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Abstract: Deep neural networks have evolved remarkably over the past few years and they are currently the
fundamental tools of many intelligent systems. At the same time, the computational complexity and resource
consumption of these networks continue to increase. This poses a significant challenge to the deployment of such
networks, especially in real-time applications or on resource-limited devices. Thus, network acceleration has become
a hot topic within the deep learning community. As for hardware implementation of deep neural networks, a batch of
accelerators based on a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)
have been proposed in recent years. In this paper, we provide a comprehensive survey of recent advances in network
acceleration, compression, and accelerator design from both algorithm and hardware points of view. Specifically,
we provide a thorough analysis of each of the following topics: network pruning, low-rank approximation, network
quantization, teacher–student networks, compact network design, and hardware accelerators. Finally, we introduce
and discuss a few possible future directions.
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1 Introduction

In recent years, deep neural networks (DNNs)
have achieved remarkable performance across a wide
range of applications, including but not limited to
computer vision, natural language processing, and
speech recognition. These breakthroughs are closely
related to the increased amount of training data
and more powerful computing resources now avail-
able. For example, one breakthrough in the natu-
ral image recognition field was achieved by AlexNet
(Krizhevsky et al., 2012). It was trained using mul-
tiple graphics processing units (GPUs) on about
1.2 M images. Since then, the performance of
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DNNs has continued to improve. For many tasks,
DNNs are reported to be able to outperform humans.
The problem, however, is that the computational
complexity, and the storage requirements of these
DNNs, have also increased drastically as shown in
Table 1. Specifically, the widely used VGG-16 model
(Simonyan and Zisserman, 2014) involves a storage
of more than 500 MB and over 15 G floating-point
operations (FLOPs) to classify a single 224 × 224

image.

Thanks to the recent crop of powerful GPUs
and central processing unit (CPU) clusters equipped
with more abundant memory resources and com-
putational units, these more powerful DNNs can
be trained within a relatively reasonable time pe-
riod. However, for the inference phase, such a
long execution time is impractical for real-time
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applications. Recent years have witnessed a great
progress in embedded and mobile devices including
unmanned drones, smart phones, intelligent glasses,
etc. The demand for deployment of DNN models on
these devices has become intense. However, the re-
sources of these devices, for example, the storage and
computational units as well as the battery power,
remain limited, and this poses a real challenge in
accelerating modern DNNs in low-cost settings.

Therefore, a critical current problem is how to
equip specific hardware with efficient deep networks
without significantly lowering the performance. To
deal with this issue, many great ideas and meth-
ods from the algorithm side have been investigated
over the past few years. Some of the work focuses on
model compression while others focus on acceleration
or lowering power consumption. As for the hard-
ware side, a wide variety of field-programmable gate
array (FPGA) or application-specific integrated cir-
cuit (ASIC) based accelerators have been proposed
for embedded and mobile applications. In this pa-
per, we present a comprehensive survey of several
advanced approaches in network compression, accel-
eration, and accelerator design. We will present the
central ideas behind each approach and explore the
similarities and differences among the different meth-
ods. Finally, we will present some future directions
in the field.

2 Background

Recently, deep convolutional neural networks
(CNNs) have become quite popular due to their pow-
erful representational capacity. With the huge suc-
cess of CNNs, the demand for deployment of deep
networks in real world applications has been increas-
ing. However, the large storage consumption and
computational complexity remain two key problems
for deployment of these networks. For the CNN
training phase, the computational complexity is not
a critical problem, thanks to the high-performance
GPUs or CPU clouds. The large storage consump-
tion also has less effect on the training phase because
modern computers have very large disks and memory
storage capacities. However, things are quite differ-
ent for the inference phase in CNNs, especially with
regard to embedded and mobile devices.

The enormous computational complexity intro-
duces two problems in the deployment of CNNs in

real-world applications. One is that the CNN in-
ference phase slows down as the computational com-
plexity grows. This makes it difficult to deploy CNNs
in real-time applications. The other problem is that
the dense computation inherent to CNNs will con-
sume substantial battery power, which is limited on
mobile devices.

The parameters of CNNs consume a consider-
able storage and a run-time memory, which are quite
limited on embedded devices. In addition, it be-
comes difficult to download new models online on
mobile devices.

To solve these problems, network compression
and acceleration methods have been proposed. In
general, the computational complexity of CNNs is
dominated by the convolutional layers, while the
number of parameters is related mainly to the fully
connected layers, as shown in Table 1. Thus, most
network acceleration methods focus on decreasing
the computational complexity of the convolutional
layers, while the network compression methods try
mainly to compress the fully connected layers.

3 Network pruning

Pruning methods were proposed before deep
learning became popular, and they have been stud-
ied widely in recent years (LeCun et al., 1989;
Hassibi and Stork, 1993; Han et al., 2015a,b). Based
on the assumption that many parameters in deep
networks are unimportant or unnecessary, pruning
methods are used to remove these parameters. In
this way, pruning methods can expand the sparsity
of the parameters significantly. The high sparsity of
the parameters after pruning introduces two benefits
for DNNs. On the one hand, the sparse parameters
after pruning require less disk storage since the pa-
rameters can be stored in the compressed sparse row
(CSR) format or compressed sparse column (CSC)
format. On the other hand, computations involv-
ing these pruned parameters are omitted; thus, the
computational complexity of deep networks can be
reduced. According to the granularity of pruning,
pruning methods can be categorized into five groups:
fine-grained pruning, vector-level pruning, kernel-
level pruning, group-level pruning, and filter-level
pruning. Fig. 1 shows the pruning methods with
different granularities. In Sections 3.1–3.4, we will
describe the different pruning methods in detail.
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Table 1 Computation and parameters for state-of-the-art convolution neural networks

Method
Parameter Computation

Size (M) Conv (%) Fc (%) FLOPs (G) Conv (%) Fc (%)

AlexNet 61.0 3.8 96.2 0.72 91.9 8.1
VGG-S 103.0 6.3 93.7 2.60 96.3 3.7
VGG16 138.0 10.6 89.4 15.50 99.2 0.8
NIN 7.6 100.0 0 1.10 100.0 0
GoogLeNet 6.9 85.1 14.9 1.60 99.9 0.1
ResNet-18 5.6 100.0 0 1.80 100.0 0
ResNet-50 12.2 100.0 0 3.80 100.0 0
ResNet-101 21.2 100.0 0 7.60 100.0 0

FLOPs: floating-point operations; Conv: convolutional layers; Fc: fully-connected layers

3.1 Fine-grained pruning

Fine-grained or vanilla pruning methods remove
parameters in an unstructured way; i.e., any unim-
portant parameter in the convolutional kernels can
be pruned, as shown in Fig. 1. Since there are no ex-
tra constraints on the pruning patterns, the parame-
ters can be pruned with a high sparsity. Early work
on pruning (LeCun et al., 1989; Hassibi and Stork,
1993) used the approximate second-order derivatives
of the loss function w.r.t. the parameters to deter-
mine the saliency of the parameters, and then pruned
those parameters with a low saliency. Yet, deep
networks can ill afford to compute the second-order
derivatives due to the huge computational complex-
ity. Recently, Han et al. (2015a) proposed a deep
compression framework to compress DNNs in three
steps: pruning, quantization, and Huffman encod-
ing. By using this method, AlexNet could be com-
pressed by 35-fold without drops in accuracy. After
pruning, the pruned parameters in Han et al. (2015a)
remain unchanged, and incorrectly pruned parame-
ters could cause accuracy drops. To solve this prob-
lem, Guo et al. (2016) proposed a dynamic network
surgery framework, which consists of two operations:
pruning and splicing. The pruning operation aims to
prune those unimportant parameters while the splic-
ing operation aims to recover the incorrectly pruned
connections. Their method requires fewer training
epochs and achieves a better compression ratio than
that of Han et al. (2015a).

3.2 Vector-level and kernel-level prunings

Vector-level pruning methods prune vectors in
the convolutional kernels, and kernel-level prun-
ing methods prune 2D convolutional kernels in the
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Fig. 1 Different pruning methods for a convolutional
layer which has three convolutional filters of size 3 ×
3 × 3

filters. Since most pruning methods focus on
fine-grained pruning or filter-level pruning, there
is little work on vector- and kernel-level prunings.
Anwar et al. (2017) first explored kernel-level prun-
ing, and then proposed an intra-kernel strided prun-
ing method, which prunes a sub-vector in a fixed
stride. Mao et al. (2017) explored different granu-
larity levels in pruning, and found that vector-level
pruning takes up less storage than fine-grained prun-
ing because vector-level pruning requires fewer in-
dices to indicate the pruned parameters. Neverthe-
less, vector-, kernel-, and filter-level pruning tech-
niques are more efficient in hardware implementa-
tions since they are friendlier to the memory access
than non-structured pruning methods.

3.3 Group-level pruning

Group-level pruning methods prune the param-
eters according to the same sparse pattern on the
filters. As shown in Fig. 2, each filter has the
same sparsity pattern, and thus the convolutional
filters can be represented as a thinned dense ma-
trix. By using group-level pruning, convolutions
can be implemented by thinned dense matrix mul-
tiplication. As a result, the basic linear algebra
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subprograms (BLAS) can be used to achieve a higher
speed-up. Lebedev and Lempitsky (2016) proposed
the group-wise brain damage approach, which prunes
the weight matrix in a group-wise fashion. By us-
ing group-sparsity regularization, deep networks can
be trained easily with group-sparsified parameters.
Since group-level pruning can use the BLAS library,
the practical speed-up is almost linear at the spar-
sity level. By using this method, they achieved
a 3.2-fold speed-up for all convolutional layers in
AlexNet. Concurrent with Lebedev and Lempitsky
(2016), Wen et al. (2016) proposed using the group
Lasso to prune groups of parameters. In contrast,
Wen et al. (2016) explored different levels of struc-
tured sparsity in terms of filters, channels, filter
shapes, and depth. Their methods can be regarded
as more general group-regularized pruning methods.
For AlexNet’s convolutional layers, Wen et al. (2016)
achieved about 5.1- and 3.1-fold speed-ups on a CPU
and GPU, respectively.
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Fig. 2 Group-level pruning

3.4 Filter-level pruning

Filter-level pruning methods prune the convolu-
tional filters or channels which make the deep net-
works thinner. After the filter pruning for one layer,
the number of input channels of the next layer is
also reduced. Thus, filter-level pruning is more ef-
ficient for accelerating deep networks. Luo et al.
(2017) proposed a filter-level pruning method named
ThiNet. They used the next layer’s feature map to
guide the filter pruning in the current layer. By
minimizing the feature map’s reconstruction errors,
they selected the channels in a greedy way. Sim-
ilar to Luo et al. (2017), He et al. (2017) proposed
an iterative two-step algorithm to prune filters by

minimizing the feature map errors. Specifically, they
introduced a selection weight βi for each filter Wi,
and then added sparse constraints on βi. Then the
channel selection problem can be casted into a least
absolute shrinkage and selection operator (LASSO)
regression problem. To minimize the feature map er-
rors, they iteratively updated β and W . Moreover,
their method achieved a five-fold speed-up on VGG-
16 network with little drop in accuracy. Instead of
using additional selection weight β, Liu et al. (2017)
proposed to leverage the scaling factor of the batch
normalization layer to evaluate the importance of
the filters. By pruning the channels with near-zero
scaling factors, they could prune filters without in-
troducing overhead into the networks.

4 Low-rank approximation

The convolutional kernel of a convolutional layer
W ∈ R

w·h·c·n is a 4D tensor. These four dimen-
sions correspond to the kernel width, kernel height,
and the numbers of input and output channels, re-
spectively. Note that by merging some of the di-
mensions, the 4D tensor can be transformed into
a t-dimensional (t = 1, 2, 3, 4) tensor. The moti-
vation behind low-rank decomposition is to find an
approximate tensor Ŵ that is close to W but facil-
itates a more efficient computation. Many low-rank
based methods have been proposed by the commu-
nity; two key differences are in how to rearrange the
four dimensions, and on which dimension the low-
rank constraint is imposed. Here we divide the low-
rank based methods roughly into three categories,
according to how many components the filters are
decomposed into: two-, three-, and four-component
decompositions.

4.1 Two-component decomposition

For two-component decomposition, the weight
tensor is divided into two parts and the convolu-
tional layer is replaced by two successive layers.
Jaderberg et al. (2014) decomposed the spatial di-
mension w ·h into w ·1 and 1 ·h filters. They achieved
a 4.5-fold speed-up for a CNN trained on a text char-
acter recognition dataset, with a 1% accuracy drop.

Singular value decomposition (SVD) is a pop-
ular low-rank matrix decomposition method. By
merging dimensions w, h, and c, the kernel becomes
a 2D matrix of size (w · h · c) · n, on which the SVD
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method can be conducted. Denil et al. (2013) used
SVD to reduce the network redundancy. SVD was
also investigated by Zhang X et al. (2015). The fil-
ters were replaced by two filter banks: one consisting
of d filters of shape w · h · c and the other composed
of n filters of shape 1 × 1 · d, where d represents the
rank of the decomposition; i.e., the n filters are lin-
ear combinations of the first d filters. They also pro-
posed the non-linear response reconstruction method
based on the low-rank decomposition. On the chal-
lenging VGG-16 model for the ImageNet classifica-
tion task, this two-component SVD decomposition
method achieved a three-fold theoretical speed-up at
a cost of about 1.66% increased top-5 error.

Similarly, another SVD method can be used
by exploring the low-rank property along the input
channel dimension c. In this way, we reshape the
weight tensor into a matrix of size c · (w · h · n). By
selecting the rank to d, the convolution can be de-
composed first by a 1×1·c·d convolution and then by
a w · h · d · n convolution. These two decompositions
are symmetric.

4.2 Three-component decomposition

Based on the analysis of two-component de-
composition methods, one straightforward three-
component decomposition method can be obtained
by two successive two-component decompositions.
Note that in SVD, two weight tensors are intro-
duced. The first is a w · h · c · d tensor and the
other is a d ·n tensor (matrix). The first convolution
is time-consuming due to the large size of the first
tensor. We can also conduct a two-component de-
composition on the first decomposed tensor of SVD.
This will result in a three-component decomposition
method. This strategy was studied by Zhang X et al.
(2015), whereby after SVD, they used the decompo-
sition method proposed by Jaderberg et al. (2014)
for the first decomposed tensor. Thus, the final
three components were convolutions with a spatial
size of w · 1, 1 · h, and 1 × 1, respectively. By using
this three-component decomposition, only a 0.3% in-
creased top-5 error was produced in Zhang X et al.
(2015) for a 4-fold theoretical speed-up.

If we use SVD along the input channel dimen-
sion for the first tensor after the two-component de-
composition, we can obtain the Tucker decomposi-
tion format as proposed by Kim et al. (2015). These
three components are convolutions of spatial sizes

1 × 1, w · h, and 1 × 1. Note that instead of using
the two-step SVD, Kim et al. (2015) used the Tucker
decomposition method directly to obtain these three
components. Their method achieved a 4.93-fold the-
oretical speed-up at a cost of 0.5% increased top-5
accuracy drop.

To further reduce complexity, Wang and Cheng
(2016) proposed a block-term decomposition (BTD)
method based on low-rank and group sparse decom-
position. Note that in the Tucker decomposition, the
second component corresponding to the w · h convo-
lution also requires a large number of computations.
Because the second tensor is already low-rank along
both the input and output channel dimensions, the
decomposition methods discussed above cannot be
used. Wang and Cheng (2016) proposed to approxi-
mate the original weight tensor by the sum of some
smaller subtensors, each of which is in the Tucker
decomposition format. By rearranging these subten-
sors, BTD can be seen as a Tucker decomposition
where the second decomposed tensor is a block di-
agonal tensor. By using this decomposition, they
achieved a 7.4% actual speed-up for the VGG-16
model, at a cost of a 1.3% increased top-5 error.
Their method also achieves a high speed-up for ob-
ject detection and image retrieval tasks as reported
in Wang et al. (2018).

4.3 Four-component decomposition

By exploring the low-rank property along the
input/output (I/O) channel dimension as well as
the spatial dimension, a four-component decompo-
sition can be obtained. This is corresponds to the
CP-decomposition acceleration method proposed by
Lebedev et al. (2014). In this way, the four compo-
nents are convolutions of sizes 1× 1, w · 1, 1 · h, and
1×1. The CP-decomposition can achieve a very high
speed-up ratio; however, due to the approximate er-
ror, only the second layer of AlexNet was processed
by Lebedev et al. (2014). They achieved a 4.5-fold
speed-up for the second layer of AlexNet at a cost of
about a 1% accuracy drop.

5 Network quantization

Quantization is an approach for many compres-
sion and acceleration applications. It has wide appli-
cations in image compression, information retrieval,
etc. Many quantization methods have also been in-
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Table 2 Comparison of fixed-point quantization methods according to which part is quantized and whether
the training and testing stages can be accelerated

Method
Quantization Acceleration

Weight Activation Gradient Training Testing

BinaryConnect (Courbariaux et al., 2015) Binary Full Full No Yes
BWN (Rastegari et al., 2016) Binary Full Full No Yes
BWNH (Hu et al., 2018) Binary Full Full No Yes
TWN (Li et al., 2016) Binary Full Full No Yes
FFN (Wang and Cheng, 2017) Ternary Full Full No Yes
INQ (Zhou et al., 2017) Ternary-5 bits Full Full No Yes
BNN (Rastegari et al., 2016) Binary Binary Full No Yes
XNOR (Rastegari et al., 2016) Binary Binary Full No Yes
HWGQ (Cai et al., 2017) Binary 2 bits Full No Yes
DoReFa-Net (Zhou et al., 2016) Binary 1–4 bits 6 bits, 8 bits, Full Yes Yes

BWN: binary weight network; BWNH: training binary weight networks via hashing; TWN: ternary weight network; FFN: fixed-
point factorized network; INQ: incremental network quantization; BNN: binarized neural network; HWGQ: half-wave Gaussian
quantization

vestigated for network acceleration and compression.
We categorize these methods into two main groups:
(1) scalar and vector quantization, which may
need a codebook for quantization; (2) fixed-point
quantization.

5.1 Scalar and vector quantization

Scalar and vector quantization techniques have
a long history, and they were originally used for data
compression. By using scalar or vector quantiza-
tion, the original data can be represented by a code-
book and a set of quantization codes. The code-
book contains a set of quantization centers, and the
quantization codes are used to indicate the assign-
ment of the quantization centers. In general, the
number of quantization centers is far smaller than
that of original data. In addition, quantization codes
can be encoded through a lossless encoding method
(e.g., Huffman coding), or just represented as low-bit
fixed points. Thus, scalar or vector quantization can
achieve a high compression ratio. Gong et al. (2014)
explored scalar and vector quantization techniques
for compressing deep networks. For scalar quantiza-
tion, they used the well-known K-means algorithm
to compress the parameters. In addition, the product
quantization (PQ) algorithm (Jegou et al., 2011), a
special case of vector quantization, was leveraged to
compress the fully connected layers. By partitioning
the feature space into several disjoint subspaces and
then conducting K-means in each subspace, the PQ
algorithm can compress the fully connected layers
with little loss. As Gong et al. (2014) compressed

only the fully connected layers, Wu et al. (2016) and
Cheng et al. (2017) proposed using the PQ algorithm
to simultaneously accelerate and compress convolu-
tional neural networks. They proposed quantizing
the convolutional filters layer by layer by minimizing
the feature map’s reconstruction loss. During the
inference phase, a look-up table was built by pre-
computing the inner product between feature map
patches and codebooks, and then the output feature
map can be calculated by simply accessing the look-
up table. By using this method, they could achieve a
4–6-fold speed-up and a 15–20-fold compression ratio
with little accuracy loss.

5.2 Fixed-point quantization

Fixed-point quantization is an effective ap-
proach for lowering the resource consumption of a
network. Based on which part is quantized, two
main categories can be classified, i.e., weight and
activation quantizations. There has been some other
work that tried to also quantize gradients, resulting
in acceleration at the network training stage. Here,
we review mainly weight and activation quantization
methods, which accelerate the test-phase computa-
tion. Table 2 summarizes these methods according
to which part is quantized and whether the training
and testing stages can be accelerated.

5.2.1 Fixed-point quantization of weights

Fixed-point weight quantization is a fairly ma-
ture topic in network acceleration and compres-
sion. Hammerstrom (2012) proposed a very large
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scale integration (VLSI) architecture for network
acceleration using 8-bit input and output, and 16-
bit internal representation. Holi and Hwang (1993)
provided a theoretical analysis of error caused by
low-bit quantization to determine the bit-width for
a multilayer perceptron. They showed that an 8–
16-bit quantization was sufficient for training small
neural networks. This early work focused on mainly
simple multilayer perceptrons. A more recent work
(Chen et al., 2014) showed that it is necessary to
use 32-bit fixed-point numbers for the convergence
of a convolutional neural network trained on the
MNIST database. By using stochastic rounding,
Gupta et al. (2015) found that it is sufficient to use
16-bit fixed-point numbers to train a convolutional
neural network on the MNIST database. In addition,
8-bit fixed-point quantization was investigated by
Dettmers (2015) to speed up the convergence of deep
networks in parallel training. Logarithmic data rep-
resentation was also investigated by Miyashita et al.
(2016).

Recently, many lower-bit quantization or even
binary and ternary quantization methods have been
investigated. Cheng et al. (2015) introduced the
expectation backpropagation (EBP), which uses
the variational Bayes method to binarize the net-
work. The BinaryConnect method proposed by
Courbariaux et al. (2015) constrains all weights to
be either +1 or −1. By training from scratch, the Bi-
naryConnect can even outperform the floating-point
counterpart on the CIFAR-10 image classification
dataset (Krizhevsky and Hinton, 2009). Using bi-
nary quantization, the network can be compressed by
a factor of about 32 compared with 32-bit floating-
point networks. Most of the floating-point multi-
plication can also be eliminated (Lin et al., 2015).
Rastegari et al. (2016) proposed the binary weight
network (BWN), which was among the earliest work
that achieved good results on the large ImageNet
dataset (Russakovsky et al., 2015). Loss-aware bi-
narization was proposed by Hou et al. (2016), which
can directly minimize the classification loss with re-
spect to the binarized weights. Hu et al. (2018)
proposed a novel approach called ‘BWNH’ to train
binary weight networks via hashing, which out-
performed other weight binarization methods by a
large margin. Ternary quantization was also used
in Hwang and Sung (2014). Li et al. (2016) pro-
posed the ternary weight network (TWN), which was

similar to BWN but constrained all weights to be
ternary values among {−1, 0,+1}. A TWN outper-
forms a BWN by a large margin on deep models like
ResNet. Trained ternary quantization proposed by
Zhu C et al. (2016) learns both ternary values and
ternary assignments at the same time by using back-
propagation. It achieves comparable results on the
AlexNet model. Different from previous quantiza-
tion methods, the incremental network quantization
(INQ) method proposed by Zhou et al. (2017) grad-
ually turns all weights into a logarithmic format in
a multi-step manner. This incremental quantiza-
tion strategy can lower the quantization error during
each stage, and thus make the quantization problem
much easier. All these low-bit quantization methods
discussed above directly quantize the full-precision
weight into a fixed-point format. Wang and Cheng
(2017) proposed a different quantization strategy. In
stead of direct quantization, they proposed using a
fixed-point factorized network (FFN) to quantize all
weights into ternary values. This fixed-point decom-
position method can significantly lower the quanti-
zation error. The FFN method achieves compara-
ble results on commonly used deep models such as
AlexNet, VGG-16, and ResNet.

5.2.2 Fixed-point quantization of activations

Given only weight quantization, there is also
a need for the time-consuming FLOPs. If the ac-
tivations are also quantized into fixed-point val-
ues, the network can be executed efficiently by only
fixed-point operations. Many activation quantiza-
tion methods have also been proposed by the deep
learning community. The bitwise neural network was
proposed by Kim and Smaragdis (2016). A bina-
rized neural network (BNN) is one of the first to
quantize both weights and activations into either
−1 or +1. A BNN achieves a comparable accu-
racy with the full-precision baseline on the CIFAR-10
dataset. To extend a BNN for the ImageNet classifi-
cation task, Tang et al. (2017) improved the training
strategies of BNN. A much higher accuracy was re-
ported using these strategies. Based on a BWN,
Rastegari et al. (2016) further quantized all activa-
tions into binary values, making the network into an
XNOR-Net. Compared with a BNN, the XNOR-
Net can achieve a much higher accuracy on the Im-
ageNet dataset. To further understand the effect
of bit-width on the training of DNNs, Zhou et al.
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(2016) proposed DoReFa-Net by investigating the
effects of different bit-widths for weights and acti-
vations as well as gradients. By using batch nor-
malization, Cai et al. (2017) presented the half-wave
Gaussian quantization (HWGQ) method to quantize
both weights and activations. High performance was
achieved on commonly used CNN models using the
HWGQ method, with 2-bit activations and binary
weights.

6 Teacher–student network

The teacher–student network is different from
the network compression or acceleration methods
since it trains a student network using a teacher net-
work, and the student network can be designed with
a different network architecture. Generally speak-
ing, a teacher network is a large neural network or
ensemble of neural networks, while a student network
is a compact and efficient neural network. By using
the dark knowledge transferred from the teacher net-
work, the student network can achieve a higher ac-
curacy than training merely through the class labels.
Hinton et al. (2015) proposed the knowledge distil-
lation (KD) method which trains a student network
by the softmax layer’s output of the teacher net-
work. Following this line of thinking, Romero et al.
(2014) proposed the FitNets to train a deeper and
thinner student network. Since the depth of neu-
ral networks is more important than their widths,
a deeper student network would have a higher ac-
curacy. Besides, Romero et al. (2014) used both in-
termediate layers’ feature maps and soft outputs of
the teacher network to train the student network.
Rather than mimicking the intermediate layers’ fea-
ture maps, Zagoruyko and Komodakis (2016) pro-
posed to train a student network by imitating the
attention maps of a teacher network. Their experi-
ments showed that the attention maps are more im-
portant than the layers’ activations and their method
can achieve a higher accuracy than FitNets.

7 Compact network design

The objective of network acceleration and com-
pression is to optimize the execution and storage
framework for a given DNN. One property is that
the network architecture is not changed. Another
parallel line of inquiry for network acceleration and

compression is to design a more efficient but low-cost
network architecture itself.

Lin et al. (2013) proposed a network-in-network
architecture, where a 1 × 1 convolution was used
to increase the network capacity while keeping the
overall computational complexity small. To reduce
the storage requirement of the CNN models, they
also proposed removing the fully connected layer and
using a global average pooling. These strategies have
also been used by many state-of-the-art CNN models
like GoogLeNet (Szegedy et al., 2015) and ResNet
(He et al., 2016).

Branching (multiple group convolution) is an-
other commonly used strategy for lowering net-
work complexity. It was explored in the work of
GoogLeNet proposed by Szegedy et al. (2015). By
largely using 1 × 1 convolution and the branch-
ing strategy, SqueezeNet proposed by Iandola et al.
(2016) achieves about 50-fold compression over
AlexNet, with a comparable accuracy. By branching,
the work of ResNeXt proposed by Xie et al. (2017)
can achieve a much higher accuracy than ResNet
(He et al., 2016) at the same computational budget.
The depth-wise convolution proposed in MobileNet
by Howard et al. (2017) takes the branching strat-
egy to the extreme; i.e., the number of branches
equals the number of I/O channels. The resulting
MobileNet can be 32-fold smaller and 27-fold faster
than the VGG-16 model, with a comparable image
classification accuracy on ImageNet. When using
depth-wise convolution and 1 × 1 convolution as in
MobileNet, most of the computation and parameters
reside in the 1×1 convolutional layers. One strategy
to further lower the complexity of the 1 × 1 con-
volution is to use multiple groups. ShuffleNet pro-
posed by Zhang et al. (2017) introduces the channel
shuffle operation to increase the information change
within multiple groups, which can prominently in-
crease the representational power of the networks.
This method achieves about a 13-fold actual speed-
up over AlexNet with a comparable accuracy.

8 Hardware accelerator

8.1 Background

DNNs provide impressive performance for var-
ious tasks while suffering from degrees of computa-
tional complexity. Traditionally, algorithms based
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on DNNs should be executed on general purpose
platforms such as CPUs and GPUs; however, this
works at the expense of unexpected power consump-
tion and oversized resource utilization for both com-
putation and storage. In recent years, there have
been an increasing number of applications based
on embedded systems, including autonomous vehi-
cles, unmanned drones, security cameras, etc. Con-
sidering the demands for high performance, light
weight, and low power consumption on these devices,
CPU/GPU-based solutions are no longer suitable. In
this scenario, FPGA/ASIC-based hardware accelera-
tors are gaining a popularity as efficient alternatives.

8.2 General architecture

The deployment of a DNN on a real-world ap-
plication consists of two phases: training and infer-
ence. Network training is known to be expensive in
terms of speed and memory; thus, it is usually carried
out on GPUs off-line. During the inference phase,
the pre-trained network parameters can be loaded
either from the cloud or the dedicated off-chip mem-
ory. More recently, hardware accelerators for train-
ing have received a widespread attention (Ko et al.,
2017; Venkataramani et al., 2017; Yang, 2017), but
in this section we focus mainly on the inference phase
in embedded settings.

Typically, an accelerator is composed of five
parts: data buffers, parameter buffers, processing el-
ements, global controller, and off-chip transfer man-
ager (Fig. 3). The data buffers are used to cache
input images, intermediate data, and output predic-
tions, while the weight buffers are used mainly to
cache convolutional filters. Processing elements are
a collection of basic computing units that execute
multiply-adds, non-linearity, and any other function
such as normalization and quantization. The global
controller is used to orchestrate the computing flow
on-chip, while off-chip transfers of data and instruc-
tions are conducted through a manager. This basic
architecture can be found in existing accelerators de-
signed for both specific and general tasks.

Heterogeneous computing has been widely
adopted in hardware acceleration. For computing-
intensive operations such as multiply-adds, it is effi-
cient to fit them on hardware for a high throughout;
otherwise, data pre-processing, softmax, and any
other graphic operation can be placed on CPU/GPU
for low latency processing.

Global controller

Input/output

data buffers

Parameter 

buffers

Off-chip transfer manager

PEPE PE

PEPE PE

PEPE PE

Host processor and memory

...

...

...

...

...

...

..
.

..
.

..
.

Fig. 3 General architecture of an accelerator on ded-
icated hardware (PE: processing element)

8.3 Processing elements

Among all of the accelerators, largest differences
exist in the processing elements as they are designed
for the majority of computing tasks in deep networks,
such as massive multiply-add operations, normal-
ization (batch normalization or local response nor-
malization), and non-linearities (ReLU, sigmoid and
tanh). Typically, the computing engine of an accel-
erator is composed of many small basic processing
elements, as shown in Fig. 3, and this architecture is
designed mainly for fully investing in data reuse and
parallelism. However, there are many accelerators
that operate with only one processing element in con-
sideration of lower data movement and resource con-
servation (Zhang C et al., 2015; Ma et al., 2017c).

8.4 Optimizing for a high throughput

Since the majority of the computations in a net-
work are matrix–matrix/matrix–vector multiplica-
tion, it is critical to deal with the massive nested
loops to achieve a high throughput. Loop optimiza-
tion is one of the most frequently adopted tech-
niques in accelerator design (Zhang C et al., 2015;
Alwani et al., 2016; Suda et al., 2016; Ma et al.,
2017b; Xiao et al., 2017; Li et al., 2018), including
loop tiling, loop unrolling, loop interchange, etc.
Loop tiling is used to divide all of the data into mul-
tiple small blocks to alleviate the pressure of on-
chip storage (Alwani et al., 2016; Qiu et al., 2016;
Ma et al., 2017b), while loop unrolling attempts
to improve the parallelism of the computing en-
gine for a high speed (Qiu et al., 2016; Ma et al.,
2017b). Loop interchange determines the sequential
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computation order of the nested loops because dif-
ferent computation orders can result in significant
differences in performance. The well-known systolic
array can be seen as a combination of the loop op-
timization methods listed above, which leverage the
nature of data locality and weight sharing in the
network to achieve a high throughput (Jouppi, 2017;
Wei et al., 2017).

Single instruction multiple data (SIMD) based
computation is another way for achieving a high
throughput. Nguyen et al. (2017) presented a
method to pack two low-bit multiplications into a
single digital signal processing (DSP) block to dou-
ble the computation, and Price et al. (2017) also
proposed an SIMD-based architecture for speech
recognition.

8.5 Optimizing for a low energy consumption

Existing work attempts to reduce the energy
consumption of a hardware accelerator from both
computing and I/O perspectives. Horowitz (2014)
systematically illustrated the energy cost in terms
of arithmetic operations and memory accesses. He
demonstrated that operations based on integers are
much more cheaper than their float-point counter-
parts, and lower-bit integers are better. Therefore,
most existing accelerators adopt low-bit or even bi-
nary data representation (Nurvitadhi et al., 2017;
Umuroglu et al., 2017; Zhao et al., 2017) to preserve
energy efficiency. More recently, logarithmic com-
putation that transfers multiplications into bit-shift
operations has also shown its promise in energy sav-
ing (Lee et al., 2017; Gudovskiy and Rigazio, 2017;
Tann et al., 2017).

Sparsity is gaining an increased popularity in ac-
celerator design based on the observation that a great
number of arithmetic operations can be discarded
to obtain energy efficiency. Han et al. (2016, 2017)
and Parashar et al. (2017) designed architectures for
image or speech recognition based on network prun-
ing, while Albericio et al. (2016) and Zhang S et al.
(2016) proposed to eliminate ineffectual operations
based on the inherent sparsity in networks.

Off-chip data transfers happen inordinately in
hardware accelerators due to the fact that both
network parameters and intermediate data are too
large to fit on chip. Horowitz (2014) suggested that
power consumption caused by the dynamic random-
access memory (DRAM) access is several orders of

magnitude of the static random-access memory
(SRAM) access, and therefore reducing off-chip
transfers is a critical issue. Shen et al. (2017) de-
signed a flexible data buffing scheme to reduce band-
width requirements, and Alwani et al. (2016) and
Xiao et al. (2017) proposed a fusion-based method to
reduce off-chip traffic. Most recently, Li et al. (2018)
presented a block-based convolution that can com-
pletely avoid off-chip transfers of intermediate data
in VGG-16 with a high throughput.

Many other approaches have been proposed to
reduce power consumption. Zhang et al. (2016b)
used a pipelined FPGA cluster to realize acceler-
ation, Chen Y et al. (2017) presented an energy-
efficient row stationary scheme to reduce data move-
ments, and Zhu J et al. (2016) attempted to reduce
power consumption via low-rank approximation.

8.6 Design automation

Recently, design automation frameworks that
automatically map DNNs onto hardware are re-
ceiving a wider attention. Wang et al. (2016),
Sharma et al. (2016), Venieris and Bouganis (2016),
and Wei et al. (2017) proposed frameworks that au-
tomatically generate synthesizable accelerator for a
given network. Ma et al. (2017a) presented a reg-
ister transfer level (RTL) compiler for FPGA im-
plementation of diverse networks. Liu et al. (2016)
proposed an instruction set for hardware implemen-
tation, while Zhang et al. (2016a) proposed a uni-
formed convolutional matrix multiplication repre-
sentation for CNNs.

8.7 Emerging techniques

In the past few years, there have been many new
techniques from both the algorithm side and circuit
side that have been adopted to implement fast and
energy-efficient accelerators. Stochastic computing
representing continuous values through streams of
random bits has been investigated for hardware ac-
celeration of DNNs (Kim K et al., 2016; Ren et al.,
2017; Sim and Lee, 2017). On the hardware side,
resistive random-access memory (RRAM) based ac-
celerators (Xia et al., 2016; Chen L et al., 2017) and
the use of 3D DRAM (Kim D et al., 2016; Gao et al.,
2017) have received a greater attention.
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9 Future trends and discussion

In this section, we discuss some possible future
directions in this field, i.e., non-fine-tuning or unsu-
pervised compression. Most of the existing meth-
ods, including network pruning, low-rank compres-
sion, and quantization, need labeled data to retrain
the network for accuracy retention. The problems
are two-fold. First, labeled data is sometimes un-
available, as in medical images. Another problem is
that retraining requires considerable human efforts
as well as professional knowledge. These two prob-
lems raise the need for unsupervised compression or
even fine-tuning-free compression methods.

Scalable (self-adaptive) compression: Current
compression methods have many hyperparameters
that need to be determined ahead of time, e.g., the
sparsity of the network pruning, the rank of the
decomposition-based methods, or the bit-width of
fixed-point quantization methods. The selection of
these hyperparameters is a tedious work, which also
requires professional experience. Thus, the investiga-
tion of methods that do not rely on human-designed
hyperparameters is a promising research topic. One
direction may be to use annealing methods, or rein-
forcement learning.

Network acceleration for object detection: Most
of the model acceleration methods are optimized for
image classification, yet very little effort has been
devoted to the acceleration of other computer vision
tasks such as object detection. It seems that model
acceleration methods for image classification can be
used directly for detection. However, DNNs for ob-
ject detection or image segmentation are more sen-
sitive to model acceleration methods, i.e., using the
same model acceleration methods for object detec-
tion would suffer from greater accuracy drops than
with image classification. One reason for this phe-
nomenon may be that object detection requires more
complex feature representation than image classifica-
tion. The design of model acceleration methods for
object detection represents a challenge.

Hardware-software co-design: To accelerate the
deep learning algorithms on dedicated hardware, a
straightforward method is to pick up a model and de-
sign a corresponding architecture. However, the gap
between algorithm modeling and hardware imple-
mentation makes it difficult to put this into practice.
Recent advances in deep learning algorithms and

hardware accelerators demonstrate that it is highly
desirable to design hardware-efficient algorithms ac-
cording to the low-level features of specific hardware
platforms. This co-design methodology will be a
trend in future work.

10 Conclusions

DNNs have provided impressive performance
while suffering from a huge computational complex-
ity and a high energy expenditure. In this paper,
we have provided a survey of recent advances in ef-
ficient processing of DNNs from both the algorithm
and hardware points of view. In addition, we pointed
out a few topics that deserve further investigations
in the future.
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