposed methods. And we find that, the kernel with
4 parameters gets comparable results with the 3× 3 baseline
kernel, and the kernel with 2 parameters can get acceptable
results.

II. RELATED WORK

Since RotateConv devotes to achieve a more compressed
convolutional kernel, related work can be divided into two
groups, i.e., kernel design and model compression.

A. Kernel design

The basic kernel design in deep CNN can be inferred from
the series work of Inception VN [15], [16], [9]. Inception
V1 uses multi-scale kernels to model scale-invariant features.
Inception V2 uses more stacked small kernels to replace one
bigger kernel so as to increase the depth of the network and
reduce the number of parameters. Inception V3 further makes
the kernel smaller as it uses asymmetric kernels like 1× 3

and 3× 1. As we mentioned above, though this asymmetric
kernel reduces parameters a lot, its fixed angle as vertical
and horizontal puts limitations on the capacity of modeling
more orientation-flexible patterns. Dilated convolution [17]
is another widely used kernel shape which aims at solving
the resolution reduction problem of feature maps in forward
propagation. It is a dilated variant of traditional compact
kernels, which helps the kernel have a larger receptive field
without increasing parameters.

Recently, there emerge some novel deformable kernel de-
sign works. Deformable Convolutional Networks (DCN) [18]
is a recently proposed excellent work which learns irregular
kernels. DCN has a similar thought with Region Proposal
Network [6] as it applies a usual convolution on the input
feature and outputs the new kernel shape for the following
deformable convolution layer. Irregular Convolutional Neural
Networks (ICNN) [19] is another work learning irregular
kernels. Different from DCN, ICNN directly models the
kernel’s shape attributes as learnable variables and learns
the shapes in the same way as kernel weights. These two
methods aim to expand the kernel capacity utilizing all original
3× 3 parameters, but our RotateConv devotes to maintain the
capacity with less parameters.

B. Model compression

There has been growing interest in model compression due
to the demands of device-limited applications. Weight pruning
methods hold the point that small weights are less important,
as S. Han et al. [12] remove the small weights and V. Lebedev
et al. [20] remove the entire groups by introducing sparsity
regularization on groups. Weight pruning is the most similar
method to our approach, but RotateConv is more convenient
for training as it can be trained in an end-to-end manner for
only one step. Low bit network is another emerging approach
which uses less bits to represent the filter values, such as
Ternary Weight Networks [21] with 2 bit weights and Binary
Weight Networks [22] with 1 bit weights. And the method of
product quantization [23] uses clustering and weight sharing
to compress the model size of neural networks. Additionally,
many matrix factorization methods [24], [25] have also been
proposed in the recent literature.

III. MATHEMATICAL DERIVATION

In this section, we will explain RotateConv’s mathematical
derivations for both 4 parameters and 2 parameters versions.

A. 4 parameters version

1) Data Structure: In our work, we firstly use the line
segment kernel shape which consists of 3 weights placed on
a straight line as shown in Figure 1. We secondly add a new
angle attribute to the data structure of the convolutional kernel
K:

K = {W,T}
W = {wi,j,0, wi,j,1, wi,j,2|i = 1, 2, ..., N, j = 1, 2, ..,M}
T = {θi,j |i = 1, 2, ..., N, j = 1, 2, ..,M}

(1)



No 
mathtype 
 

Wi,j,1 

Wi,j,0 

Wi,j,2 

Θi,j 

(a). Theoretical kernel

No 
mathtype 
 

Wi,j,1,b Wi,j,1,s 

Wi,j,0 

Wi,j,2,b Wi,j,2,s 

(b). Practical kernel

No 
mathtype 
 

Wi,j,1,b Wi,j,1,s 

Wi,j,0 

Wi,j,2,b 

Wi,j,2 

Wi,j,1 

Θi,j 

Wi,j,2,s 

(c). Angle inverse-interpolation

Fig. 3. (a) Theoretical RotateConv kernel has a line segment shape, whose
weights are w0, w1, w2 and angle is θ. (b) Practical RotateConv kernel
for computation after angle inverse-interpolation. (c) The angle inverse-
interpolation process for RotateConv.

where M equals to the number of input channels and N equals
to the number of output channels. W is the set of kernel
weights and each feature map gets 3 weights. T is the set
of kernel angles θ. θ is defined as the included angle between
the horizontal line and the kernel line as shown in Figure 1.
It is bigger than 0◦ and can not exceed 180◦.

2) Inverse-Interpolation: For a RotateConv kernel shown
in Figure 3(a), the output can be calculated as:

Si =

M∑
j=1

(wi,j,0Ij,0 + wi,j,1Ij,1 + wi,j,2Ij,2) (2)

where Si is the weighted summation in the ith output channel.
Inputs Ij,0, Ij,1 and Ij,2 correspond to the weights wi,j,0, wi,j,1
and wi,j,2 respectively.

Note that for RotateConv, Ij,1, Ij,2 are sampled by θi,j . The
problem is that, as θi,j is continuous, when θi,j does not equal
to an integer multiple of 45◦, Ij,1 and Ij,2 do not exist. To
solve this problem, we split the weights1, wi,j,1 and wi,j,2, to
the adjacent positions which are the integer multiple of 45◦

as shown in Figure 3(c). And at last, we will get the practical
5 weights kernel like Figure 3(b). In this way, we can sample
5 existing inputs for weighted summation. The split process
can be calculated as:

1Instead of spliting the weights to the adjacent positions, we can also
combine the input pixels corresponding to wi,j,1,b and wi,j,1,s. But this
method would bring in a time consuming problem related with the practical
convolution implementation im2col, so we do not adopt it.

wi,j,1,b = wi,j,1 × f(θi,j)
wi,j,1,s = wi,j,1 × (1− f(θi,j))
wi,j,2,b = wi,j,2 × f(θi,j)
wi,j,2,s = wi,j,2 × (1− f(θi,j))

s.t.f(θi,j) =
θi,j%45

45 , 0 ≤ θi,j< 180◦

(3)

where wi,j,1,b and wi,j,1,s mean the weights split by wi,j,1,
same as wi,j,2,b and wi,j,2,s split by wi,j,2. The split sizes are
determined by f(θi,j), which is simply defined at the ratio
between the include angle and 45◦.

3) Convolution: The convolution is a weighted summation
after angle inverse-interpolation:

Si =
M∑
j=1

(Si,j,0 + Si,j,1 + Si,j,2)

s.t.


Si,j,0 = wi,j,0Ii,j,0

Si,j,1 = wi,j,1,bIi,j,1,b + wi,j,1,sIi,j,1,s

Si,j,2 = wi,j,2,bIi,j,2,b + wi,j,2,sIi,j,2,s

(4)

4) Back Propagation: There are three kinds of learnable
variables, inputs I , weights W and angles T . And there is one
kind of intermediate variables Wbs, as called wi,j,1,b, wi,j,1,s,
wi,j,2,b and wi,j,2,s. The gradients for inputs I are same as
the ones of traditional convolution. The gradients for Wbs and
Wi,j,0 can be calculated in the traditional way, since Wbs,
Wi,j,0 and zeros are combined to form a usual 3× 3 kernel
as shown in Figure 3(b). The key point is to compute the
gradients for weights Wi,j,1, Wi,j,2, and angles θi,j with the
intermediate variables Wbs.

∆wi,j,1 = ∆wi,j,1,bf(θi,j) + ∆wi,j,1,s(1− f(θi,j))

∆wi,j,2 = ∆wi,j,2,bf(θi,j) + ∆wi,j,2,s(1− f(θi,j))

∆θi,j = wi,j,1(∆wi,j,1,b −∆wi,j,1,s)f
′(θi,j)

+ wi,j,2(∆wi,j,2,b −∆wi,j,2,s)f
′(θi,j)

(5)

5) Initialization: Weights W and angles T can both be
initialized from random distribution or pre-trained 1× 3 and
3× 1 kernels. Note that the initialization for angles T should
be in the range from zero to 180◦.

6) Update Values: The update mechanism is same as before
for weights W , but not for angles T . For a certain angle θ,
since backward gradients, are supplied from wbs, the updated
new θ should not excess the boundaries defined by wb and ws
too much.

θupdate = (θlast + ∆θ)%180

s.t.


θlast_small − ε < θupdate < θlast_big + ε

θlast_small = θlast − θlast%45

θlast_big = θlast − θlast%45 + 45

(6)

where ε is a small positive value to allow θupdate to get out of
the last adjacent boundaries θlast_small and θlast_big but not
too much.



B. 2 parameters version

The mathematical derivations are similar for 2 parameters
version and 4 parameters version except whether using weight
sharing among wi,j,0, wi,j,1 and wi,j,2 to have a single weight
wi,j . In this subsection, the meanings of all variables (except
the shared weight wi,j) are identical to the ones of 4 param-
eters version. So for simplicity, there will be little annotation
for derivation. Please refer to the part of 4 parameters version
for detailed explanation.

1) Data Structure:

K = {W,T}
W = {wi,j |i = 1, 2, ..., N, j = 1, 2, ..,M}
T = {θi,j |i = 1, 2, ..., N, j = 1, 2, ..,M}

(7)

2) Inverse-Interpolation:

wi,j,1,b = wi,j × f(θi,j)
wi,j,1,s = wi,j × (1− f(θi,j))
wi,j,2,b = wi,j × f(θi,j)
wi,j,2,s = wi,j × (1− f(θi,j))
wi,j,0 = wi,j

s.t.f(θi,j) =
θi,j%45

45 , 0 ≤ θi,j< 180◦

(8)

3) Convolution: Same as 4 parameters version.
4) Back Propagation:

∆wi,j = ∆wi,j,1 + ∆wi,j,2 + ∆wi,j,0 (9)

Calculations for ∆wi,j,1, ∆wi,j,2 and ∆wi,j,0, and gradients
for θ, please refer to the ones in 4 parameters version.

5) Initialization: Same as 4 parameters version.
6) Update Values: Same as 4 parameters version.

IV. EXPERIMENTS

This section consists of four subsections. The first two
subsections introduce datasets and deep models respectively.
In the third subsection, we evaluate the two versions of
RotateConv on the image classification task. last, we analyze
the kernel angle distribution for better understanding.

A. Datasets

The MNIST dataset [26] of handwritten digits with 10
classes has a training set of 60,000 examples and a test set
of 10,000 examples. Each digit is centered at a 28× 28 gray
image. MNIST is an ideal dataset for researchers who need
quick verification for their first thought, since its pictures are
small enough and it has been applied enough preprocessing as
normalization, formatting and centering.

There are exactly two kinds of CIFAR datasets, CIFAR10
and CIFAR100 [27], according to different samples and label
degrees. Both of them are object classification datasets chosen
from real world. Each of them has 50,000 images for training
and 10,000 images for testing, and each image is coloured and
resized to 32× 32 for normalization. CIFAR10 has 10 classes.
And for each class, it has 5,000 images for training and 1,000
images for testing. CIFAR100 is finer as it has 100 classes.

And for each class, it has 500 images for training and 100
images for testing.

SVHN [28] is a real-world digit image dataset for develop-
ing machine learning and object recognition algorithms. It is
obtained from house numbers in Google Street View images.
The task is to classify the digit centered in image. It has 10
classes, 73,257 digits for training, 26,032 digits for testing,
and 531,131 digits for additional but somewhat less difficult
samples which are used as extra training data. We use the
MNIST-like version for experiments, each image has a 32× 32
spatial size and is centered around a single digit which means
that many examples do contain some distractions at the sides.

B. Deep Models

We firstly designed a simple network(SN) of four stacked
convolutional layers. The output channels are 20, 50, 50, 50
respectively. The first three convolutional layers are followed
by stride-2 pooling layers and the last convolutional layer
is followed by ReLU layer and inner-product layer as the
classifier. We use the SN network and the MNIST dataset for
our first verification on RotateConv.

ResNet is introduced in [10] and makes great contribution
in deep learning. Using shortcut connections and deeper net-
works, it massively improves the performance in various learn-
ing tasks while maintaining the efficiency in the model size
and data computation. DenseNet is a more recently proposed
work in [11]. It replaces the element wise summation layer in
ResNet with channel concatenate layer, designs different block
convolutions and network depth, and finally gets the state-of-
art performance. In order to strictly validate RotateConv, we
choose such two efficient models for verification.

We reproduce two ResNet variants, ResNet20 and ResNet44
as illustrated in [10]. ResNet20 has three stages, each stage has
3 residual blocks (include dimension-increase block), and each
block has two 3× 3 convolutional layers. On each stage, the
output channels are 16, 32 and 64 respectively. For ResNet44,
settings remain same except that on each stage, there are 7
residual blocks. Besides ResNet, the reproduced DenseNet40
has 3 stages, each stage has 12 blocks, each block has one
3× 3 convolutional layer, and each convolutional layer has
23 output channels.

C. Results of Image Classification

Parameter numbers reduce a lot for deep networks. As
shown in Table I, version9 means the basic 3× 3 ker-
nel, version4 means 4 parameters RotateConv kernel and
version2 means 2 parameters RotateConv kernel. These num-
bers clearly denote the compression degree in the kernel level.
Taking ResNet20 for an example, the basic model has 271k
parameters, version4 only has 122k parameters and version2
has an even smaller number 63k. More details can be inferred
from Table I.

The results show that version4 is comparable with
version9. And in some cases, version4 even gets better
results. It means that the line segment shape is effective for
the image classification task. We can also infer from the table



TABLE I
RESULTS FOR IMAGE CLASSIFICATION ON MNSIT, CIFAR10/100 AND SVHN DATASETS. WE USE FOUR MODELS, SIMPLE NETWORK(SN) AND

RESNET20, RESNET44, DENSENET40 FOR THEIR MODEL EFFICIENCY. BASICALLY, FOR ONE MODEL ON ONE DATASET, WE LIST THREE PERFORMANCES
CORRESPONDING TO THREE SETTINGS FOR COMPARISON, AS SHOWN IN SECOND ROW ON TABLE, 9 FOR 3× 3 BASELINE KERNEL, 4 FOR 4 PARAMETERS

ROTATECONV VERSION AND 2 FOR 2 PARAMETERS ROTATECONV VERSION.

Models SN ResNet20 ResNet44 DenseNet40

Versions 9 4 2 9[10] 4 2 9[10] 4 2 9[11] 4 2
#Params 55k 25k 13k 271k 122k 63k 657k 294k 148k 1.9M 0.86M 0.43M

MNIST 98.95 98.65 97.41 - - - - - - - - -
CIFAR10 - - - 91.70 90.78 84.83 92.52 91.83 87.01 92.63 92.68 81.24
CIFAR100 - - - 52.84 53.45 50.39 56.63 56.93 51.22 70.53 69.99 50.64
SVHN - - - 95.82 96.01 95.17 96.02 96.40 95.68 97.15 96.84 90.69

0 20000 40000 60000 80000 100000
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cie

s o
f C

IFA
R1

00

ResNet20 9 params
ResNet20 4 Params
ResNet20 2 Params

Fig. 4. CIFAR100 test accuracies of ResNet20. Different colours correspond
to different versions, red for 9 parameters baseline, green for 4 parameters
version and blue for 2 parameters version. Best viewed in color.

that version2 still gets acceptable performance though its
compression degree is so impressive as 2/9. The comparison
between version4 and version2 shows that weights diversity
is helpful for feature extraction. For example, version4 can
directly model the difference function with weights [−1, 0, 1],
but version2 can not. Figure 4 shows the accuracy curves for
the model ResNet20 and the dataset CIFAR100. As we can
see in the figure, accuracies of version9 and version4 seesaw
by iterations, and finally get almost equal levels. The ascent
tendency of version2 is a little slower but it still gets 50.39%
for best.

D. Analysis of Kernel Angle Distribution

In this section, we firstly choose the model ResNet20
without loss of generality, then train it on CIFAR100 with
2 parameters RotateConv kernels, and at last we choose
the last convolutional layer Convolution21 for observation.
Convolution21 has 64 output channels and 64 input channels.
Here we analyze two distributions along input and output
channel respectively.

On the one hand, we give the angle distribution for one
output channel. For each output channel, it has 64 spatial
kernels corresponding to 64 RotateConv angles applied along
input channels. Figure 5(a) shows the angle distribution of the
first output channel, which is denoted as {θ1,j |j = 1, 2, .., 64}

0 10 20 30 40 50 60

Convolution Input Channels
0

20

40

60

80

100

120

140

160

An
gl

es

(a). Kernel angles along input channels

0 10 20 30 40 50 60

Convolution Output Channels
0

20

40

60

80

100

120

140

160

An
gl

es

(b). Kernel angles along output channels

Fig. 5. Kernel angle distributions for layer Convolution21 in ResNet20
trained on CIFAR100. Layer Convolution21 has 64 input channels and
64 output channels. (a) For the first output channel, the 64 kernel angles
applied on input features. (b) For the first input channel, the 64 kernel angles
used by 64 output channels respectively.

before. We can find that different input features are applied
with different RotateConv angles, which is coincident with
universal intuition that different features represent different
patterns.

On the other hand, we give the angle distribution for one
input channel. For each input channel, it has been repeat-
edly used by 64 different output channels which has 64
different RotateConv angles too. Figure 5(b) shows the angle
distribution of the first input channel, which is denoted as
{θi,1|i = 1, 2, .., 64} before. We can find that one single input
feature is repeatedly applied with different RotateConv angles,
which can be explained that one feature map always contains
various patterns and the later operations need respectively
select these patterns for further processing.



V. CONCLUSION AND FUTURE WORK

The aim of RotateConv is to reduce the number of param-
eters by using extremely simple kernel shape as line segment.
In order to maintain the kernels’ modeling capacities, we
equip them with the rotatable ability which helps learn diverse
features of different angles. The rotatable ability is achieved
by using inverse-interpolation which makes angles continu-
ous, differentiable and learnable. We design two variants of
RotateConv which only have 2 and 4 parameters respectively.
The difference between these two variants is whether using
weight sharing. In experiments, we firstly design a simple
convolutional network and apply it on the MNSIT dataset
for quick verification. We then use three networks, ResNet20,
ResNet44 and DenseNet40, and three datasets, CIFAR10,
CIFAR100 and SV HN , for further verification. At last, we
analyze the kernel angle distributions for better understanding.

RotateConv is a model compression method which needs
more contributions. In the future, we will devote to the follow-
ing three problems. Firstly, RotateConv should be validated on
more large scale datasets like ImageNet[29] and COCO[30].
Secondly, it needs more exhaustive analysis on the relationship
between the network depth and the kernel complexity. For
example, as deeper layer processes more global information,
whether it should be guaranteed with more complex kernel
shapes deserves further research. Last, RotateConv is a model
compression method but not an acceleration one. RotateConv
is achieved by inverse-interpolation, but inverse-interpolation
brings RotateConv kernels back to 3× 3 kernels for computa-
tion, which does not reduce computation time. We hope more
efforts could be devoted to RotateConv and to make further
progress in model compression and acceleration.

ACKNOWLEDGMENT

This work is jointly supported by National Key Research
and Development Program of China (2016YFB1001000),
National Natural Science Foundation of China (61525306,
61633021, 61721004, 61420106015), Beijing Natural Science
Foundation (4162058), and Capital Science and Technology
Leading Talent Training Project (Z181100006318030).

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[3] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs,” arXiv preprint
arXiv:1606.00915, 2016.

[5] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1440–1448.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in Neural
Information Processing Systems, 2015, pp. 91–99.

[7] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European Conference on
Computer Vision. Springer, 2016, pp. 21–37.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[9] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2818–2826.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[11] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” arXiv preprint arXiv:1608.06993,
2016.

[12] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[13] G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating deep con-
volutional networks using low-precision and sparsity,” arXiv preprint
arXiv:1610.00324, 2016.

[14] D. Gabor, “Theory of communication. part 1: The analysis of informa-
tion,” Journal of the Institution of Electrical Engineers-Part III: Radio
and Communication Engineering, vol. 93, no. 26, pp. 429–441, 1946.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1–9.

[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[17] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

[18] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” arXiv preprint arXiv:1703.06211, 2017.

[19] J. Ma, W. Wang, and L. Wang, “Irregular convolutional neural networks,”
arXiv preprint arXiv:1706.07966, 2017.

[20] V. Lebedev and V. Lempitsky, “Fast convnets using group-wise brain
damage,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2554–2564.

[21] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[22] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision. Springer, 2016, pp. 525–
542.

[23] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
4820–4828.

[24] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convo-
lutional neural networks with low rank expansions,” arXiv preprint
arXiv:1405.3866, 2014.

[25] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” arXiv preprint arXiv:1412.6553, 2014.

[26] Y. LeCun, C. Cortes, and C. J. Burges, “Mnist handwritten
digit database,” AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, vol. 2, 2010.

[27] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[28] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in NIPS workshop on deep learning and unsupervised feature learning,
vol. 2011, no. 2, 2011, p. 5.

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[30] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European Conference on Computer Vision. Springer, 2014,
pp. 740–755.


