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Abstract—Multi-robot hunting receives much attention due to 

its natural antagonism. In this paper, a hunting approach based 
on dynamic prediction of target motion is proposed where the 
prediction step is optimized according to current environment. 
Based on the predicted target positions, encirclement points 
corresponding to different prediction steps are obtained. Then, an 
optimized prediction step is determined according to the variance 
of the distances between the robots and their respective desired 
encirclement points. Finally, the robots shrink to capture the 
target. The validity of the proposed approach is verified by 
simulations. 

Keywords—Multi-robot hunting; dynamic prediction of target 
motion; desired encirclement points; optimized prediction step. 

I.  INTRODUCTION  

Inspired by group intelligence from biological societies, 
multi-robot systems have received much attention [1][2]. The 
typical multi-robot scenarios have been extended from collision 
avoidance, foraging to formation control, hunting, etc. Among 
them, multi-robot hunting has been specifically researched due 
to its characteristics of antagonism in unknown environments.  

For multi-robot hunting, a few researches on target 
detection concern the implementation by external aids. Vidal et 
al. proposed a probabilistic approach for a team of unmanned 
ground vehicles pursuing the evader [3], and the position of the 
evader is provided by unmanned aerial vehicle. It is because of 
the unmanned aerial vehicle that the target is detected in a large 
scale. The majority of multi-robot hunting focuses on the 
coordination of ground robots. Cao et al. proposed a distributed 
local interaction approach under the framework of local 
coordinate systems [4], and the proposed approach can cope 
with accumulative errors of wheels and imperfect 
communication networks. Li et al. applied game theory to the 
hunting task where a coordinated hunting model is established 
based on the angles and distances among the robot, its 
companions, and the target [5]. In [6], a bioinspired neural 
network was proposed for real-time cooperative hunting by the 
multirobot team, without prior knowledge of the dynamic 

environment, and without learning procedures. Shen et al. 
formulated the relative dynamics according to the kinematics 
relationship between the target and hunting robots, and a 
Lyapunov based cooperative controller is then designed [7]. In 
[8], the besieging circle shrinking with leader adjusting 
(BCSLA) algorithm is proposed to solve the drag problem 
where the group shape is destroyed after the long chase in 
dynamic environments. The process of hunting include four 
states: dispersion-random-search, surround, catch, and 
prediction. Muro et al. produced the computational simulations 
of multi-agent systems in which wolf agents chase the prey 
agents, and the results suggest that wolf-pack hunting is 
considered as an emergent collective behavior [9]. It is worth 
noting that the prediction of target motion is a crucial step to 
improve the hunting performance [10]-[11]. Hu and Zhu 
predicted the next m-step position of the target by using a 
polynomial fitting method, and m is chosen empirically [10]. 
On this basis, the robots are allocated appropriate desire hunting 
points by negotiation. Li conducted the research on short-time 
position prediction of the evader for the problem of multiple 
cooperative defenders preventing an evader from escaping a 
circular region [11]. If the prediction step is selected adaptively 
based on current environment, a more superior hunting 
performance will be achieved. 

In this paper, we propose an optimization solution of 
prediction step by minimizing the variance of distances 
between the robots and their respective desired encirclement 
points. Notice that the variance is related to the predication step. 
The rest of paper is organized as follows. Section II presents the 
proposed cooperative hunting approach in detail. Section III 
demonstrates the simulations and Section IV concludes the 
paper. 

II. COOPERATIVE HUNTING APPROACH 

In this paper, we label the pursuit robots and the target to be 
pursued as ்ܴ

௝  (j=1,2,…,N) and ்ܴ
ீ, respectively, where T refers 

to time. In order to perceive the environment for collision 
avoidance, a range sensor model Srange is adopted. Moreover, the 
robots are assumed to recognize each other, and each robot can 
identify the target. Compared with the robot’s radius, its 
maximum sensing range is much greater. 

In order to achieve the hunting task in unknown 
environments, we design an approach based on dynamic 
prediction of target motion, which firstly forms a larger ring of 
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encirclement and then shrinks to catch the target by multiple 
robots. Specifically, the desired prediction step is introduced to 
acquire the best encirclement points suitable for current 
circumstance. For a robot ்ܴ

௝  whose position is expressed by ்ܲ௝, 
it first uses the latest K sampled data to predict the positions of 
mobile target. We denote the prediction step with ߦ. Clearly, the 
larger ߦ is, the less accurate the prediction for the target is. 
Therefore, ߦ should be confined to a small interval, for example, 
 ,means that there is no prediction of the target 0=ߦ .[6 ,0]∍ߦ
which is corresponding to the case without target prediction. 
According to the cubic spline interpolation, we acquire the 
predicted position ሺ்ݔାஞ

ீ , ାஞ்ݕ
ீ ሻ of target ்ܴାஞ

ீ   at next ߦ step. 
And then, encirclement points ܧ௤ሺξሻ  (q=1,2,…,N) 
corresponding to ߦ are acquired according to the estimated 
location of mobile target. Next, an optimal algorithm for desired 
prediction step is designed. Based on the variance of the 
distances between pursuit robots and their respective 
encirclement points, the optimized prediction step is selected, 
and a set of optimal encirclement points are then determined. 
Each robot moves toward respective encirclement point for the 
formation of the ring of encirclement. After the conditions to 
catch the target is satisfied, the pursuit robots shrink to capture 
the target. 

In the following, the proposed hunting approach is described 
by the three parts: the determination of encirclement points for 
pursuit robots, the selection of the desired prediction step, and a 
shrinking algorithm. 

A. Determination the Encirclement Points for Pursuit Robots 

A reference vector corresponding to the target is introduced 

by ்ܲீ்ܲ௙௔௥ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ ൌ ൫்ݔ
௙௔௥, ்ݕ

௙௔௥൯ െ ሺ்ݔ
ீ, ்ݕ

ீሻ , where ்ܲ௙௔௥  is the 
position of the robot that is farthest to the target. On this basis, 
the positions ௤ܲ

ாሺξሻሺݔ௤ா, ௤ாሻݕ  of encirclement points ܧ௤ሺξሻ 
(q=1,2,…,N) for the pursuit robots are determined by rotating 

்ܲீ்ܲ௙௔௥ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ clockwise with an angle of θ=
ଷ଺଴

ே
. 
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where ρ is the radius of the ring of encirclement, which is given 
empirically. Notice that the ring of encirclement shall become 
invalid for the hunting execution if ρ is too large, while ρ with a 
too small value will easily result in the interferences among the 
robots. 

With N encirclement points, the pursuit robots need an 
effective non-overlapping selection with the combination of 
their current positions. The purpose of this selection is to 
minimize average distances of the robots to encirclement points, 
which can shorten the execution time of hunting task. For the 
case with N encirclement points and N pursuit robots, there 
exists a permutation with AN 

N . The detailed selection algorithm 
Sa(்ܴ

௝ ∗௤ܧ of the encirclement point (ߦ ,௤ܧ ,
௝ ሺξሻ for a robot ்ܴ

௝  is 
shown in Algorithm 1, where j=1,2,…,N, q=1,2,…,N.  

Algorithm 1. Selection algorithm Sa(்ܴ
௝ ௤ܧ ,

௝  of the (ߦ ,

encirclement point ܧ௤∗
௝ ሺξሻ for a robot ்ܴ

௝  

Input: the positions ்ܲ௝ , the positions ௤ܲ
ா	ሺݍ ൌ 1,2, … , ܰሻ of 

all encirclement points ܧ௤, and ߦ.  

Output: the encirclement point ܧ௤∗
௝ ሺξሻ of ்ܴ

௝ . 
1.  for q=1, 2,…, N 

2.       ݀ா೜
ோ೅
ೕ

ൌ ห்ܲ௝ ௤ܲ
ாห; //the distance between ்ܲ௝ and ௤ܲ

ா. 

3.  end for 
4.  for n=1,…, N 
5.      if n≠j then 
6.          for q=1,…, N 

7.             ݀ா೜
ோ೅
೙

ൌ ห ்ܲ
௡

௤ܲ
ாห; 

8.          end for 
9.      end if 
10. end for 

11. Min_length=∑ ݀ா೙
ோ೅
೙

ே
௡ୀଵ ; 

12  Q=j; 
13. for k=1,…, N 
14.     Initialize ={1,…,N}; 
15.     .delete(k); 
16.      do 

17.          Sum_length=݀ாೖ
ோ೅
ೕ

+∑ ݀ா
ோ೅
೙

ே
௡ୀଵ,௡ஷ௝ ; 

18.              if Sum_length<Min_length  then 
19.                  Min_length=Sum_length; 
20.                  Q=k; 
21.              end if 
22.      while (permutation()); 
23.  end for 
∗௤ܧ  .24

௝ ሺξሻ=ܧொ; 

25.  Return ܧ௤∗
௝ ሺξሻ. 

 

B. Selection of the Desired Prediction Step 

For each robot ்ܴ
௝ (j=1,2,…,N), an encirclement point ܧ௤∗

௝ ሺξሻ 
has been determined by Algorithm 1, and its position is labelled 
as ௤ܲ∗

ா,௝ሺξሻ. It shall be noted that this encirclement point is related 
to the prediction step ߦ. Next, an optimized selection of ߦ shall 
be given. An intuitional solution for the selection of ߦ to 
minimize the sum of distances between the robots and their 
respective encirclement points. 

As illustrated in Fig. 1, the sum of distances at 0=ߦ and ߦ= 
are ∑ ห்ܲ௝ ௤ܲ∗

ா,௝ሺ0ሻหே
௝ୀଵ  and ∑ ห்ܲ௝ ௤ܲ∗

ா,௝ሺሻหே
௝ୀଵ , respectively, and 

∑ ห்ܲ௝ ௤ܲ∗
ா,௝ሺ0ሻห ൏ ∑ ห்ܲ௝ ௤ܲ∗

ா,௝ሺሻหே
௝ୀଵ

ே
௝ୀଵ . Actually, the case with 

்ܴ shall result in a lengthy execution time of the robot 0=ߦ
ଶ due 

to ห ்ܲ
ଶ
௤ܲ∗
ா,ଶሺ0ሻห ൐ ห ்ܲ

ଶ
௤ܲ∗
ா,ଶሺሻห; furthermore, it also leads to a 

waste of other robots’ resources as  ห ்ܲ
ଶ
௤ܲ∗
ா,ଶሺ0ሻห  is too long 

compared with  ห ்ܲ
ଵ
௤ܲ∗
ா,ଵሺ0ሻห and  ห ்ܲ

ଷ
௤ܲ∗
ா,ଷሺ0ሻห . To solve this 

problem, the variance V(ߦ) to better characterize the distances 



 

between the robots and their respective desired encirclement 
points is introduced, which is given in equation (2).  

ܸሺξሻ ൌ
ଵ

ே
ሺ∑ ሺห்ܲ௝ ௤ܲ∗

ா,௝ሺξሻหே
௝ୀଵ െ

ଵ

ே
∑ ห்ܲ௝ ௤ܲ∗

ா,௝ሺξሻหே
௝ୀଵ ሻଶ)      (2) 
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Fig. 1. The illustration of encirclement points corresponding to different ߦ in a 
three-robot scenario. 

Take V(ߦ) as the selection criteria,  the optimal ߦ* can be 
solved by the equation (3), where  f(ߦ)= ekߦ is a deviation 
weighting function related to the prediction step ߦ with 
f(0)=1,where k=0.05. f(ߦ) is used to reflect the inaccuracy of 
target prediction, and it increases as ߦ becomes larger.  

C. Shrinking Algorithm 

When the distances of each pursuit robot with the target 
ห்ܲ௝ ்ܲ

ீห(j=1,2,…,N) are no more than k1ρ, it means that each 

robot has arrived at the vicinity of the target. For each robot ்ܴ
௝ , 

based on the line from this robot to the target, we divided other 
robots into two sets: ௟

௝ and ௥
௝ , which correspond to the left 

and right sides of the robot ்ܴ
௝ , respectively. According to 

angles formed by ்ܲீ்ܲఫሬሬሬሬሬሬሬሬሬሬԦ and the direction from the target to the 
robots in ௟

௝, we obtain the minimal and maximum left angles 
หߠ௠௜௡

௟ ห and 	|ߠ௠௔௫௟ |. 
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Similarly, the minimal and maximum right angles |ߠ௠௜௡
௥ | 

and |ߠ௠௔௫௥ | formed by ்ܴ
௝ , ்ܴ

ீ , and the robots in ௥
௝  are also 

acquired, which are given as follows. 
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              (5) 

If the condition |ߠ௠௔௫௥ | ൅ ௠௔௫௟ߠ| | ൒ ௧௛ߠ , where ߠ௧௛  is a 
given threshold by experience. In this case, the robot ்ܴ

௝  will 
shrink to capture the target. Intuitively, the pursuit robots may 
move towards the target directly, however, this solution may 
make the target to escape the ring of encirclement easily due to 
a larger encirclement. On the basis of the direction from the 
robot to the target, a reasonable deviation is required. Fig. 2 
illustrates the shrinking strategy. It is seen that based on ߠ௠௜௡

௥  
and ߠ௠௜௡

௟ , a better idea for the robot ்ܴ
௝  is to deviate to the right. 

From the smoothness improvement of the robot motion 
perspective, an allowance interval for angle adjustment ࣂ෡ ൌ

,෠௠௜௡ߠൣ ෠௠௔௫൧ߠ ൌ ሾ
ଷ଺଴°

ே
,ݓ–	

ଷ଺଴°

ே
	൅ ሿݓ  is defined, where ݓ	  is 

given empirically. To better pursue the target for the whole 
robotic system and prevent the target from escaping the ring of 
encirclement, when the larger the minimal left and right angles 
formed by ்ܴ

௝ ,  ்ܴ
ீ, and other robots deviate the interval ࣂ෡, the 

more adjustment the robot requires. 
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Fig. 2. The shrinking strategy. 

ξ∗ ൌ argmin
ஞ∈ሾ଴,଺ሿ

ܸሺξሻ ൌ argmin
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ሺห்ܲ௝ ௤ܲ
ாሺξሻห ൅ ∑ ห ்ܲ

௡
ܲ
ாሺξሻหே

௡ୀଵ,௡ஷ௝ ሻ                   (3)



 

We denote with the deviation angle ߚ. The sign of ߚ  is 
decided based on the influences from other robots in the sets ௟

௝ 
and ௥

௝ , and it has a negative sign when the left robots have a 
larger influence than the right robots. Its magnitude is 
calculated as follows, where ݇ଶ is a given constant. 

|ߚ| ൌ 

ە
ۖ
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        (6) 

Thus, the next moving direction of the robot ்ܴ
௝  is given by 
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III. SIMULATION 

A team of pursuit robots with the proposed approach are 
required to hunt an intelligent mobile target. They have the same 
physical parameters, and the radius, maximum sensing range, 
and maximum step size are 0.5, 6, 0.3, respectively. The 
parameters of the proposed approach are ρ=4, k1=1.5, k2=2, and 
Dstop=1.3. 

Simulation 1 adopts four robots ்ܴ
௝  (j=1,2,…,N) to pursue 

the target ்ܴ
ீ. The motion snapshots of robots are shown in Fig. 

3. Initially, only the robot ்ܴ
ଵ  can detect the target. The target 

tries to escape toward the right before it detects the robot ்ܴ
ଷ, 

which is shown in Fig. 3(b). After it finds this robot, it 
intelligently changes its moving direction (see Fig. 3(c)). Finally, 
after the efforts of all robots, the target is smoothly captured, as 
shown in Fig. 3(d). 

Simulation 2 considers a three-robot hunting scenario in an 
obstacles environment. The trajectories of all robots and the 
target are shown in Fig. 4, where their initial positions are 
expressed by S1-S3, and ST, respectively. The simulation result 
demonstrates that the proposed approach can achieve effective 
coordination among the pursuit robots by reasonable 
arrangement of encirclement points around the target. 
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Fig. 4. The result of simulation 2. 

Simulation 3 is used to testify the anti-disturbance capability 
of the proposed approach. The Fig. 5 depicts the simulation 
results under the same conditions of simulation 1. It is seen that 
when the target arrives at the position shown in Fig. 5(b), a 
sudden interference is exerted on the target, and it is moved 
manually to a new position (see Fig. 5(c)). In this case, the robots 
make timely adjustment to cope with this emergency. Finally, 
the target is captured, as illustrated in Fig. 5(d). 

1
TR

2
TR

3
TR

4
TR

G
TR

      

1
TR

2
TR

3
TR

4
TR

G
TR

 
(a)                                                                               (b) 

1
TR

2
TR

3
TR

4
TR

G
TR

      

1
TR

2
TR

3
TR

4
TR

G
TR

 
(c)                                                                               (d) 

Fig. 3. The snapshots of simulation 1. 



 

Simulation 4 is conducted with a faster target, and its 
maximum step size is 30 percent higher than that of robots. The 
trajectories of the robots and the target are depicted in Figs. 6(a) 
and 6(b), and the task is completed smoothly. Clearly, the higher 
the target speed is, the larger the possibility of the target being 
out of the encirclement is. However, it may be compensated to 
some extent by the coordination of the robots. 

As mentioned above, Existing approaches based on current 
position of the target [4][6][7][8] face the problem with an 
increased possibility of the target being out of the robots 
encirclement, while the approaches with target prediction 
[10][11] are lack of adaptability. Simulation 5 is conducted 
under the environment of simulation 1, where the robot ்ܴ

ଷ took 
different initial positions by adjusting their x-coordinates. Fig. 7 
gives the comparisons of the proposed approach with the 
hunting approaches with 3 ,1 ,0=ߦ. The approach with 0=ߦ is 
based on current position of the target, while the approach with 
-correspond to target prediction with fixed next 1 3=ߦ and 1=ߦ
step and next 3-step, respectively. Both these four approaches 
fulfill the task, and the proposed approach(ߦ=ߦ*) achieves a 

shorter task execution time. From all the simulations we have 
conducted, the proposed approach is considered as effective. 
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Fig. 7. The comparisons of different proposed approaches. 
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Fig. 5. The snapshots of simulation 3 where the target is moved manually to a new position. 
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Fig. 6. The simulation 4 with a faster target. 



 

IV. CONCLUSION 

This paper proposes a cooperative multi-robot hunting 
approach based on adaptive optimization of target prediction 
step where a set of optimal encirclement points for pursuit robots 
are generated, which guarantees that the task is fulfilled 
effectively. Simulation results show the effectiveness of the 
proposed approach. 
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