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Abstract—This paper presents a novel register file with self-
indexed features, targeting the DSP/media algorithm with 
massive data locality. The self-indexed register file (SIRF) 
contains 128 high-speed registers, 4 input ports and 4 output 
ports. It can be accessed with the double circular window mode, 
or simply with the immediate index mode. SIRF can eliminate 
write after write (WAW) dependence without register renaming 
in hardware or redundant register allocation in compilers, and it 
can also reduce the address computation if the accessing pattern 
satisfies the circular window mode. The SIRF was implemented 
in a high performance mathematical processor(MaPU). Two 
detailed application examples, finite impulse response (FIR) 
filtering and image interpolating, are demonstrated to show how 
SIRF can accelerate DSP/media algorithms. Evaluation shows 
that SIRF can dramatically reduce memory access. A 2.88x 
speed-up and a 20% overall power reduction are observed with 
the evaluated algorithms. 

Keywords- register file; arithmetical computing; energy-
efficient 

I.  INTRODUCTION 
Computation intensive digital signal processing (DSP) 

applications usually require high computing performance with 
constrained energy efficiency. For example, for applications 
like cellular phones and mobile communicators, ultralow 
power consumption and high DSP capabilities are both 
required. To maximize the performance with limited hardware 
resource for certain computing task like stereo vision 
algorithms [1] and convolutional neural networks [2], specially 
designed architecture and carefully optimized hardware 
components are often used, and they are often quite different 
from general purpose processors [3]. 

Among these specially designed components, memory 
system design is a quite important issue for DSP/media 
applications. Applications in multimedia, video processing, 
wireless communication require efficient memory system to 
exchange intensive data. Different from most general purpose 
processors’ choice of a Von Neumann architecture [4], many 
digital processing processors and accelerators adapt custom 
memory structure to accelerate their computing tasks, such as 
Harvard architecture and super Harvard architecture [5]. That’s 
because traditional memory system is designed to fit the 

feasibility of general purpose computing, and it would fail in 
dealing with the heavy computing burden with strict power 
requirement.  

Especially, for a mathematical processor that adapts 
pipeline structure and parallelization to accelerate arithmetical 
algorithms, traditional register file would have certain 
problems that slow down the whole performance. For example, 
the frequently register access brings massive address 
calculation, and it actually could be saved for certain 
arithmetical algorithms that have fixed register access pattern. 
Another problem is the rapid increasing of assembly instruction 
to deal with the register access when the computing kernel 
require huge amount of register operations. What’s more, to 
take the most advantage of data locality is also a main concern 
of on-chip memory design. Traditional register file along with 
cache is quite complex and requires extra on-chip resource 
(usually more than 50% of the total chip area [6]), and it hardly 
reaches arithmetical processor’s strict requirement of 
performance and limited resource limitation. 

This paper brings up a new register file design to accelerate 
mathematical computing. We design a self-indexed register file 
(SIRF), which consists of a group of registers and a set of self-
indexed input/output ports. Besides the normal method to 
directly access registers by register ID, it offers a new way to 
generate register’s index through double circular windows, so 
as to automatically inputting/outputting data between main 
memory and the computing core inside processor. SIRF 
supports the data access pattern of many computation intensive 
algorithm, such as 2-dimension filtering, FIR, matrix 
multiplication, FFT, etc.  

The paper is organized as follows. Chapter 2 introduces 
some similar works as SIRF. Chapter 3 describes the structure 
of SIRF and the self-indexer. Chapter 4 demonstrates 2 typical 
algorithm implementation examples with SIRF: FIR and 
polyphase image interpolation, to show how SIRF works to 
accelerate mathematical computing. The acceleration and 
power consumption reduction brought by SIRF are evaluated 
and analyzed in chapter 5. Chapter 6 gives conclusion and 
future work. 
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II. RELATED WORK 
As the closest part to processor in the entire memory 

hierarchy, register file directly determines the top performance 
and working rate of the processor. There are many works in 
register file design and optimization. 

A 4R/2W register file for dynamic voltage and frequency 
scaling processor is introduced in [7]. It uses full-N separated 
read ports and also reconfigurable write scheme to achieve 
power-efficiency. It has similar goal as SIRF, and both of them 
adapt configurable structure to improve performance. 

An energy-efficient unified register file design for mobile 
graphic processing unit (GPU) is presented in [8]. The design 
re-arranges register file structure and uses fast indexing and 
allocation mechanism to reduce both dynamic and leakage 
energy of register file. 

The optimization in [9] explores various trade-offs for the 

register file hierarchy and gives new schedule plan, and [10] 
gives new register file implementations with novel refresh 
solutions using bank bubble and bank walk-through for general 
purpose graphic processing unit (GPGPU). All these designs 
try to improve register file structure to achieve better 
performance and energy-efficiency of the whole processor. 

III. SIRF STRUCTURE 
Rather than general purpose register file, the self-indexed 

register file contains 128 registers and a set of self-indexed 
input/output ports, as shown in figure 1. The 4 input ports 
supply the ability to write 4 registers concurrently, and the 4 
output ports could send the value of 4 registers at most at the 
same time. Each port is equipped with a configurable indexer. 
The configuration of an indexer defines an accessible window 
of registers for its corresponding port, containing a pair of start 
and end pointers and a stride value. 

There are 2 methods to access SIRF: directly access and 
self-indexed access. The former method just likes most general 
purpose register file, and the registers could be accessed by 
their register ID. For example, the expression “ALU.R0=R[2]” 
reads the value of #2 register to the register R0 of ALU; and 
expression “R[127]=ALU.R1” assigns the value of ALU’s 
register R1 to the #127 register of SIRF. 

The self-indexer has double circular window structure, as 
shown in figure 2. It could sequentially and circularly access 
the registers inside the configured window through a pointer 
hold by the indexer. More window configuration can be 
assigned to an indexer to form double circular data windows, 
which allow an inner window to slide inside the outer window. 
We use the word “location” to represent the register ID 
selected by the indexer’s pointer. There are 4 main 
configurable parameters in this structure:  

 ISTART: The start location of the outer circular 
window, ranged from 0 to 127. 

 MSIZE: The size of the outer circular window (the 
number of registers in the outer circular window). 

 ISIZE: The size of the inner circular window (the 
number of registers in the inner circular window). 

 STEPSIZE: The stride of inner circular window. The 
number of current register’s ID grows by STEPSIZE. 

Port0

Port1

Port3

Conf0

...

Conf3Port3

Port1

Conf1
Port0

Conf0

Conf1

Conf3

...

R0

R127

...

Output InputRegisters

 

Figure 1.  Structure of self-indexed register file: 4 output ports and 4 input 
ports. Each port is companied with a set of configurations, which can be 
configured independently as double circular window indexer. 
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Figure 2.  Buffer configuration for double circular windows: left is the logic 
representation of the double circular buffer, and right is the register file 
mapping. The 2 windows slide circularly under their pre-set constrains 

Two parameters ‘I’ and ‘S’ are used to control the position 
of the two windows. S stands for the offset between outer 
circular window and inner circular window, and I stands for the 
offset between the current pointer’s position and the start 
location of inner circular window. The current register 
pointer’s location current_index could be calculated as: 

_       % current index ISTART S I MSIZE      (1) 

The instruction option “I++” and “S++” along with the 4 
configurable parameters control the exact behavior of SIRF. 
Corresponding to the definition of the parameters, the 
instruction option “I++” increases the offset between the 
current pointer’s position and the start location of inner circular 
window, and each time “I++” modifies the value of I as: 

     % I I STEPSIZE ISIZE                                 (2) 

Similar to I++, instruction option “S++” increases the offset 
between outer circular window and inner circular window. 
Each time “S++” is used, it resets the value of I to I=0, and the 
value of S is modified as: 
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  % S S STEPSIZE MSIZE                              (3) 

The usage of SIRF’s self-indexer includes 2 typical 
scenarios: single window indexing and double window 
indexing. Here we briefly demonstrate the 2 usage scenarios: 

A. Single window indexing: 
Single window indexing mode is reached by simply 

configuring the size of inner window and outer window to be 
equal, i.e. ISIZE=MSIZE. In this circumstance the inner 
indexing window couldn’t slide anymore, and the instruction 
“S++” is invalid. Figure 3 shows an example where 
ISIZE=MSIZE=3. The size of inner window and outer window 
are both 3, and the whole SIRF acts as a circular buffer with 3 
registers. 

B. Double window indexing: 
By setting ISIZE<MSIZE, SIRF’s inner circular window 

could slide inside the outer window. In this scenario, the 
instruction option “I++” increases the current register index ID 
in the range of inner window, which is the same as single 
window mode. The option “S++” moves the position of inner 
window and keeps it inside the outer window The current 
index number points to the start position of the inner window. 
Figure 4 shows an example where ISIZE=2, and MSIZE=3. The 
inner window slides inside the outer windows with option 
“S++”, keeping the register index grows under the double 
circular window range. 
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Figure 3.  Example of single window indexing (ISIZE=3, MSIZE=3) 
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Figure 4.  Example of double window indexing (ISIZE=2, MSIZE=3) 

IV. EXAMPLES OF SIRF IN DSP/MEDIA APPLICATION 

A. FIR 
Finite impulse response (FIR) filters are used in many 

digital signal processing applications, as they are known to 
have some very desirable properties like guaranteed stability 
and linear phase. Here we consider a causal discrete-time FIR 
filter of order N: 

0 1

0

[ ] [ ] [ 1] [ ]

[ ]

N

N

i
i

y n b x n b x n b x n N

b x n i
         (4) 

In equation (4), x[n] is the input signal and y[n] is the 
output signal. N is the filter order and bi is the value of the 
impulse response at the ith instant for 0 i N  of an Nth-
order FIR filter. FIR filters with exactly linear phase can easily 
be designed, however, they are data-dense and actually require 
considerably huge amount of arithmetical operations and 
hardware components like multipliers and adders [11]. What’s 
more, the computing kernel usually exchanges huge 
input/output data, and proper memory system design is 
essential for reducing delay caused by exchanging data.  

More than simple circular buffer, we configure SIRF as a 
double data window to accelerate the algorithm to fit an ASIC-
like implementation based on a vector processor. In our 
implementation, the basic operation data length is VS, and for 
each vector dot production we need a filter and an input vector 
with length of M. For the vector machine, the VS concurrent 
dot production need M-1+VS input elements. So we use M-
1+VS registers in SIRF as the buffer for the core FIR 
computation.  

The whole implementation includes 2 procedures according 
to the buffer behavior implemented by SIRF: initializing buffer 
and updating buffer. For the input vector X(n), initializing 
buffer loads the first M-1+VS elements from X(n) into SIRF, 
and does the first VS dot production, as shown in figure 5. 

Step 1 Load K sets of vector (vector length is VS) and load all the filter   
     coefficients. 

Step 2 Dot product the ith element of coefficients and the [i, VS+i-1]th vector 
   in the SIRF buffer to generate M results. Then accumulate the M    
   output results to get the first filter results.

 

Figure 5.  Algorithm flow for initializing buffer 

After loading the first M-1+VS elements, the second 
procedure updates the buffer with 1 vector each time (VS 
elements) and finishes the rest of the algorithm, as shown in 
figure 6. 

Step 1 Load VS elements from X(n) to SIRF to update the VS registers. 
Step 2 Dot product the ith element of coefficients and the [i, VS+i-1]th vector 

   in the SIRF buffer to generate M results. Then accumulate the M output 
   data to get the first filtering results.

Step 3 Repeat step 2 until all the elements of X(n) are updated.  

Figure 6.  Algorithm flow for updating buffer 
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The data flow in updating buffer is demonstrated in figure 7, 
where a set of vectors consisted of VS source data are generated 
by SIRF and are multiplied and accumulated to generated 
filtering results. In our implementation, 5 SIRF registers are 
used as buffer. The configuration of SIRF is: ISIZE=4
MSIZE=5. In the first procedure, 5 vectors are loaded into 
SIRF, then in the following procedure only 1 vector is loaded 
to update SIRF each time. The register updating is 
demonstrated in figure 8. In the figure, 4 registers within inner 
data window are accessed circularly with the instruction “I++”. 
When the instruction “S++” is sent, the inner window grows by 
1 register and the new registers keep the updating for the 
algorithm. Here, the SIRF usage is a typical double-circular 
circular window configuration for DSP algorithm acceleration. 

2VS-1VS VS+1

3VSVS+1 VS+2

M+2VS-2VS+M-1 VS+M

C0

C1

CM-1

CoefficientsInput Data X(n)

SIRF

2VS-1VS VS+1
Filtering Output

MAC Register

data window slides +

+
+

 

Figure 7.  Demonstration of SIRF usage in FIR. Several sets of VS elements 
are provided by SIRF to do dot production to generate one FIR result. 
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R2 R3 R4 R0
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Figure 8.  The updating of SIRF index for FIR 

Now we analyze the number of memory access operation in 
our implementation. In the initializing buffer step, the memory 
access operation exists in three parts: (M+VS-1)/VS times of 
loading input data, M/VS times of loading filter coefficient, and 
1 time of writing back result. In the updating buffer procedure, 
there are (N-VS)/VS times of loading input data and (N-VS)/VS 
times of writing back result. So the overall memory access 
operation counts as: 

1 / / 2 2* / 2 /M VS M VS N VS VS M N VS
                                                                                                  (5) 

The original algorithm requires a set of coefficient and an 
input data vector for each dot production, the length of which 
are both M. This requires 2 M/VS  times of memory access 
operation. For input vector X(n) with length of N, the total 
counts are 2N M/VS . The writing back result requires N/VS  
times of writing memory operations. So the overall memory 
access counts as:  

( )2 /  /N M VS N VS                                           (6) 

So, the memory access count complexity’s speed-up is 
evaluated by equation (5) times equation (6), and it is about 
O(MN/(M+N)). According to this result, the speed-up grows 
rapidly with the increasing of computing scale. 

B. Image Polyphase Filtering Interpolation 
Image interpolation is a procedure used in expanding and 

contracting digital images [12]. It relates to the method of 
placing new pixel values into a regularly sampled grid given a 
discrete subset of points taken from a smaller grid. Polyphase 
interpolation method has variable filters for different 
interpolation requirements so as to offering better image 
resizing quality, and it is commonly used in industry [13]. 

A full image polyphase interpolation could be divided into 
2 steps: interpolating in vertical direction and in horizontal 
direction. The filter adapts to Lanczos-n function [14]:

sin sin /f x c x c x n                            (7) 

For the pixel X(i,j) in the source image, we mark the 
vertical interpolating pixel Y(i,j), and the final target pixel Z(i,j). 
First, the image interpolates in vertical direction. The 
corresponding position of target pixel Y(x,j) in the original 
image is (i+u, j), which is determined by the vertical zoom 
ration of target image Y and original image X. The phase u is 
determined by the vertical filter, where x  is the integral part 
of x. Then the vertical interpolating target image Y(x,j) is 
calculated as: 

1

0

( , ) ( , ( , ))

( , )* ( / 2 1, )
Vtap

index

Y x j f X Vfilter uPhase Vtap

Vfilter uPhase index X i Vtap index j

                                                                                                  (8) 

Here, to simplify the demonstration, we use a simple 1:2 
image scaling example to show the SIRF accelerating 
mechanism. We use a 4 tap filter, and for each target pixel, 
there involves the multiplication and accumulation of 4 sets of 
source pixels and coefficients:  

3

0

0; ]}; { = * [  
m m

m

for i i RowNu C nX im i nY i  

The input data updating window is shown in figure 9. In 
this demonstration of 4 tap filtering, for each target 
interpolating pixel there are 4 source pixels required, and the 
source data update after generating 2 target pixels. The 
updating pattern still has a FIR-circular window style, and 1 
pixel is replaced into the temporary buffer to form new data 
window for the interpolation. The figure shows the updating of 
source data and all target data are automatically prepared with 
the SIRF writing/reading windows. 

Instead of fetching 4 pixels from main memory, only 1 
pixel is needed for the updating of SIRF, and the indexes for 
each source operator and destination operator are all updated 
properly by the self-index system. As a result, the complexity 
of memory fetching operation becomes O(N) because of SIRF, 
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instead of O(4×N) generated from the original algorithm 
process. As for the interpolation with more taps (like 8 tap and 
16 tap), SIRF brings bigger acceleration with the increasing of 
algorithm complexity. In the task where image is interpolated 
from Nh×Nv to Lh×Lv with N tap filter, the memory access 
speed up for one interpolating direction is (Lh×N×LV) / 
(Lh×Lv) = N. As for the full size interpolating that contains the 
same 2 procedures, the overall speed-up is N+N=2N. That 
means the interpolation with SIRF has no relationship with 
algorithm’s tap number, and it accesses memory with fixed 
number for certain image resolution, so as to bringing 
advantage for ASIC-like image processing hardware design. 
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Figure 9.  SIRF usage demonstration in 4 tap image interpolation, where 1 
register is fetched each time to automatically generate source data consisted of 
4 registers. 

V. EVALUATION  

A. Effect on overall implementation performance 
This section discusses SIRF’s effect on overall performance. 

Besides FIR and image interpolation mentioned before, we also 
analyze another two typical DSP algorithms: floating point 
matrix multiplication (FMM) and FFT (including single-point 
complex FFT and fixed-point complex FFT). Each algorithm 
uses 3 groups of input size, as listed in table 1, and average 
results are obtained for performance comparison. All these 
algorithms are implemented on the mathematical processor 
(MaPU) and are described in the original MaPU benchmarks in 
[15]. To get precise instruction statistics, the memory access 
related instruction counts are generated from a cycle accurate 
simulator [16], and the correctness of these benchmarks has 
been verified in hardware experiments. 

The memory access instruction ratio (average result from 
every 3 tests with different input size) with/without SIRF is 
shown in figure 10. The cycle accurate simulator gives the 
overall instruction number and the memory-related instruction 
number fired in the whole algorithm execution stage. In the 
cases without SIRF, the memory access operations related to 
SIRF’s register are replaced by ordinary load/store operations 
that interact directly with main memory. The results of all the 

algorithms show reduction of memory access instruction, as 
shown in figure 11. As for the 2 FFT groups the memory 
access instructions are reduced to about half as before. Another 
3 groups show similar or better reduction effect. Especially, the 
image interpolation experiment reaches about 0.77 memory 
accessing reduction, as image’s pixels are frequently reused in 
the multiple-tap interpolating process, and SIRF takes good 
advantage of that to reduce frequently memory access. 

TABLE I.  TEST CASE LIST 

Algorithm Size 1 Size 2 Size 3 
FIR N=1024, M=64 N=2048, M=128 N=4096, M=128 

Image 
Interpolation 64×64, 4 tap 240×135, 4 tap 240×135, 16 tap 

FMM 64×64 128×128 256×256 
Cplx SP 

FFT 
256 points, 
3 epochs 

1024 points, 
4 epochs 

4096 points, 
4 epochs 

Cplx FP 
FFT 

256 points, 
3 epochs 

1024 points, 
4 epochs 

4096 points, 
4 epochs 

Here we give a glimpse of the acceleration of SIRF on the 
speed-up on the overall performance of tested benchmarks. We 
measure the sustained performance by Giga Operations Per 
Second (GOPS). As shown in figure 11, speed-up  are 
observed in all the tested benchmarks, ranging from 1.29 to 
2.88. As a matter of fact, all the algorithms are implemented 
with great optimization and having quite good efficiency 
considering the hardware resources of MaPU. The usage of 
SIRF brings in additional acceleration and it acts as an 
important design principle in final high-performance 
implementations. 

 

Figure 10.  Average memory access ratio  caculated by the number of memory 
access instruction divide total instruction number 

The main advantage is that SIRF’s operation is much 
quicker than load/store operations, as SIRF is an inside-
processor resources and the register operating has similar or 
higher speed comparing with other arithmetical units inside 
processor, while load/store operations are limited by the speed 
of main memory and the latency between main memory and 
processor. Furthermore, the self-indexer takes good use of 
mathematical algorithm’s data pattern, and saves the heavy 
burden of register address’s computing, giving performance 
increasing for the computing tasks. 

B. Power efficiency 
SIRF brings in another advantage: the reduction of power 

consumption, as it usually reduces the ratio of memory access 
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operations (load/store operations), and the energy consumed by 
the register operating instructions in SIRF is much lower than 
that of memory access operations. The dynamic power 
consumption of each function units’ instructions is shown in 
table 2 [15]. In the table, FALU, IALU, FMAC and IMAC are 
all different kinds of arithmetical units in the mathematical 
processor, and load/store instructions relate to memory access 
operations.  

TABLE II.  DYNAMIC ENERGY CONSUMED PER INSTRUCTION [15] 

Instruction Type Average Energy Per 
Instruction(Unit: pJ, 512bit) 

Register R/W 133.25 
Load/Store 609.2 

FALU 345.65 
IALU 335.18 
FMAC 187.23 
IMAC 788.77 

The power consumption of SIRF operations are much 
lower than any other arithmetical operations, and compering 
with load/store operations, it consumes only about 1/5 power. 
The power reduction results are shown in figure 11. It shows 
15%-20% power reduction brought by SIRF in all the five test 
cases. In these experiments, SIRF helps the processor to have 
better use of data locality and reduces the redundant memory 
access, so as to reducing the extra power consumption of 
load/store operations. 

 

Figure 11.  Changes brought by SIRF, including memory access reduction , 
overall performance speed-up and power consumption reduction 

VI. CONCLUSION AND FUTURE WORK 
This paper presents a novel self-indexed register file 

specially designed for DSP/media applications. The registers 
inside SIRF could be accessed via immediate register ID or 
auto-generated index. The indexer with two circular windows 
are designed and optimized based on the computing pattern of 
some frequently-used computing intensive algorithms, aiming 
to reduce memory access operations and increase functional 
units’ usage ratio. Two application examples are demonstrated 
to show the design principle and how it can accelerate the 
applications. For the targeted DSP/media algorithms that have 
intensive computing requirements, SIRF can provide 
consecutive sets of data with high speed and low latency, thus 
improve the overall computing efficiency. 

The basic design principle of SIRF is to explore the data 
locality in register file and reduce main memory access. Thus it 

is applicable to any other DSP processors or application 
specific integrated circuits that targeting data intensive kernels, 
like convolution and matrix multiplication, etc. Applications 
that based on these kernels, like communication, image 
processing and neural network training, can leverage these 
highly optimized kernels to boost the performance with limited 
hardware and reduced power consumption. 

Future work: Though SIRF demonstrates good 
performance in the evaluated applications, we believe it can be 
extended to other data intensive tasks, like matrix 
multiplication with different size, and some key computing 
kernels in 4G/5G communication. In addition, to improve the 
programmability, we are also investigating the complier 
support, which can automatically generate SIRF configuration 
from high level language for the targeted algorithm. 
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