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Abstract—In this paper, with the help of controllable active
near-infrared (NIR) lights, we construct near-infrared differential
(NIRD) images. Based on reflection model, NIRD image is
believed to contain the lighting difference between images with
and without active NIR lights. Two main characteristics based on
NIRD images are exploited to conduct spoofing detection. Firstly,
there exist obviously spoofing media around the faces in most
conditions, which reflect incident lights in almost the same way as
the face areas do. We analyze the pixel consistency between face
and non-face areas and employ context clues to distinguish the
spoofing images. Then, lighting feature, extracted only from face
areas, is utilized to detect spoofing attacks of deliberately cropped
medium. Merging the two features, we present a face spoofing
detection system. In several experiments on self collected datasets
with different spoofing media, we demonstrate the excellent
results and robustness of proposed method.

I. INTRODUCTION

Face recognition systems are being widely used in a variety
of applications. One of the main problems is that the existing
systems are vulnerable to face spoofing attacks. To defend
against spoofing attacks conducted by photos, videos or 3D
masks, face spoofing detection has received increasing interest
in the recent years. Many anti-spoofing methods have been
proposed.

Most face anti-spoofing techniques utilize visible light (VIS)
images, and they can be roughly classified into three main
categories depending on the employed features. The first
category extracts texture information. Many methods have
been proposed to analyze reflectance [1], [2], [3], power
spectrum [4], image banding effects [5], multi-scale feature [6],
[7], blurriness [2], [7] and other texture clues [8], [9]. They
can achieve satisfying results, but high quality photos may
fool this kind of feature. The second category uses motion
information. Motion based methods mainly deals with human
physiological response or human reaction movements, such as
eye blinking [5], [10], human motion [5] and head rotation [11].
They use the relative features across frames, but are vulnerable
to replay attacks. Approaches in the third category utilize other
image clues such as 3D depth, multi-modal knowledge [12]
and hybrid model of several features [5], [11], [13].

However, most existing methods are mainly concerned about
facial texture and motion analysis of VIS spectrum, which is
sensitive to the change of illumination. While face recognition
of near-infrared (NIR) spectrum [14], [15] has been discussed

a lot before and several datasets [15] are concerned about VIS
and NIR images, there are only a few face spoofing detection
methods dealing with infrared images. Kim et al. [1] exploits
the reflectance disparity between VIR and VIS illuminations
and separates masked fake faces. Sun et al. [12] analyzes
correlation between thermal IR (TIR) and VIS spectrum faces
to improve liveness detection ability. It is known that infrared
components also exist in some light sources such as sunshine;
sometimes when capturing NIR images, people have to make
efforts to minimize environmental lighting under controlled
illumination [14], which is not convenient. Even for indoor
applications, various light conditions can drastically change
appearances of NIR images with different spoofing media.

Moreover, context information has only drawn a little
attention in the previous works. Pan et al. [10] compares
the difference between reference scene images and input
ones, and checks whether background scenes change suddenly.
Nevertheless, reference scene images are sometimes difficult to
obtain, and the method only works for a stationary camera. Yan
et al. [5] shows that motion of face and background has high
consistency for fake facial photos and low for genuine ones.
Anjos et al. [13] measures motion correlation between face and
background using movement direction. Both Yan and Anjos
only measure overall motion between face and background, and
the methods might be deceived by deliberately recorded videos.
Besides, motion based methods may take a relatively long time
to capture input image sequences. Komulainen et al. [8] detects
the upper-body and the presence of display medium to conduct
spoofing detection. The method is effective, but it could not
work for large spoofing medium of which the boundary is
outside the image, or spoofing medium with weird size that
the descriptor fails to detect.

In this paper, we present a novel spoof detection solution
using active near-infrared lights. We have three main contribu-
tions as follows:

(1) Active NIR lights are used to illuminate faces from
the frontal direction. Using NIR instead of VIS images can
avoid phenomena such as camera saturation, which overcomes
uncontrolled illumination changes and provides suitable images
for reflectance analysis. By turning on and off active near-
infrared lights, we construct near-infrared differential (NIRD)
images to represent face images with active NIR lighting.

(2) Given that most spoofing attacks need a display medium
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Figure 1. Proposed face spoof detection algorithms based on NIRD images.

and some of the non-face areas are shown by the spoofing
medium, we exploit consistency of pixel intensities from face
and non-face areas on the basis of NIRD images. Compared to
other methods based on background consistency, our proposed
methods do not rely on motion analyses or reference scene
images; moreover, human need not to follow additional
instructions.

(3) For deliberately cropped media, we employ lighting
texture analysis to tell this kind of spoofing faces apart. The
additional lighting feature adds robustness to our spoofing
detection system.

II. SYSTEM OVERVIEW

We use a near-infrared spectrum camera with resolution
of 1280× 720 to capture images. On the camera, we mount
one active NIR light-emitting diode (LED) with the central
wavelength of 850 nm to provide frontal lighting. The LED
lighting source has limited power, but for indoor use when the
camera-face distance is from 30 to 80 cm, it is strong enough
to provide clear NIR face images. General framework of our
proposed method is illustrated in Fig.1.

For input NIR images, first of all, we use Viola-Jones
face detector from OpenCV library to locate face regions.
In most conditions, the original NIR images are usually too
dark while NIR images with additional light are too bright.
The abnormal conditions may do harm to the accuracy of
existing face detector, so we adopt a simplified automatic
exposure correction [16] to preprocess the input images, in
which we adopt gamma compression on dark images and
gamma expansion on bright images. After face regions are
detected, images are normalized according to eye locations.

Employing our methods proposed in section III, we can
obtain NIRD images from normalized ones. Utilizing face
regions defined by face detector and a proper proportional
size, we employ an elliptical mask to obtain face areas. The
non-face areas are chosen outside the elliptical mask.

Next, we employ context clues and lighting texture from
NIRD images. For the former, we try to exploit pixel intensity
correlation between face and non-face areas and propose a
consistency measurement. The feature is utilized to detect
whether non-face areas share the same lighting conditions with
face areas. For the latter, to make sure that our proposed method
is robust enough to detect medium cropping or other spoofing
attacks, we analyze the texture information only from face
regions in NIRD images.

Finally, we construct a fusion descriptor based on these
two features and we evaluate Support Vector Machine (SVM)
algorithms on fusion model to make the final decision.

III. MODELING OF NIRD IMAGES

A. Reflectance Analysis

In our case, we make several assumptions about light sources
in our experiments:

(a) There is one common fluorescent lamp as the main light
source near the human, denoted as I1

(b) There is an active near-infrared light to the front of the
human, the light may decay sharply at a long distance, denoted
as I2

(c) The lighting component from other remote light sources,
including computer screen and natural light, is denoted as
ambient lighting Ia

According to the Lambertian reflectance model[17], the
light reflectance can be decomposed in to diffuse reflection
and specular reflection. In other words, the intensity at
position x of a face image I is described theoretically as
I(x) = Ia +

∑
i fi(d) · (Ii,d(x) + Ii,s(x)), where diffuse and

specular reflection of the ith light are denoted as Ii,d and Ii,s
respectively. fi(d) is light attenuation function at distance d.
According to assumptions, attenuation function of NIR light
f2(d) falls off quickly.

We capture two kinds of images sequentially: original NIR
images without NIR lighting (denoted as NIR images) and
images with active NIR lighting (denoted as NIRL images).
For the former, the image intensities consist of Ia, I1,d and
I1,s, and for the latter, they also have I2,d and I2,s components,
as shown in formula (1):

I = Ia + f(d1) · (I1,d + I1,s) ,

I(L) = Ia + f(d1) · (I1,d + I1,s) + f(d2) · (I2,d + I2,s) .
(1)

When preparing experiment data, we are trying to shorten
the time between turning on and off the active NIR lights. It
can be assumed that human head poses do not change much
in the process, which makes the diffuse and specular reflection
of fluorescent lamp I1 stay almost the same. The unchanged
head poses also lead to the unchanged light attenuation values.
Moreover, the ambient lighting Ia is unrelated to active NIR
lights and can be regarded as a constant number.

By making use of normalized face images generated by
methods in section II, we can ensure as accurate pixel
correspondence as we can. On the other hand, near-infrared
lighting also makes our methods more convincing, which will
be inspected in detail in section III-B.

By subtracting I from I(L) in formula (1), the impact by
active NIR light can be properly calculated. Thus, we can
calculate the near-infrared differential (NIRD) images by:

I(NIRD) = I(L) − I = f(d2) · (I2,d + I2,s) . (2)
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Figure 2. The figure illustrates images and histograms. The 1st, 3rd, 5th, 7th
columns show NIRL, NIRD, VISL, VISD images respectively, and columns
with even number show the corresponding histograms. The first two rows are
genuine faces and the last two rows are spoofing faces.

B. Active NIR versus VIS Images

It has already been reported in [14] that the impact caused
by visible ambient lighting can be reduced a lot by using
NIR imaging systems, even if there are visible light lamps on
left or right side. NIR spectrum can make images into good
illumination condition, in which images have suitable pixel
intensities, i.e., good contrast and not saturated. In this paper,
we use active NIR light from the frontal direction to overcome
possible uncontrolled illumination changes, since unsaturated
image pixels are critical to our algorithm and NIRD images,
which will be shown later.

According to our assumption, the light source I1 is a
typical “cool white” fluorescent lamp, which contains plenty
of visible light ray components with only a few near-infrared
components [18]. For VIS images, the intensities of all pixels
can be higher than those in NIR images. In many situations,
when additional light (I2 in our assumption) is turned on, the
VIS pixel intensities are often saturated. In other words, the
input intensity signal strength exceeds the limit of camera
sensors, which causes camera saturation and blooming [19].
So, the formula (2) might no longer be correct for VIS images
and the lighting difference made by I2 could not be separated
properly. On the other hand, given that infrared component
of I1 is relative lower, NIR images are more likely to be
unsaturated and have good pixel contrast.

To verify these analyses, besides NIR and NIRL images,
we capture visible light images (denoted as VIS images) and
VIS images with additional light (denoted as VISL images).
The lighting images and differential images of both spectra,
together with their corresponding histograms are illustrated in
Fig.2.

It can be clearly noted that some of the pixel intensities
approach maximum value in VISL images; in contrast, NIRL
images are usually unsaturated. Moreover, most of the pixel
intensities in VIS differential images are apparently lower
than those in NIR differential images. This phenomenon just
validates our analysis before. NIR images are indispensable
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Figure 3. Examples of face and non-face areas, and their corresponding
histograms. The first two rows demonstrate genuine faces and the last two
rows indicate spoofing faces. The second and the fourth columns are histograms
of column one and column three.

for our proposed algorithms. The detailed results of using VIS
spectrum images are shown in section V-C.

IV. FUSION FEATURE

A. Context Clue

Since that spoofing attacks need a display medium, there
exist some “background” pixels around faces which are actually
displayed in spoofing media. They do not belong to the true
background, and we call them non-face areas in spoofing
images in contrast with face areas. In genuine images, non-
face pixels belong to backgrounds.

For pixels in the background, the distances are much longer
than those in face areas; light attenuation function may reduce
rapidly so we believe pixel intensities are much smaller than
those in face areas. In other words, the pixels in the background
will not suffer from great changes due to active NIR light. In
spoofing images, some non-face areas have similar reflecting
appearance to face areas, especially when they are close to
each other. But in genuine images, non-face pixels are quite
distinct from pixels in face areas.

Above all, we exploit different distribution of pixel intensities
between face and non-face areas. The correlation between pixels
in different areas is quite robust and even if background scene is
combined with photos or photos are placed close to the camera,
the consistency of pixel intensity property keeps still in spoofing
images. We use entropy consistency to obtain spoofing clues. If
pixels in face and non-face have high consistency, we consider
the input face as fake one; otherwise, if the consistency is low,
maybe there is no spoofing medium around faces, indicating
that the input face may be a genuine one.

The histograms of both face and non-face areas are calculated.
For the numbers of pixels may not be equal, the two histograms
are normalized to make sure `1-normalization of each histogram
is equal to 1. They are illustrated in Fig.3, denoted as Hface

and Hnonface respectively. Fig.3 demonstrates that shapes of
real faces are not ideal ellipse and we use a relative larger
ellipse mask. Thus our ellipse face areas may contain some
pixels which belong to non-face areas. It is not a good signal
for our consistency calculation. To handle this problem, we



construct a third histogram Hdiff by subtracting Hnonface

from Hface:

Hdiff (i) = max(Hface(i)−Hnonface(i), 0) , (3)

where i is an element of all intensity values and H(i) is
histogram value of intensity i.

Now we define a three-dimension context consistency feature
as the concatenation of three entropies of the three histograms:
Hdiff , Hface and Hnonface.

The entropy of histogram H is defined as entropy(H) =
−
∑

(H(i). ∗ logH(i)), and entropy of zero value is defined
as 0.

Sometimes, the coat collar, long hair, hat and other decoration
may affect the histogram of non-face areas severely. They have
approximate the same distance as genuine faces, and they can
reflect the active light just as the spoofing medium dose, which
may confuse our proposed methods. Luckily, this interference
around the faces is not as uniform as the spoofing medium
and it usually does not surround human faces in all directions.

To deal with problems like this, we use part based model and
bisect the whole image equally along horizontal and vertical
directions. Thus the image is decomposed into four regions.
Then, we extract context consistency feature individually in
each part. One major drawback of the decomposition is that
some discriminative information carried by the whole image
may be scattered and lost in the process. Consequently, we
also employ the whole face image as one big part and obtain
the same feature from it.

In this way, there are five parts in total, including four splitted
regions and one whole image, in which the context consistency
feature is extracted individually. Finally, the features are
concatenated together as context clues to the input NIRD face
image.

B. Lighting Texture

Proposed context clues are robust where the spoofing medium
is hidden and the boundary could not be detected directly. But if
the medium is deliberately cropped and only face areas remain,
or there is something around genuine faces in all directions,
context clues may not work as desired. So, another feature is
needed to assist, which should be extracted only from face
areas to handle troublesome situations. The lighting texture is
examined in this section.

Given that distance between face and camera is relative
longer than the depth of genuine faces and warped images, the
attenuation values for all pixels in face areas stay approximately
the same or they change slowly and smoothly. The attenuation
values are considered to be a constant number and the
formula (2) can be simplified as:

I(NIRD)(x) = kd · ωd(x) · E + ks · ωs(x) · E . (4)

In formula (4), E is the light intensity and it is believed
to be constant at all pixels. ωd(x) and ωs(x) are geometric

factors. kd and ks are weighting factors for diffuse and specular
components respectively, which contain constant parameters
such as attenuation values and material parameters. Material
parameters are related to materials, pixel position and angle of
incident light, but for opaque material and frontal lighting, they
are usually regraded as constant, too [3], [17]. Based on NIRD
images, we provide a brief analysis of reflectance differences
in genuine faces and three types of spoofing medium studied
in this paper:

1) Genuine faces: Normally, specular highlights are located
around several specific locations, such as nose tips,
cheeks, forehead and glasses. The geometric factors are
quite sophisticated, so diffuse reflection varies from areas
to areas, and shades might exist on NIRD images.

2) Photos printed on common A4 paper: Specular re-
flectance is quite weak and there are few specular
highlights. It has been reported that printing process
probably reduce image contrast [19]. Even if they are
warped, the surface normals are smooth, so they may
obtain gradually changing diffuse reflection.

3) Photos printed on resin-coated (RC) paper: They have
smooth and highly polished surfaces, and there might
be more specular reflectance components. Moreover, the
glossy ink layer on RC papers makes the surface scatters
a lot in NIR spectrum and enhance diffuse reflection.

4) Photos displayed on tablet screen: The screen could not
be bent and has no geometric distortion, so the surface
normals are similar for all pixels. Specular reflection
usually appears because of the screen. It emits lights
itself and diffuse components may be affected.

As analyzed above, differences exist in both diffuse and
specular components between genuine and spoofing faces.
Specular reflectance can contribute the large pixel intensities
only in a small area and raise the deviation of the whole
image, while diffuse reflectance may enlarge pixel intensities
on a large scale and reduce some edge information. So the
differences will lead to various pixel intensities dramatically
in NIRD face areas, and the spoofing images are likely to
show quite a different intensity distribution compared to that
of genuine ones.

Many statistics figures [2] have been explored to conduct
spoofing detection and they have shown excellent results. In this
paper, after pixels in face areas are collected, three statistical
figures are employed to represent the intensity distribution:
i) the mean intensities of face area pixels µ, ii) the standard
deviation σ, and iii) the skewness γ. The three figures contain
statistical distribution of lighting textures, forming texture clues
of three dimensions for face areas.

V. EXPERIMENT

A. Dataset Overview

Due to the characteristic of proposed method, it is quite
hard to employ it to current popular datasets. In this paper, we
utilize several self-collected anti-spoofing datasets on different
spoofing media to verify our proposed method. NIR images and



Figure 4. Some samples in our NIRD image datasets. Images from top row
to down are genuine faces, A4 paper photos, RC paper photos and tablet
screen photos respectively. The first and third columns are NIR images, and
the second and fourth columns are NIRL images.

Table I
THE NUMBER OF IMAGE PAIRS IN OUR DATASET.

Genuine A4 Spoof RC Spoof Tablet Spoof
NIR pairs 1099 1092 375 796
VIS pairs 1106 1140 426 791

NIRL images are sequentially taken with active NIR light off
and on. For genuine faces, all people in datasets are allowed to
change their head poses freely. If some subjects wear glasses,
we use their photos with glasses as attacking images.

We use three methods to conduct spoofing attacks: high-
quality color photos printed on resin-coated (RC) papers, photos
printed on A4 papers and photos displayed on the tablet screen.
In all printed spoofing attacks, photos are allowed to be warped
freely. To demonstrate the benefit of active near-infrared images
in our proposed algorithm, besides NIR and NIRL images, we
also capture VIS and VISL images using the same spoofing
media.

There are 30 subjects taking part and there are 13650 images
(6825 pairs) with detected face regions in total, as listed in
Table I. The images in which faces cannot be located are
discarded, and the situation often appears for NIR images and
RC spoofing images. Due to the space limitations, normal
visible light images are not illustrated and some gray-scale
images of near-infrared spectrum are shown in Fig.4.

B. Baseline Methods

As far as we know, there are no algorithms concerned
on processing differential images for spoofing detection. We
conduct some texture based methods on collected images as
comparisons.

According to recent research [20], although LBP based
methods are proposed relatively a long time before, they
are still powerful local texture descriptors in terms of face
spoofing detection such as CoA-LBP, and most of them have
public access code [20], which makes it much easier and
more convincing to make comparisons. Besides, multiscale
local binary pattern (MsLBP) and related methods draw much
attention in previous works [6] [7], we combine MsLBP [6]
and multi color space [9] as one baseline method, which works

better than merely CoA-LBP in our dataset. Besides, Lee et
al. [4] also presents a method based on entropy using power
spectra, and it is chosen as another baseline method.

C. Results and Analysis

In this section, a fifteen-fold cross-validation SVM classifier,
with images from twenty six subjects as training sets and
images from the other four subjects as testing sets, is applied
for evaluation for both proposed methods and baseline methods.
Mean half total error rate (HTER) and mean equal error rate
(EER) are used to evaluate the performance.

Each method is examined on three kinds of spoofing media
(A4, RC and tablet spoofing), and we also test each method on
images of all three media. Numerical results for NIR spectrum
are shown in Table II. As mentioned before, to verify the meirt
of using NIR images, the same experiments are performed on
VIS images and the results are shown in Table III.

Table II
COMPARISONS FOR EER (%) AND HTER (%) ON NIR DATASET.

Method A4 Spoof RC Spoof Tablet Spoof ALL
EER HTER EER HTER EER HTER EER HTER

Proposed 1.08 3.31 0.25 5.49 0.11 0.25 1.20 2.96
MsLBP[6] 1.36 3.72 0.33 4.84 0.29 0.95 3.04 6.87
Entropy[4] 6.13 11.93 4.81 8.92 2.62 5.96 4.76 10.23

In Table II, we notice that when spoofing images of all
spoofing media are mixed up together, various texture features
might confuse the final classifier, leading to relative poor
performances. It occurs to both two baseline methods, but
our proposed method suffers less from it.

One reason might be that we adopt several ways for hiding
the display medium and fooling the system mentioned in [8]
when collecting images, such as combining background scenes
into spoofing photos and making photos close to the sensor.
With proper camera focus, images captured from spoofing faces
may visually look similar to those from genuine ones, which
fools existing methods such as MsLBP and entropy of power
spectra to some extent. Fortunately, even if the media are hidden
or cropped, the spoofing faces still rely on spoofing media,
and reflectance information is different from genuine faces,
especially in NIRD images. We employ reflectance consistency
and lighting clues to conduct spoofing detection and it performs
excellently on NIR images of all spoofing media.

Table III
COMPARISONS FOR EER (%) AND HTER (%) ON VIS DATASET.

Method A4 Spoof RC Spoof Tablet Spoof ALL
EER HTER EER HTER EER HTER EER HTER

Proposed 4.81 13.23 0.29 17.70 0.08 0.52 4.01 10.07
MsLBP[6] 0.82 3.59 6.16 9.87 0.10 0.61 1.99 5.04
Entropy[4] 6.96 18.13 22.28 16.63 5.03 11.45 8.52 16.03

For all three spoofing media of both spectra, some results
seem to be regular. Taking tablet spoofing images for examples,
for a given spectrum, ERR and HTER values are always the
smallest for every method. It is related to the property of
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tablet itself. The tablet screen emits VIS lighting rather than
NIR lighting. The images shown by tablet screen may not
be influenced a lot by the addition active light. Except the
obvious highlights caused by screens, the other parts have
similar appearances because of flat and unwarped screens.
These objective reasons make it easier to distinguish tablet
spoofing faces apart.

Comparing the results of both VIS and NIR spectra from
Table II and Table III, proposed method behaves quite different.
As mentioned earlier, the results of NIR spectrum are much
better than those of VIS spectrum. As for power spectra
entropy [4], the same thing happens and most of the numerical
results deteriorate quickly with VIS images. Entropy based
methods are just too vulnerable when dealing with color images
with unconstrained VIS lighting. Interestingly, the results show
MsLBP [6] does better than the other two methods with VIS
images, and even better than MsLBP on NIR images. The
VIS images do not worsen MsLBP, but benefit the method
instead. This may be explained that MsLBP is only concerned
about the texture of input images on different scales, which
relies on image intensity. It does not care about the reflectance
component. While NIR images are gray-scale and quite dark
for the majority of time, NIR cannot provide enough intensity
information such as color texture as VIS spectrum.

As discussed before, it seems unfair to compare our method
with MsLBP of NIR spectrum, so we use MsLBP of VIS
spectrum instead. Fig.5 shows the results of four experiment
settings: proposed method of both spectra, MsLBP of VIS
spectrum and entropy of NIR spectrum. All spoofing images of
different spoofing media are used in these experiments. It should
be noted that proposed method achieve perfect performance at
EER of 1.2% with one channel gray-scale NIR images, which
beats baseline method MsLBP with color VIS images and
outperforms baseline methods using entropy on power spectra.
In addition, the usage of NIR differential images benefits our
proposed method a lot.

VI. CONCLUSION

A novel solution based on active near-infrared images is
proposed for face spoofing detection. Unlike most existing
spoofing detection techniques, NIR spectrum is adopted and
differential image is analyzed. The context consistency is

calculated between face and non-face areas to detect the
existence of spoofing media. Lighting texture is employed
to deal with extreme situations such as cropped spoofing
media. Experiment results demonstrate the promising results
and robustness for different spoofing media. Future works will
be aimed at using image spatial information to enhance the
performance.
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