
A Self-Indexed Register File for Efficient
Arithmetical Computing Hardware

Lei Yang
 Institution of Automation, Chinese Academy of Sciences,

University of Chinese Academy of Sciences
95 Zhongguancun East Road, 100190, Beijing, China

yanglei2013@ia.ac.cn

Shaolin Xie ,Zijun Liu, Xueliang Du and Donglin
Wang
Institution of Automation, Chinese Academy of Sciences,
95 Zhongguancun East Road, 100190, Beijing, China
{shaolin.xie & zijun.liu & xueliang.du &
donglin.wang}@ia.ac.cn

Abstract—This paper presents a novel register file with self-
indexed features, targeting the DSP/media algorithm with
massive data locality. The self-indexed register file (SIRF)
contains 128 high-speed registers, 4 input ports and 4 output
ports. It can be accessed with the double circular window mode,
or simply with the immediate index mode. SIRF can eliminate
write after write (WAW) dependence without register renaming
in hardware or redundant register allocation in compilers, and it
can also reduce the address computation if the accessing pattern
satisfies the circular window mode. The SIRF was implemented
in a high performance mathematical processor(MaPU). Two
detailed application examples, finite impulse response (FIR)
filtering and image interpolating, are demonstrated to show how
SIRF can accelerate DSP/media algorithms. Evaluation shows
that SIRF can dramatically reduce memory access. A 2.88x
speed-up and a 20% overall power reduction are observed with
the evaluated algorithms.

Keywords- register file; arithmetical computing; energy-
efficient

I. INTRODUCTION
Computation intensive digital signal processing (DSP)

applications usually require high computing performance with
constrained energy efficiency. For example, for applications
like cellular phones and mobile communicators, ultralow
power consumption and high DSP capabilities are both
required. To maximize the performance with limited hardware
resource for certain computing task like stereo vision
algorithms [1] and convolutional neural networks [2], specially
designed architecture and carefully optimized hardware
components are often used, and they are often quite different
from general purpose processors [3].

Among these specially designed components, memory
system design is a quite important issue for DSP/media
applications. Applications in multimedia, video processing,
wireless communication require efficient memory system to
exchange intensive data. Different from most general purpose
processors’ choice of a Von Neumann architecture [4], many
digital processing processors and accelerators adapt custom
memory structure to accelerate their computing tasks, such as
Harvard architecture and super Harvard architecture [5]. That’s
because traditional memory system is designed to fit the

feasibility of general purpose computing, and it would fail in
dealing with the heavy computing burden with strict power
requirement.

Especially, for a mathematical processor that adapts
pipeline structure and parallelization to accelerate arithmetical
algorithms, traditional register file would have certain
problems that slow down the whole performance. For example,
the frequently register access brings massive address
calculation, and it actually could be saved for certain
arithmetical algorithms that have fixed register access pattern.
Another problem is the rapid increasing of assembly instruction
to deal with the register access when the computing kernel
require huge amount of register operations. What’s more, to
take the most advantage of data locality is also a main concern
of on-chip memory design. Traditional register file along with
cache is quite complex and requires extra on-chip resource
(usually more than 50% of the total chip area [6]), and it hardly
reaches arithmetical processor’s strict requirement of
performance and limited resource limitation.

This paper brings up a new register file design to accelerate
mathematical computing. We design a self-indexed register file
(SIRF), which consists of a group of registers and a set of self-
indexed input/output ports. Besides the normal method to
directly access registers by register ID, it offers a new way to
generate register’s index through double circular windows, so
as to automatically inputting/outputting data between main
memory and the computing core inside processor. SIRF
supports the data access pattern of many computation intensive
algorithm, such as 2-dimension filtering, FIR, matrix
multiplication, FFT, etc.

The paper is organized as follows. Chapter 2 introduces
some similar works as SIRF. Chapter 3 describes the structure
of SIRF and the self-indexer. Chapter 4 demonstrates 2 typical
algorithm implementation examples with SIRF: FIR and
polyphase image interpolation, to show how SIRF works to
accelerate mathematical computing. The acceleration and
power consumption reduction brought by SIRF are evaluated
and analyzed in chapter 5. Chapter 6 gives conclusion and
future work.

978-1-5386-3007-5/17/$31.00 ©2017 IEEE 13

II. RELATED WORK
As the closest part to processor in the entire memory

hierarchy, register file directly determines the top performance
and working rate of the processor. There are many works in
register file design and optimization.

A 4R/2W register file for dynamic voltage and frequency
scaling processor is introduced in [7]. It uses full-N separated
read ports and also reconfigurable write scheme to achieve
power-efficiency. It has similar goal as SIRF, and both of them
adapt configurable structure to improve performance.

An energy-efficient unified register file design for mobile
graphic processing unit (GPU) is presented in [8]. The design
re-arranges register file structure and uses fast indexing and
allocation mechanism to reduce both dynamic and leakage
energy of register file.

The optimization in [9] explores various trade-offs for the

register file hierarchy and gives new schedule plan, and [10]
gives new register file implementations with novel refresh
solutions using bank bubble and bank walk-through for general
purpose graphic processing unit (GPGPU). All these designs
try to improve register file structure to achieve better
performance and energy-efficiency of the whole processor.

III. SIRF STRUCTURE
Rather than general purpose register file, the self-indexed

register file contains 128 registers and a set of self-indexed
input/output ports, as shown in figure 1. The 4 input ports
supply the ability to write 4 registers concurrently, and the 4
output ports could send the value of 4 registers at most at the
same time. Each port is equipped with a configurable indexer.
The configuration of an indexer defines an accessible window
of registers for its corresponding port, containing a pair of start
and end pointers and a stride value.

There are 2 methods to access SIRF: directly access and
self-indexed access. The former method just likes most general
purpose register file, and the registers could be accessed by
their register ID. For example, the expression “ALU.R0=R[2]”
reads the value of #2 register to the register R0 of ALU; and
expression “R[127]=ALU.R1” assigns the value of ALU’s
register R1 to the #127 register of SIRF.

The self-indexer has double circular window structure, as
shown in figure 2. It could sequentially and circularly access
the registers inside the configured window through a pointer
hold by the indexer. More window configuration can be
assigned to an indexer to form double circular data windows,
which allow an inner window to slide inside the outer window.
We use the word “location” to represent the register ID
selected by the indexer’s pointer. There are 4 main
configurable parameters in this structure:

 ISTART: The start location of the outer circular
window, ranged from 0 to 127.

 MSIZE: The size of the outer circular window (the
number of registers in the outer circular window).

 ISIZE: The size of the inner circular window (the
number of registers in the inner circular window).

 STEPSIZE: The stride of inner circular window. The
number of current register’s ID grows by STEPSIZE.

Port0

Port1

Port3

Conf0

...

Conf3Port3

Port1

Conf1
Port0

Conf0

Conf1

Conf3

...

R0

R127

...

Output InputRegisters

Figure 1. Structure of self-indexed register file: 4 output ports and 4 input
ports. Each port is companied with a set of configurations, which can be
configured independently as double circular window indexer.

...

Start location
(ISTART)

Register File

Window offset

End location

STride (STEPSIZE)

Window size
Sliding

MSIZE

...
Indexer

Inner window

Outer
window

ISIZE

Figure 2. Buffer configuration for double circular windows: left is the logic
representation of the double circular buffer, and right is the register file
mapping. The 2 windows slide circularly under their pre-set constrains

Two parameters ‘I’ and ‘S’ are used to control the position
of the two windows. S stands for the offset between outer
circular window and inner circular window, and I stands for the
offset between the current pointer’s position and the start
location of inner circular window. The current register
pointer’s location current_index could be calculated as:

_ % current index ISTART S I MSIZE (1)

The instruction option “I++” and “S++” along with the 4
configurable parameters control the exact behavior of SIRF.
Corresponding to the definition of the parameters, the
instruction option “I++” increases the offset between the
current pointer’s position and the start location of inner circular
window, and each time “I++” modifies the value of I as:

 % I I STEPSIZE ISIZE (2)

Similar to I++, instruction option “S++” increases the offset
between outer circular window and inner circular window.
Each time “S++” is used, it resets the value of I to I=0, and the
value of S is modified as:

978-1-5386-3007-5/17/$31.00 ©2017 IEEE 14

 % S S STEPSIZE MSIZE (3)

The usage of SIRF’s self-indexer includes 2 typical
scenarios: single window indexing and double window
indexing. Here we briefly demonstrate the 2 usage scenarios:

A. Single window indexing:
Single window indexing mode is reached by simply

configuring the size of inner window and outer window to be
equal, i.e. ISIZE=MSIZE. In this circumstance the inner
indexing window couldn’t slide anymore, and the instruction
“S++” is invalid. Figure 3 shows an example where
ISIZE=MSIZE=3. The size of inner window and outer window
are both 3, and the whole SIRF acts as a circular buffer with 3
registers.

B. Double window indexing:
By setting ISIZE<MSIZE, SIRF’s inner circular window

could slide inside the outer window. In this scenario, the
instruction option “I++” increases the current register index ID
in the range of inner window, which is the same as single
window mode. The option “S++” moves the position of inner
window and keeps it inside the outer window The current
index number points to the start position of the inner window.
Figure 4 shows an example where ISIZE=2, and MSIZE=3. The
inner window slides inside the outer windows with option
“S++”, keeping the register index grows under the double
circular window range.

R3

R2
R1

R0
Register File

...

Inner window

Outer window
R1
R2
R1
R2
R0

R0

...

Current Indexed Register
I++

I++

I++
I++

I++In
str

uc
tio

n

Figure 3. Example of single window indexing (ISIZE=3, MSIZE=3)

R3

R2

R1

R0
Register File

...

Inner window

Outer window
R1
R0
R1
R1
R2

R0

...

Current Indexed Register
I++

I++

I++
S++

I++In
str

uc
tio

n

R1
R2

I++
I++

Figure 4. Example of double window indexing (ISIZE=2, MSIZE=3)

IV. EXAMPLES OF SIRF IN DSP/MEDIA APPLICATION

A. FIR
Finite impulse response (FIR) filters are used in many

digital signal processing applications, as they are known to
have some very desirable properties like guaranteed stability
and linear phase. Here we consider a causal discrete-time FIR
filter of order N:

0 1

0

[] [] [1] []

[]

N

N

i
i

y n b x n b x n b x n N

b x n i
 (4)

In equation (4), x[n] is the input signal and y[n] is the
output signal. N is the filter order and bi is the value of the
impulse response at the ith instant for 0 i N of an Nth-
order FIR filter. FIR filters with exactly linear phase can easily
be designed, however, they are data-dense and actually require
considerably huge amount of arithmetical operations and
hardware components like multipliers and adders [11]. What’s
more, the computing kernel usually exchanges huge
input/output data, and proper memory system design is
essential for reducing delay caused by exchanging data.

More than simple circular buffer, we configure SIRF as a
double data window to accelerate the algorithm to fit an ASIC-
like implementation based on a vector processor. In our
implementation, the basic operation data length is VS, and for
each vector dot production we need a filter and an input vector
with length of M. For the vector machine, the VS concurrent
dot production need M-1+VS input elements. So we use M-
1+VS registers in SIRF as the buffer for the core FIR
computation.

The whole implementation includes 2 procedures according
to the buffer behavior implemented by SIRF: initializing buffer
and updating buffer. For the input vector X(n), initializing
buffer loads the first M-1+VS elements from X(n) into SIRF,
and does the first VS dot production, as shown in figure 5.

Step 1 Load K sets of vector (vector length is VS) and load all the filter
 coefficients.

Step 2 Dot product the ith element of coefficients and the [i, VS+i-1]th vector
 in the SIRF buffer to generate M results. Then accumulate the M
 output results to get the first filter results.

Figure 5. Algorithm flow for initializing buffer

After loading the first M-1+VS elements, the second
procedure updates the buffer with 1 vector each time (VS
elements) and finishes the rest of the algorithm, as shown in
figure 6.

Step 1 Load VS elements from X(n) to SIRF to update the VS registers.
Step 2 Dot product the ith element of coefficients and the [i, VS+i-1]th vector

 in the SIRF buffer to generate M results. Then accumulate the M output
 data to get the first filtering results.

Step 3 Repeat step 2 until all the elements of X(n) are updated.

Figure 6. Algorithm flow for updating buffer

978-1-5386-3007-5/17/$31.00 ©2017 IEEE 15

The data flow in updating buffer is demonstrated in figure 7,
where a set of vectors consisted of VS source data are generated
by SIRF and are multiplied and accumulated to generated
filtering results. In our implementation, 5 SIRF registers are
used as buffer. The configuration of SIRF is: ISIZE=4
MSIZE=5. In the first procedure, 5 vectors are loaded into
SIRF, then in the following procedure only 1 vector is loaded
to update SIRF each time. The register updating is
demonstrated in figure 8. In the figure, 4 registers within inner
data window are accessed circularly with the instruction “I++”.
When the instruction “S++” is sent, the inner window grows by
1 register and the new registers keep the updating for the
algorithm. Here, the SIRF usage is a typical double-circular
circular window configuration for DSP algorithm acceleration.

2VS-1VS VS+1

3VSVS+1 VS+2

M+2VS-2VS+M-1 VS+M

C0

C1

CM-1

CoefficientsInput Data X(n)

SIRF

2VS-1VS VS+1
Filtering Output

MAC Register

data window slides +

+
+

Figure 7. Demonstration of SIRF usage in FIR. Several sets of VS elements
are provided by SIRF to do dot production to generate one FIR result.

R0

Current Indexed Register

R1 R2 R3 R1 R2

Instruction
I++ I++ S++ I++ I++

R3 R4

I++ S++

R2 R3 R4 R0

I++ I++ I++ S++

Figure 8. The updating of SIRF index for FIR

Now we analyze the number of memory access operation in
our implementation. In the initializing buffer step, the memory
access operation exists in three parts: (M+VS-1)/VS times of
loading input data, M/VS times of loading filter coefficient, and
1 time of writing back result. In the updating buffer procedure,
there are (N-VS)/VS times of loading input data and (N-VS)/VS
times of writing back result. So the overall memory access
operation counts as:

1 / / 2 2* / 2 /M VS M VS N VS VS M N VS
 (5)

The original algorithm requires a set of coefficient and an
input data vector for each dot production, the length of which
are both M. This requires 2 M/VS times of memory access
operation. For input vector X(n) with length of N, the total
counts are 2N M/VS . The writing back result requires N/VS
times of writing memory operations. So the overall memory
access counts as:

()2 / /N M VS N VS (6)

So, the memory access count complexity’s speed-up is
evaluated by equation (5) times equation (6), and it is about
O(MN/(M+N)). According to this result, the speed-up grows
rapidly with the increasing of computing scale.

B. Image Polyphase Filtering Interpolation
Image interpolation is a procedure used in expanding and

contracting digital images [12]. It relates to the method of
placing new pixel values into a regularly sampled grid given a
discrete subset of points taken from a smaller grid. Polyphase
interpolation method has variable filters for different
interpolation requirements so as to offering better image
resizing quality, and it is commonly used in industry [13].

A full image polyphase interpolation could be divided into
2 steps: interpolating in vertical direction and in horizontal
direction. The filter adapts to Lanczos-n function [14]:

sin sin /f x c x c x n (7)

For the pixel X(i,j) in the source image, we mark the
vertical interpolating pixel Y(i,j), and the final target pixel Z(i,j).
First, the image interpolates in vertical direction. The
corresponding position of target pixel Y(x,j) in the original
image is (i+u, j), which is determined by the vertical zoom
ration of target image Y and original image X. The phase u is
determined by the vertical filter, where x is the integral part
of x. Then the vertical interpolating target image Y(x,j) is
calculated as:

1

0

(,) (, (,))

(,)* (/ 2 1,)
Vtap

index

Y x j f X Vfilter uPhase Vtap

Vfilter uPhase index X i Vtap index j

 (8)

Here, to simplify the demonstration, we use a simple 1:2
image scaling example to show the SIRF accelerating
mechanism. We use a 4 tap filter, and for each target pixel,
there involves the multiplication and accumulation of 4 sets of
source pixels and coefficients:

3

0

0;]}; { = * [
m m

m

for i i RowNu C nX im i nY i

The input data updating window is shown in figure 9. In
this demonstration of 4 tap filtering, for each target
interpolating pixel there are 4 source pixels required, and the
source data update after generating 2 target pixels. The
updating pattern still has a FIR-circular window style, and 1
pixel is replaced into the temporary buffer to form new data
window for the interpolation. The figure shows the updating of
source data and all target data are automatically prepared with
the SIRF writing/reading windows.

Instead of fetching 4 pixels from main memory, only 1
pixel is needed for the updating of SIRF, and the indexes for
each source operator and destination operator are all updated
properly by the self-index system. As a result, the complexity
of memory fetching operation becomes O(N) because of SIRF,

978-1-5386-3007-5/17/$31.00 ©2017 IEEE 16

instead of O(4×N) generated from the original algorithm
process. As for the interpolation with more taps (like 8 tap and
16 tap), SIRF brings bigger acceleration with the increasing of
algorithm complexity. In the task where image is interpolated
from Nh×Nv to Lh×Lv with N tap filter, the memory access
speed up for one interpolating direction is (Lh×N×LV) /
(Lh×Lv) = N. As for the full size interpolating that contains the
same 2 procedures, the overall speed-up is N+N=2N. That
means the interpolation with SIRF has no relationship with
algorithm’s tap number, and it accesses memory with fixed
number for certain image resolution, so as to bringing
advantage for ASIC-like image processing hardware design.

SIRF Writing
BIU->R[I++]

BIU->R[I++]

BIU->R[I++]

BIU->R[I++]

BIU->R[I++]

SIRF Reading
R[I++]->MAC

R[I++]->MAC

R[I++]->MAC

R[I++]->MAC

R[I++]->MAC

R[I++]->MAC

R[I++]->MAC

R[S++]->MAC

R[I++]->MAC

R[I++]->MACR[I++]->MAC(R0)

(R1)

(R2)

(R3)

(R4)

(R0)

(R1)

(R2)

(R3)

(R0)

(R1)

(R2)

(R3)

(R1)

R[I++]->MAC (R2)

Pixel 0

Pixel 1

Pixel 2

Figure 9. SIRF usage demonstration in 4 tap image interpolation, where 1
register is fetched each time to automatically generate source data consisted of
4 registers.

V. EVALUATION

A. Effect on overall implementation performance
This section discusses SIRF’s effect on overall performance.

Besides FIR and image interpolation mentioned before, we also
analyze another two typical DSP algorithms: floating point
matrix multiplication (FMM) and FFT (including single-point
complex FFT and fixed-point complex FFT). Each algorithm
uses 3 groups of input size, as listed in table 1, and average
results are obtained for performance comparison. All these
algorithms are implemented on the mathematical processor
(MaPU) and are described in the original MaPU benchmarks in
[15]. To get precise instruction statistics, the memory access
related instruction counts are generated from a cycle accurate
simulator [16], and the correctness of these benchmarks has
been verified in hardware experiments.

The memory access instruction ratio (average result from
every 3 tests with different input size) with/without SIRF is
shown in figure 10. The cycle accurate simulator gives the
overall instruction number and the memory-related instruction
number fired in the whole algorithm execution stage. In the
cases without SIRF, the memory access operations related to
SIRF’s register are replaced by ordinary load/store operations
that interact directly with main memory. The results of all the

algorithms show reduction of memory access instruction, as
shown in figure 11. As for the 2 FFT groups the memory
access instructions are reduced to about half as before. Another
3 groups show similar or better reduction effect. Especially, the
image interpolation experiment reaches about 0.77 memory
accessing reduction, as image’s pixels are frequently reused in
the multiple-tap interpolating process, and SIRF takes good
advantage of that to reduce frequently memory access.

TABLE I. TEST CASE LIST

Algorithm Size 1 Size 2 Size 3
FIR N=1024, M=64 N=2048, M=128 N=4096, M=128

Image
Interpolation 64×64, 4 tap 240×135, 4 tap 240×135, 16 tap

FMM 64×64 128×128 256×256
Cplx SP

FFT
256 points,
3 epochs

1024 points,
4 epochs

4096 points,
4 epochs

Cplx FP
FFT

256 points,
3 epochs

1024 points,
4 epochs

4096 points,
4 epochs

Here we give a glimpse of the acceleration of SIRF on the
speed-up on the overall performance of tested benchmarks. We
measure the sustained performance by Giga Operations Per
Second (GOPS). As shown in figure 11, speed-up are
observed in all the tested benchmarks, ranging from 1.29 to
2.88. As a matter of fact, all the algorithms are implemented
with great optimization and having quite good efficiency
considering the hardware resources of MaPU. The usage of
SIRF brings in additional acceleration and it acts as an
important design principle in final high-performance
implementations.

Figure 10. Average memory access ratio caculated by the number of memory
access instruction divide total instruction number

The main advantage is that SIRF’s operation is much
quicker than load/store operations, as SIRF is an inside-
processor resources and the register operating has similar or
higher speed comparing with other arithmetical units inside
processor, while load/store operations are limited by the speed
of main memory and the latency between main memory and
processor. Furthermore, the self-indexer takes good use of
mathematical algorithm’s data pattern, and saves the heavy
burden of register address’s computing, giving performance
increasing for the computing tasks.

B. Power efficiency
SIRF brings in another advantage: the reduction of power

consumption, as it usually reduces the ratio of memory access

978-1-5386-3007-5/17/$31.00 ©2017 IEEE 17

operations (load/store operations), and the energy consumed by
the register operating instructions in SIRF is much lower than
that of memory access operations. The dynamic power
consumption of each function units’ instructions is shown in
table 2 [15]. In the table, FALU, IALU, FMAC and IMAC are
all different kinds of arithmetical units in the mathematical
processor, and load/store instructions relate to memory access
operations.

TABLE II. DYNAMIC ENERGY CONSUMED PER INSTRUCTION [15]

Instruction Type Average Energy Per
Instruction(Unit: pJ, 512bit)

Register R/W 133.25
Load/Store 609.2

FALU 345.65
IALU 335.18
FMAC 187.23
IMAC 788.77

The power consumption of SIRF operations are much
lower than any other arithmetical operations, and compering
with load/store operations, it consumes only about 1/5 power.
The power reduction results are shown in figure 11. It shows
15%-20% power reduction brought by SIRF in all the five test
cases. In these experiments, SIRF helps the processor to have
better use of data locality and reduces the redundant memory
access, so as to reducing the extra power consumption of
load/store operations.

Figure 11. Changes brought by SIRF, including memory access reduction ,
overall performance speed-up and power consumption reduction

VI. CONCLUSION AND FUTURE WORK
This paper presents a novel self-indexed register file

specially designed for DSP/media applications. The registers
inside SIRF could be accessed via immediate register ID or
auto-generated index. The indexer with two circular windows
are designed and optimized based on the computing pattern of
some frequently-used computing intensive algorithms, aiming
to reduce memory access operations and increase functional
units’ usage ratio. Two application examples are demonstrated
to show the design principle and how it can accelerate the
applications. For the targeted DSP/media algorithms that have
intensive computing requirements, SIRF can provide
consecutive sets of data with high speed and low latency, thus
improve the overall computing efficiency.

The basic design principle of SIRF is to explore the data
locality in register file and reduce main memory access. Thus it

is applicable to any other DSP processors or application
specific integrated circuits that targeting data intensive kernels,
like convolution and matrix multiplication, etc. Applications
that based on these kernels, like communication, image
processing and neural network training, can leverage these
highly optimized kernels to boost the performance with limited
hardware and reduced power consumption.

Future work: Though SIRF demonstrates good
performance in the evaluated applications, we believe it can be
extended to other data intensive tasks, like matrix
multiplication with different size, and some key computing
kernels in 4G/5G communication. In addition, to improve the
programmability, we are also investigating the complier
support, which can automatically generate SIRF configuration
from high level language for the targeted algorithm.

REFERENCES
[1] Tippetts, B., et al., Review of stereo vision algorithms and their

suitability for resource-limited systems. Journal of Real-Time Image
Processing, 2016. 11(1): p. 5-25.

[2] Moini, S., et al., A Resource-Limited Hardware Accelerator for
Convolutional Neural Networks in Embedded Vision Applications.
IEEE Transactions on Circuits and Systems II: Express Briefs, 2017.

[3] Eyre, J. and J. Bier, The evolution of DSP processors. IEEE Signal
Processing Magazine, 2000. 17(2): p. 43-51.

[4] Backus, J., Can programming be liberated from the von Neumann style?:
a functional style and its algebra of programs. Communications of the
ACM, 1978. 21(8): p. 613-641.

[5] Smith, S.W., The scientist and engineer's guide to digital signal
processing. 1997.

[6] Keitel-Schulz, D. and N. Wehn, Embedded DRAM development:
Technology, physical design, and application issues. IEEE Design &
Test of Computers, 2001. 18(3): p. 7-15.

[7] Chang, P.-Y., et al., A 4R/2W register file design for UDVS
microprocessors in 65-nm CMOS. IEEE Transactions on Circuits and
Systems II: Express Briefs, 2012. 59(12): p. 908-912.

[8] Chu, S.-L., C.-C. Hsiao, and C.-C. Hsieh. An energy-efficient unified
register file for mobile GPUs. in Embedded and Ubiquitous Computing
(EUC), 2011 IFIP 9th International Conference on. 2011. IEEE.

[9] Gebhart, M., et al., A hierarchical thread scheduler and register file for
energy-efficient throughput processors. ACM Transactions on Computer
Systems (TOCS), 2012. 30(2): p. 8.

[10] Jing, N., et al. An energy-efficient and scalable eDRAM-based register
file architecture for GPGPU. in ACM SIGARCH Computer Architecture
News. 2013. ACM.

[11] Liu, Y. and K.K. Parhi. Lattice FIR digital filter architectures using
stochastic computing. in Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on. 2015. IEEE.

[12] Prashanth, H., H. Shashidhara, and B.M. KN. Image scaling comparison
using universal image quality index. in Advances in Computing, Control,
& Telecommunication Technologies, 2009. ACT'09. International
Conference on. 2009. IEEE.

[13] Franzen, O., C. Tuschen, and H. Schröder. Intermediate image
interpolation using polyphase weighted median filters. in Proc. SPIE.
2001.

[14] Rasti, P., et al. Improved interpolation kernels for super resolution
algorithms. in Image Processing Theory Tools and Applications (IPTA),
2016 6th International Conference on. 2016. IEEE.

[15] Wang, D., et al. MaPU: A novel mathematical computing architecture.
in High Performance Computer Architecture (HPCA), 2016 IEEE
International Symposium on. 2016. IEEE.

[16] Yang, L., et al., An approach to build cycle accurate full system VLIW
simulation platform. Simulation Modelling Practice and Theory, 2016.
67: p. 14-28.

978-1-5386-3007-5/17/$31.00 ©2017 IEEE 18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

