
Research on Autonomous Maneuvering Decision of UCAV Based on
Deep Reinforcement Learning

Yesheng Zhang1, Wei Zu2, Yang Gao3, Hongxing Chang4

1. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 101408, China

E-mail: zhangyesheng2015@ia.ac.cn
2. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

E-mail: wei.zu@ia.ac.cn
3. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

E-mail: yang.gao@ia.ac.cn
4. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

E-mail: hongxing.chang@ia.ac.cn

Abstract: In order to improve the intelligent level of UCAV in one-to-one air combat, an autonomous maneuvering de-
cision algorithm based on deep reinforcement learning is proposed. UCAV learns strategies by sensing the environment,
performing maneuvering actions, and getting feedback. In this way, we can avoid the limitations of existing theories and
human operations. Firstly an environment is modeled to simulate the real-time situation of air combat. Then a situation
assessment method based on Energy-Maneuverability theory is utilized to design the reward functions. Finally model
based on deep reinforcement learning is created for UCAV to learn strategies to gain the advantage for the opponent.

Key Words: Air Combat, Autonomous Maneuvering Decision, Deep Reinforcement Learning

1 INTRODUCTION

Unmanned combat aerial vehicle(UCAV) is a kind of un-
manned aerial vehicle(UAV) that usually carries kinds of
weapons and performs combat missions. Normal UAV has
a lot of good characteristics such as high mobility, great
flying height, excellent stealth ability so that it can car-
ry out battlefield investigation, monitoring tasks with less
casualties and minimal cost. With the rapid developmen-
t of control engineering technology, electronic technology
and aviation technology, UAV has got better endurance, im-
proved performance and more powerful combat capability.
UCAV paricipates in more and more combat missions and
becomes an important force in air combat.
A lot of autonomous maneuvering decision algorithms
have been proposed and can be divided into two categories.
One category includes traditional algorithms such as d-
ifferential game algorithm[1–3], rule-based algorithm[4,
5] and matrix counterrmeasure algorithm[6], while an-
other category is intelligent algorithms including neural
network[7, 8], genetic algorithm[9], particle swarm op-
timization algorithm[10] and reinforcement learning[11].
The traditional algorithms consider the air combat prob-
lem as a particular mathematical model and can not entirety
simulate the air combat environment. The intelligent algo-
rithms either need lots of training data and time, or cant
meet real-time requirements.
In this paper, we create an air combat simulation environ-
ment and train an end-to-end neural network based on deep
reinforcement learning to realize real-time autonomous

maneuvering decision.

2 DEEP REINFORCEMENT LEARNING

2.1 Q Learning
As reinforcement learning methods have been successfully
used to solve many difficult tasks, and work very well, we
consider to apply deep reinforcement learning in air com-
bat field. Different from normal reinforcement learning,
deep reinforcement learning use deep neural networks to
approximate the value function, policy, and model in nor-
mal reinforcement learning. Deep neural network can ap-
proximate non-linear function very well to achieve reason-
able model, which is the autonomous maneuvering deci-
sion we need.
There are some symbols will be used in this paper, such as
follows:
1. State s: At any time, State s is the representation of the
environment in which the agent is located, for example, the
entire game screen, or information that has been abstracted
as a location, direction, obstacle location, and so on. In
one-to-one air combat, State s is combined by the state of
red UCAV sr and the state of blue UCAV sb, while the
red UCAV represents our side and the blue UCAV is the
opponent.
2. Action a: In each state, the agent can take Action ai from
Action set A. For example, accelerating, slowing down,
turning left or right, etc. After taking an action, agent will
go forward to the next state. To the UCAV, the transition
of states follows flight dynamics equation according to the
chosen action ai.

3. Reward r: Every time reaching a new state, the agent
is likely to receive a feedback called reward.For example,
being attacked will receive a negative reward, and reaching
advantageous situation will receive a positive reward.
4. Policy P : P is the strategy about how to choose the ac-
tion. We hope to learn a strategy that can make the agent
get the maximum cumulative reward. In deep reinforce-
ment learning, P is represented by an end-to-end neural
network.
A reinforcement learning mission used to be defined as a
Markov Decision Process (MDP), which repeatedly trans-
forms between state, action, reward, state. . . until the end
of the mission.[12] So we get the trace

< s0, a0, r1, s1, a1, r2...sn, an, rn+1 >.
The goal is to learn a good strategy that maximize the dis-
counted future reward R. At the state s0, total reward R0

can be caculated as formula (1).

R0 = r1 + γr2 + γ2r3 + · · ·+ γnrn+1 = r1 + γR1 (1)

In a kind of reinforcement learning called Q learning, Q
function Q(s, a) is defined to represent the maximum R
when action a is taken at the state s. With the help of
Bellman Equation, we can iteratively update the Q value
constantly. If the Q function is accurate enough and envi-
ronment is definitely set, we only need to take the strategy
to choose the action that have the maximum Q value.
In the traditional Q Learning, the Q value is stored in a
Q table, the column of the table represents all possible s-
tates while the row represents all possible actions. This
method can be a good solution for some problems, espe-
cially the states are few and can be represented by a short
tensor. But in reality, the number of states is always too
large and sometime the states are continuous and can not
be represented discretely.

2.2 Deep Q Learning
As we know, neural network can approximate the non-
linear function very well. We can replace Q table with
neural network, which is also known as Q network. Re-
searchers from DeepMind Technologies have trained a con-
volution neural network based on Q-learning to play Atari
games and make a great success.

Figure 1: Basic Structure of Deep Q Learning

We take all kinds of actions, receive corresponding reward,
then train the Q Network constantly. After the Q Network
is trained enough to approximate the Q function, we can

take some strategies to choose action through the Q value,
such as ε-greedy algorithm and softmax algorithm.

3 AIR COMBAT ENVIRONMENT

One-to-one air combat is only considered in this paper and
to each UCAV, the state of either itself or the opponent is
available.[13]

3.1 State of UCAV
The state of UCAV is represented by a tensor
[v ψ θ ϕ x y z]. [xyz] is the position of UCAV, x
represents the North coordinate, y represents the East
coordinate, and z represents the height of UCAV. Except
the position, there are some more elements: v represents
the velocity, ψ represents yaw angle, θ represents pitch
angle, and ϕ represents roll angle.

3.2 Flight Dynamics Equation
The state of UCAV changes according to its vertical over-
load Nx, tangential overload Nz and roll angle ϕ.
The UCAV dynamic characteristics follow the differential
equations shown as formula (2).

v̇ = g(Nx − sin θ)

ψ̇ =
gNz sinϕ

v cos θ

θ̇ =
g

v
(Nz cosϕ− cos θ)

ẋ = v cos θ cosψ

ẏ = v cos θ sinψ

ż = v sin θ

(2)

Given the input [Nx Nz ϕ] and the time step ∆t, we can
easily calculate the next state of UCAV using the Runge-
Kutta method, commomly RK4 method.

3.3 Actions
There are seven basic kinds of maneuvering actions
in NASA standard[14], which are accelerating, slowing
down, uniform flight, turning left, turning right, climbing
and diving. Each maneuvering action consists of different
combination of the three maneuvering inputs: Nx, Nz and
ϕ.

Table 1: Maneuvering Inputs of Actions

Actions
Maneuvering Inputs

Nx Nz ϕ

Uniform sin θ cos θ 0
Accelerating sin θ + 3 cos θ 0
Slowing down sin θ − 3 cos θ 0
Climbing sin θ cos θ + 5 0
Diving sin θ cos θ − 5 0
Turning left sin θ cos θ + 3 −π/3

Turning right sin θ cos θ + 3 π/3

3.4 Rewards
Rewards play an important role in deep reinforcemen-
t learning. Reasonable rewards lead the Q Network to
choose better actions while training iteratively. More di-
rectly, the loss function is calculated from the rewards.

Energy-Maneuverability theory is commonly utilized in air
combat. Energy consists of kinetic energy and potential
energy of the aircraft. UCAV takes maneuvering actions
to achieve the transformation of its kinetic and potential
energy, that is, the speed and height. Of course in the
process of turning energy will get lost, part of which can
be obtained from the engine power supplement. Energy-
Maneuverability theory, can be understood as a series of
tactical maneuver to manage its own energy, reasonable to
adjust the speed and the relationship between the enemy
and the position to gradually obtain the advantages of the
state of energy, and ultimately into the advantages of the lo-
cation relationship and obtain the appropriate angle of fire.
So we design the rewards mainly considering the speed,
height and the relative positional relationships.

(a) Rewards of ∆h (b) Rewards of Own Height

Figure 2: Rewards of Height

Normally, UCAV of our side is marked as red while the op-
ponent is blue, so the difference of height ∆h = hr − hb.
If ∆h is between 0 to 2000m, we can gain corresponding
positive rewards, otherwise negative reward. In particular,
if the height of the red UCAV is below 300m, we gain neg-
ative rewards. That is how we can prevent the UCAV flying
too low to stall and crash.

(a) Rewards of ∆v (b) Rewards of Own Velocity

Figure 3: Rewards of Velocity

Similar to the height, ∆v = vr − vb. If ∆v is greater
than 0, we can gain reward +1 per 100m/s, vice versa. If
the velocity of the red UCAV is lower than 50m/s, we gain
reward -1 per 100m/s. Thus we can warn the UCAV to care
about the velocity to keep safe.
Figure 4 shows the relative positional relationships be-
tween red and blue UCAV. qr is deviation angle, represents
the angle between the velocity direction of the red UCAV
and the direction of the connection of centroids of the red
and blue UCAV; and qb is disjunctive angle, represents the
angle between the velocity direction of the blue UCAV and
the direction of the connection of centroids of the red and

Figure 4: Relative Positional Relationship

blue UCAV. Both qr and qb can be calculated using the state
elements of the red and blue UCAV as formula (3).

d =
√
(xr − xb)2 + (yr − yb)2 + (zr − zb)2

qr = arccos{[(xb − xr) cosψr cos θr+

(yb − yr) sinψr cos θr + (zb − zr) sin θr]/d}
qb = arccos{[(xr − xb) cosψb cos θb+

(yr − yb) sinψb cos θb + (zr − zb) sin θb]/d}

(3)

(a) Rewards of qr (b) Rewards of qb

Figure 5: Rewards of Relative Positional Relationship

Both qr and qb vary between 0 to π. When qr equals to 0,
red UCAV is in a good position to attack. While qr varies
from 0 to π, position gets worse and worse. When qb e-
quals to 0, blue UCAV is in a bad position and easy to be
attacked. While qb varies from 0 to π, position gets better
and more threatening to our red UCAV. So we convert both
of them from angle 0 to π to rewards 1 to -1.
All in all, the total reward is the sum of all the rewards
described above.

4 EXPERIMENTS

4.1 Structure of Deep Q Learning
As we have talked of all the four elements about air com-
bat:
a) state of the UCAV
b) seven different actions
c) rewards
d) Q Network as policy,
we can apply the Deep Q Learning method to our air com-
bat mission.[15–18]
Figure 6 shows the structure of deep Q learning method
applied in air combat. The replay memory is utilized to
store the experience tuples and break the correlation be-
tween consecutive samples.

Figure 6: Structure of DQL in Air Combat

Algorithm 1 Deep Q Learning in Air Combat
1: Initialize replay memory D to capacity N;
2: Initialize Q Network with random weights θ;
3: for episode = 1 → M do
4: Initialize the states of UCAVs on both sides;
5: for t = 1 → T do
6: With probability ε select a random action at

7: otherwise select at = argmaxa Q(st, a; θ)
8: Red UCAV executes action at while blue UCAV tak-

ing some other strategies
9: Calculate the next states st+1 = [sr,t+1, sb,t+1], the

reward rt, and the sign: done
10: if done then
11: break
12: else
13: Store experience (st, at, rt, st+1) in D
14: Sample random minibatch from D
15: Update the Q Network with the sample
16: end if
17: end for
18: if the end condition is fulfilled then
19: return
20: end if
21: end for

When it comes to the detail of our training update rule, we
use the temporal difference error δ based on the Bellman
eqution:

δ = Q(s, a)− (r + γmax
a

Q(s′, a)) (4)

To minimise this error, we will use the Huber loss. The
Huber loss acts like the mean squared error when the error
is small, but like the mean absolute error when the error is
large.

L(δ) =

1

2
δ2 for|δ| ≤ 1

|δ| − 1

2
otherwise.

(5)

In order to prevent overfitting, we define the final loss func-
tion l as formula (6).

l = L(δ) + c||θ||2 (6)

where c is a parameter controlling the level of L2 weight
regularisation.

4.2 Preprocessing and Network Architecture
The different state values have different dimensions, so we
need to preprocess them to a uniform format. Velocity is
divided by 100m/s, the angles are divided by , and the co-
ordinates are divided by 1000m. Now the states are all con-
verted to non-dimensional values. So the final input of the
Q Network is the new tensor combined by converted states
of red and blue UCAV.
Table 2 shows the details of Q network. The hidden layers
are all fully-connected linear layers and consist of 32, 64,
64, 32 rectifier units respectively. The output layer is also
fully-connected linear layer with 7 units which represent
the Q values of different actions.

Table 2: Details of Q Network
layers units number activation func
input 14 -
hidden1 32 ReLU
hidden2 64 ReLU
hidden3 64 ReLU
hidden4 32 ReLU
output 7 -

4.3 Experiment platform
TensorFlow is an open-source deep learning platform de-
veloped by Google. Its easy to use and well performed.
It can also handle complex missions by running on GPUs.
Table3 shows the specific platform we use.

Table 3: Experiment Platform
OS Ubuntu 16.04
CPU i7-6850K
GPU NVIDIA GeForce GTX 1080Ti
Memory 32GB
Platform TensorFlow 1.3.0

4.4 Training Results
a) At first, we set the blue UCAV stable and the red UCAV
attacking from different directions: front, behind, left side
and right side. After each 5 rounds of training, the results
are shown as Figure 7.
In this way, we hope the red UCAV can learn different re-
wards it can get in different positions.
b) Then we set the red UCAV and the blue UCAV flying
oppositely. The red UCAV is under training while the blue
UCAV is flying by constant speed.
As we can see from Figure8, the red UCAV firstly learns
to climb up to gain an advantage of height. But height is
not always the bigger the better as we set in chapter 3.4.
The red UCAV gradually learns to control its height in a
good position. Not only the height, but also the angles are
our goals to learn and important for the UCAV to gain ad-
vantages. Finally, the red UCAV learn to turn around to
fly against to the back of blue UCAV, which is a definitely
advantageous situation.
c) After finishing the designed training above, we let both
the red and blue UCAV take actions through the Q Net-
work, which is also known as self-play. After each 10

(a) Attack from Front (b) Attack from Behind

(c) Attack from Left Side (d) Attack from Right Side

Figure 7: Traning Results Against Stable Blue UCAV

(a) After 50 Episodes (b) After 100 Episodes

(c) After 150 Episodes (d) After 200 Episodes

Figure 8: Training Results Against Uniform Flying Blue
UCAV

episodes of training, we can save the training result. Fig-
ure 9 shows the training results after 100 and 200 episodes.

5 CONCLUSION

In this paper, we successfully apply the deep reinforcement
learning method to one-to-one air combat. We create the
air combat environment, design the rewards functions and
train the neural network to get a reasonable model. After
some man designed training missions, the UCAV can keep
optimizing the neural network by self-play all the time.
Due to the limitation of the machine performance, mainly
the GPU, we limit the air combat in a relatively short dis-
tance. Actually, thanks to the epic approximation ability of
neural network, it’s easy to expand to bigger battlefield or
add more factors like different weapons. Air combat is still

(a) After 100 Episodes (b) After 200 Episodes

Figure 9: Training Results of Self-play

a very complex task, with better the development of deep
learning technology, the UCAV will reach a higher level of
intelligence.

REFERENCES

[1] FU L, WANG X G. Research on Close Air Combat
Modeling of Differential Games for Unmanne Combat
Air Vehicles [J]. Acta Armamentarii, 2012, 10:1210-
1216..

[2] Austin F, Carbone G, Falco M. Automated maneuver-
ing decisions for air-to-air combat [J]. AIAA, 1987:
87-2393.

[3] Guo H, Zhou D Y, Zhang K. Study on UCAV Au-
tonomous Air Combat Maneuvering Decision-Making
[J]. Electronics Optics and Control, 2010, 08:28-32.

[4] Virtanen K, Karelahti J, Raivio T. Modeling air com-
bat by a moving horizon influence diagram game [J].
Journal of Guidance, Control, and Dynamics, 2006,
29(5):1080-1091.

[5] Burgin G H, Sidor L B. Rule-based air combat simula-
tion[R]. Titan systems inc la jolla, 1988.

[6] Zhang Lipeng, Wei Ruixuan, LI Xia, Autonomous Tac-
tical Decision Making of UCAVs in Air combat, in
Electronics Optics & Control, 2012, 19(2):92-96.

[7] ZHU D F, JI F B, GUAN Y Y. Study On Air Com-
bat Tactics Decision-making for the Fourth Generation
Fighters [J]. Command Control and Simulation, 2012,
01:41-43.

[8] ZHONG L, TONG M A, ZHONG W Y. Cooperative
Team Air Combat Decision based on Integration of
Rough Sets and Neural Networks [J]. Fire Control and
Command Control, 2006, 06:881-884.

[9] Lachner R, Breitner M H, Pesch H J. Three-
dimensional air combat: Numerical solution of com-
plex differential games[M]//New trends in dynam-
ic games and applications. Birkh?user Boston, 1995:
165-190.

[10] GU J J, ZHAO J J, LIU W H. Air Combat Maneuver-
ing Decision Framework Based on Game Theory and
Memetic Algorithm [J]. Electronics, Optics and Con-
trol, 2015, 01:20-23.

[11] Li D, Jiang J, Xu H. Reinforcement learning methods
for finding equilibria and tracking evolution paths in
conflicts [C] //Systems, Man and Cybernetics, 2008.
SMC 2008. IEEE International Conference on. IEEE,
2008:3292-3297.

[12] Virtanen K, Raivio T, Hamalainen R P. Modeling pi-
lot’s sequential maneuvering decisions by a multistage
influence diagram[J]. Journal of Guidance, Control,
and Dynamics, 2004, 27(4): 665-677.

[13] Smith R E, Dike B A, Mehra R K, et al. Classifier
systems in combat: two-sided learning of maneuver-
s for advanced fighter aircraft[J]. Computer Methods
in Applied Mechanics and Engineering, 2000, 186(2):
421-437.

[14] Lewis M S, Aiken E W. Piloted Simulation of One-
on-One Helicopter Air Combat at NOE (Nap-of-the-

Earth) Flight Levels [P]. America:ADA160538, 1985-
4.

[15] Moriarty D, Schultz A, Grefenstette J, Evlutionary al-
gorithms for Reinforcement Learning [J]. Journal of
Artificial Intelligence Research, 1999, 11(1):241-276.

[16] Sutton R S, Barto A G. Reinforcement learning: An
introduction[M]. Cambridge: MIT press, 1998.

[17] G. A. Rummery. Problem Solving with Reinforce-
ment Learning. Ph. D. dissertation. Cambridge Univer-
sity, Cambridge, U. K, 1995

[18] Abbeel P, Coates A, Quigley M, et al. An applica-
tion of reinforcement learning to aerobatic helicopter
flight[J]. Advances in neural information processing
systems, 2007, 19: 1.

