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Abstract This paper presents a fused feature using dual cameras for
face spoofing detection. The feature takes full advantage of input image
pairs in terms of texture and depth. It consists of two parts: 2D compo-
nent and 3D component. For the former, we propose an algorithm based
on image similarity to combine every pair of input images into one gray-
level image, from which the 2D feature is extracted. For the latter, based
on point feature histograms (PFH) method, we describe the point cloud
obtained by stereo reconstruction algorithms. The concatenation of 2D
and 3D features above is used to represent the input image pair. Experi-
ments on self collected dataset demonstrate the competitive performance
and potential of the proposed feature.

Keywords: face spoofing detection, dual cameras, feature fusion, simi-
larity measurement

1 Introduction

Various face recognition systems have been deployed in our daily life, however,
traditional face recognition techniques are vulnerable to face spoofing attacks.
With digital cameras and cell phones becoming increasingly popular, it is much
easier to conduct photo and video spoofing attacks; even 3D face models are
used for spoofing. Face spoofing detection, which is aimed to judge the genuine
person from fake replicas, plays an important role in security systems and has
drawn much attention.

Many anti-spoofing methods have been proposed, which can be roughly clas-
sified into four categories: motion based methods [3][9][22][13], texture based
methods [2][18][20][14][8], 3D structure based methods [5][6][7][10][19], and fu-
sion methods [22][20].

Motion based methods mainly deal with the human physiological responses
or human physical motions, such as eye blinking [22][13], head rotation [3][9],
and mouth movement [9]. They can utilize relative features across several frames
and they are expected to achieve better results than some other methods, such
as texture based features. For some methods, users should strictly follow the
instructions. It usually takes a relatively long time to capture image sequences
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for spoofing detection, and this kind of methods may be confused or fooled by
background motions or replayed video attacks.

Texture based methods analyze skin, reflectance, and other texture properties
to classify genuine and fake faces, given that many spoofing faces in photos
or videos are different from genuine ones in terms of quality, blurriness, and
light condition. Up to now, reflectance information [18][20], imaging banding
effects [22], spectral information [14], multi-scale feature [2][23], and many other
different kinds of texture based descriptors [7][20][8] are proposed. They can
achieve satisfying results, but methods using texture features often do not take
adjacent frame information into consideration and may be vulnerable to spoofing
attacks made by high quality photos or videos.

3D structure based methods use depth information to distinguish between
genuine and spoofing faces. Obviously printed photos or recorded videos show
quite different depth structure. Choudhury et al. [5] mentioned that depth infor-
mation can be used to detect planar faces spoofing attacks, but no further exper-
iments were conducted. In [10], based on a binocular framework, the percentage
of coplanar facial points was calculated for spoofing detection. It is said to be
effective but the framework can not deal with warped spoofing images. Marsico
et al. [6] presented a system exploiting 3D projective invariant. The system is
quite effective and efficient, but the result highly depends on landmark precision.
Erdogmus et al. [7] gave analyses on various LBP-based anti-spoofing methods
using color and depth images obtained from Kinect, which relied on the depth
sensors. Wang et al. [19] used normal cameras and recovered the sparse 3D shape
of faces from image sequences. The recovered depth of landmarks are concate-
nated to form the final feature, and SVM is used as a classier. The method is
able to work on different devices and achieves good performances. However, only
depth information of the input images is employed, and other information, such
as texture, is ignored.

Nowadays, some researchers are focusing their attentions on fusion methods,
trying to make full use of input images. Erdogmus et al. [7] used both color and
depth images obtained by Kinect in their countermeasures. Yan et al. [22] used
three scenic clues, including non-rigid motion, face-background consistency and
imaging banding effect. In [20], a concatenated feature of four different compo-
nents (specula reflection, blurriness, chromatic moment, and color diversity) was
extracted. Most of the fused clues are among texture and motion features, and
3D structure features are seldom utilized, which may restrain the performance
of fusion methods.

With the help of various electronic devices, it is not a hard job to obtain high
quality printed photos or deliberately recorded videos, which may even fool the
human eyes, so, it may be not an effective way only to use texture descriptor from
one image, or only to exploit human responses and motions. In this paper, we use
a binocular camera system. Setting up dual cameras and obtaining two images at
the same time can provide additional texture and structure information which
makes face spoofing detection system more robust and effective. We propose
a fused feature which combines both texture and 3D structure clues based on
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Figure 1. Proposed feature overview

dual cameras. Compared with existing texture based methods, we use binocular
images which can provide relative texture clues, and no specific depth sensors
are needed in our method. The proposed feature can deal with both warped
high quality spoofing images and replayed spoofing videos. Experiments show
the promising performance of our proposed feature.

2 System Overview

Motivated by the simple fact that fooling two cameras can not be done simply
with captured images or recorded videos any longer, we use dual camera systems
to perform spoofing detection, which can capture two images at the same time,
to increase the difficulty of face spoofing. Dual cameras are used in proposed
framework. We use two cameras of the same type and mount them side by
side. The two cameras are in the same direction and they are several centimeters
apart. Stereo camera calibration [24] is performed before data collection process.

Our framework is illustrated in Fig. 1. The proposed feature consists of two
main parts. At first, we combine left and right images and obtain one 2D gray-
level image using similarity measures, and Gabor feature [11] is extracted from
regions of interest in the similarity image. Then, using reconstructed sparse
3D facial structure by stereo reconstruction algorithms [24], a simplified PFH
method based on PFH [17] and FPFH [16] is used to extract point cloud features.
Finally, 2D texture features and 3D depth features are both normalized before
concatenated into one vector feature, and we use this fused feature to represent
the input image pair.

3 Proposed Feature

As we all know, the depth of genuine faces is quite sophisticated: eyes are sunken;
noses are close to cameras, and ears are relatively far. So, the distances do not
change smoothly especially around organs such as eyes and noses. The irregular
surface contributes to complicated occlusion in face images and face images vary
as view direction changes. In contrast, the depth is almost flat for printed or
replayed spoofing faces; it changes smoothly even if the photo is deliberately
warped. The gradually changed surface only leads to simple occlusion.

With the help of binocular camera images, we can easily analyze detailed tex-
ture differences caused by occlusion in face areas. The genuine faces are likely
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to have different appearances, especially where surface alters much, while spoof-
ing faces may not contain such characteristics. We utilize this clue to construct
proposed 2D-texture feature.

It should be noted that genuine and spoofing faces have quite various depth
information. To make proposed methods robust and make full use of input image
pairs, we also employ 3D-depth features based on depth values of the landmarks.
We have binocular framework, so we can obtain more than merely texture feature
or depth feature. As discussed earlier, every single feature has its own drawbacks
and the fusion feature may work better, so, it may be a wise idea to utilize both
features to perform spoofing detection. As shown in our experiment in Sec 4,
the fusion method achieves better results indeed. Hence, in our system, both 2D
and 3D features are exploited together to conduct final classification.

3.1 2D-Texture Feature

To extract the detailed occlusion differences in binocular images, we first adopt
a similarity descriptor and combine binocular images into one gray-level image;
then, we choose Gabor wavelet filter [11] to extract the differences.

Our similarity descriptor approach is inspired by BRIEF [4] and ORB [15]
feature which both show that image patches can be used to extract effective and
efficient local features. BRIEF [4] is an efficient feature point descriptor, which
uses binary strings features and Hamming distance, and ORB is one of popular
descriptors based on BRIEF. However, both descriptors are initially designed
for key points only, and for two adjacent pixels, their descriptors may be similar
and can not reflect possible diversities. So we propose a modified BRIEF feature
descriptor M-BRIEF with Hamming distance to describe similarities for every
corresponding pixel, which will be shown later.

First of all, we preprocess input images. A pre-trained supervised descent
method [21] is used to locate landmarks on input faces. Then, input images are
registered using eye coordinates. The normalized face images are cropped to the
same size. To make the descriptor noise-insensitive, we use a Gaussian filter to
smooth the normalized images.

Next, the modified BRIEF descriptors of all pixels are supposed to be calcu-
lated. For every point p = (u, v)T in left normalized image, we create a patch P
with the size S×S around it, and x is one of the points in the patch. At the same
time, we can find a corresponding point p′ with the same coordinate (u, v)T in
right normalized image. A patch P can also be created and y is a point in the
patch. Now, just like BRIEF descriptor [4], we define a similar test function τ
on patch P as:

τ(P;x,y) :=

{
1 if sum(x) < sum(y)

0 otherwise
. (1)

Where sum(x) is the sum of intensities of pixel x and its eight surrounding
pixels. Here we calculate the sum of surrounding pixels instead of only one pixel
x in [4] and [15] to make it robust for potential errors in locating landmarks and
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Figure 2. Image combination process. (a) shows input left and right images, (b) shows
normalized face images, (c) is combined similarity image, (d) illustrates the chosen
regions

registering faces. Now we randomly choose one set of nd (x,y)-location pairs,
where x is in the left image patch and y is in the left image patch. We use the
same set of nd location pairs for patches of all pixeles.

In this way we uniquely define a set of binary tests. Thus the modified BRIEF
descriptor of point p = (u, v)T becomes one nd-dimensional bit string:

M-BRIEF(p) :=
∑

1≤i≤nd

2i−1τ(P;xi,yi) . (2)

We use the same parameters as mentioned in [4], where Gaussian kernel is set
to 2, patch size S × S is set to 9× 9 and nd is set to 256.

After calculating M-BRIEF descriptor of all pixels, we use Hamming distance
as similarity metrics between every pair of corresponding pixels with the same
coordinate (u, v) in binocular images. Then, the distance is normalized to [0, 1],
denoted as D(u, v) ∈ [0, 1]. Right now, we can simply get gray-level similarity
image by S(u, v) = floor(D(u, v)× 255). The whole process of getting combined
similarity image is illustrated in Fig. 2.

Pixels in combined gray-level images represent similarity distances between
corresponding pixels of binocular images. The whiter the pixels are, the larger
the differences exist in binocular images. As analyzed before, texture differences
of binocular images exist especially where the depth changes dramatically, and
the white pixels represent potential texture differences. For genuine faces, there
are certainly more changes in depth, so, these bright white pixels may probably
represent potential genuine faces.

Fig. 3 shows more examples of constructed similarity images. It can be in-
ferred that, in face areas from top row images, similarity images of spoofing ones
contain relatively less bright white pixels, and streaks and organ outlines are
also simpler and thinner, especially those around noses and eyes. This satisfies
our hypotheses, but it is still quite hard for humans to make the correct judge-
ments directly from similarity images. So, we adopt further feature extraction
and construct our 2D-texture feature.
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Figure 3. Examples of constructed similarity images of spoofing faces (top row) and
genuine faces (bottom row). However, in reality it is quite hard to tell them apart by
humans directly.

From combined similarity images, we manually choose several regions of in-
terest, which are considered to contain some major differences between genuine
face images and spoofing ones. In this paper, based on our analyses and exper-
iments, we choose 4 simple regions according to face landmarks, which roughly
include regions around noses, mouths, eyes, and ears. We mainly choose those re-
gions in which depth of genuine persons may alter suddenly, and regions where
depths varies gradually, such as cheeks, are not used. The chosen regions are
illustrated in red rectangles in Fig. 2(d).

Finally, we use Gabor wavelet filter [11] in eight directions and five scales, to
extract feature vectors in each region. Downsampling process is also adopted in
our system and downsampling factor is set to 64 as in [11] to perform feature
reduction. Downsampled feature vectors of all chosen regions are concatenated
together forming a feature vector, but Gabor texture feature is stll too long even
after downsampling process. So, we employ traditional Principal Component
Analysis (PCA) for dimension reduction, and only main energy is preserved,
forming our final 2D-texture feature. For images in testing process, we use the
same PCA parameters as those in training process.

3.2 3D-Depth Feature

Before obtaining proposed depth feature, we utilize calibrated cameras and stereo
construction algorithms [24] to get depth information. In our proposed method,
only depths and normal vectors of some landmarks are used, forming a sparse
point cloud. The following depth features are extracted from the sparse ponit
cloud we obtain.

Point feature histograms (PFH) [17] is a powerful 3D point feature, and it is
used in many areas such as point cloud matching. We are inspired by PFH and
FPFH [16] algorithms, and modify and simplify PFH algorithm into extracting
features of sparse point cloud in our case. The main modifications of PFH [17]
and our main algorithmic processes are listed as follows:
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Figure 4. (a) is illustration of Darboux uvn frame, (b) and (c) are front and pro-
file views of 3D landmark structure used in proposed method. Different colors means
different sets, and small points in black are not used.

1. Note that we have a sparse point cloud, rather than using k-neighborhood
of a specific point [17], we group landmarks manually into several sets, as
illustrated in Fig. 4 (b) (c). To make our methods less noise sensitive, we
omit the points on the face contour which may not be so precise, and mainly
construct three sets around eyes and nose. Our 3D feature is extracted from
each point set respectively.

For point pairs < ps, pt > in each set, their estimated surface normal vectors
ns, nt and the Darboux uvn frame are defined exactly the same way as in
[17] (u = ns, v = (pt − ps) × u,w = u × v), which are illustrated in Fig. 4
(a). It should be noted that given two sequential points < ps, pt > and their
corresponding normal vectors, the uvn frame will be uniquely defined.

2. The scale of faces does not change so much under our circumstance, we just
omit the Euclidean distance component in original PFH method. In every
set of points, we extract three primary features from point pairs, and we can
get bin histogram as our 3D-feature, where each bin at index idx contains
the percentage of the point pairs defined by idx:

f1 = v · nt
f2 = w · nt

f3 = (u·(pt−ps))
|pt−ps|

 idx =

i≤3∑
i=1

step(threi, fi) . (3)

where step(threi, fi) is defined as 1 if threi > fi and 0 otherwise.

By setting an appropriate threshold threi, every primary feature can be
turned into two categories and in this way we can obtain 23 = 8 histogram
bins for each depth feature. In every set of our sparse points, we calculate the
histogram of all point pairs, and we can get an eight-dimension histogram fea-
ture. The final 3D-feature can be gained by concatenating histogram bins in all
manually grouped sets. We have 3 sets of points in total as illustrated in Fig. 4
(b), so the final dimension of proposed 3D-feature is 3× 8 = 24.
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Figure 5. Some illustrations of our dataset. Column 1 and column 3 are from left view,
and column 2 and column 4 are from right view respectively.

4 Experiments

4.1 Dataset Description

As far as we know, there are no public binocular datasets for spoofing detection.
So, we use dual cameras to collect data ourselves. The two cameras are both
calibrated respectively, and stereo calibration [24] is performed. There are 35
users taking part and we allow them to move or rotate heads as they like. For
each user, we use his or her high quality color photos to do the same thing
imitating face spoofing attacks, and printed photos can be rotated or warped
freely. We also record videos for all users and use these videos to perform tablet
replay attacks. For those wearing glasses, the same goes for their printed photos
and recorded videos. In our dataset, one image pair consists of one image from
left camera and one image from right camera. The numbers of image pairs are
shown in Table 1, and some examples are shown in Fig. 5.

Table 1. The number of image pairs in our dataset.

Genuine Photo Spoofing Tablet Spoofing

Number of pairs 4869 4758 5674

4.2 Baseline Method

The original BRIEF and PFH descriptor are not designed for the situations like
ours as mentioned before, so, we have to choose our baseline methods. There
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are only a few methods dealing with dual cameras for face spoofing detection,
and spoofing photos may be warped in our dataset. We choose depth method
mentioned in [19] as one of baseline methods. They proposed an algorithm that
recovered the 3D sparse facial structure, and they used all 3D coordinates as a
feature vector. We just calculate depth by stereo reconstruction algorithms and
use the same number of landmarks as that in [19].

According to recent research [8], although many LBP based methods are
proposed relatively a long time before, they are still powerful local texture de-
scriptors in terms of face spoofing detection, such as CoA-LBP [12]. Many of
the methods have public access code [8], which makes it easier and more con-
vincing to make comparisons. Besides CoA-LBP, multiscale local binary pattern
(MsLBP) and its related methods draw much attention in previous works such
as [2][23]. In this paper, we find MsLBP can achieve a bit better results on
our collected dataset than CoA-LBP with a linear SVM classifier, so we utilize
MsLBP from [23] on every single image from our dataset as another baseline
method.

4.3 Results and Discussions

As used in [8], we also employ a simple linear Support Vector Machine (SVM)
as final classifier, and leave-one-out configuration is adopted. More specifically,
we use images of 34 persons to train SVM model; then, we test the model on
images of remaining person.

We adopt traditional False Acceptance Rate (FAR), False Rejection Rate
(FRR), Equal Error Rate (EER), and Half Total Error Rate (HTER) to evaluate
these methods. Besides, based on the metric developed in ISO/IEC 30107-3 [1],
we also report Attack Presentation Classification Error Rate (APCER), Normal
Presentation Classification Error Rate (NPCER), and Average Classification Er-
ror Rate (ACER). In our experiment tables, FAR, FRR, APCER, and NPCER
are the exact values when the highest SVM classification accuracy is reached,
and all the evaluation metrics are mean values according to leave-one-out con-
figuration.

Table 2. Results on photo spoofing images(%)

Methods FAR FRR HTER APCER NPCER ACER EER

Proposed Method 0.99 2.00 1.50 1.13 1.76 1.44 0.76
Proposed Texture 6.10 4.19 5.15 7.21 3.53 5.37 3.52
Proposed Depth 1.83 2.85 2.34 2.09 2.50 2.29 1.63

MsLBP [23] 14.78 8.91 11.85 18.56 6.93 12.74 6.71
3D Coordinates [19] 1.75 5.59 3.67 1.95 5.05 3.50 2.33

The results on both photo and tablet spoofing images between proposed
method and baseline methods are shown in Table. 2 and Table. 3 especially. We
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not only evaluate the results of our proposed methods, but also examine our
proposed 2D and 3D feature alone.

From both tables, we can see multiscale local binary pattern does not perform
as desired. The main reason is that we use high quality images and videos; using
texture alone methods such as MsLBP may not be a good idea. Besides, MsLBP
can only perform on one single image, and binocular information in our dataset
is not utilized at all, which is one of the disadvantages of traditional texture
based spoofing detection methods.

The 3D depth based methods, which utilize binocular images to recover the
depth information, perform much better than MsLBP. However, we do not get
as excellent results as that in [19], in which all the images are classified correctly.
It may be explained that by following reasons: we reconstruct depths only based
on one left and one right image, so stereo correspondence algorithm may easily
be affected by some factors, such as the glasses, bangs hair, and pale faces. These
factors all leads to noisy or even mistaken depth values, which worsen the results
directly. We have checked the reconstructed results of our dataset manually,
and we have found for a minority of persons, especially for some female persons
wearing glasses and bangs hair, the recovered depth is not so ideal. For examples,
we find that results of depth based methods on persons among the first two rows
in Fig. 5 are much worse than average values, which are not listed here though.
So using depth based feature alone may not produce very good results and it
might be a wise choice to use the fused feature instead.

Table 3. Results on tablet spoofing images(%)

Methods FAR FRR HTER APCER NPCER ACER EER

Proposed Method 0.78 1.21 0.99 0.66 1.42 1.04 0.63
Proposed Texture 4.65 3.32 3.99 5.45 2.82 4.14 3.34
Proposed Depth 1.21 1.47 1.34 1.03 1.73 1.38 0.73

MsLBP [23] 7.72 8.20 7.96 6.48 9.74 8.11 6.06
3D Coordinates [19] 2.30 2.38 2.34 2.66 2.06 2.36 1.49

Comparing results between Table. 2 and Table. 3, it can be easily concluded
that almost all methods perform better on photo spoofing images than tablet
spoofing ones. The spoofing media contributes a lot to such results. Images
displayed by tablet screen is always flat and screens can not be warped at all,
which benefits depth based methods. In addition, the screen emits lights itself
so there are no interferences by environment lighting such as shadows, which
makes texture methods relatively easier.

We also evaluate methods above on all collected images, imitating the situa-
tion in which we have no idea about how the spoofing detection systems will be
challenged. The experiment results are shown in Table. 4, and DET curves are
illustrated in Fig. 6. It should be noted that although both proposed 2D-texture
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Table 4. Results on all collected images(%)

Methods FAR FRR HTER APCER NPCER ACER EER

Proposed Method 1.06 1.11 1.09 0.51 2.28 1.40 0.58
Proposed Texture 5.62 3.90 4.76 6.62 3.30 4.96 3.54
Proposed Depth 2.04 2.62 2.33 0.97 5.42 3.20 1.83

MsLBP [23] 18.63 9.49 14.06 9.07 19.41 14.24 10.52
3D Coordinates [19] 2.21 1.93 2.07 2.06 2.37 2.22 1.75
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Figure 6. Results obtained on all collected images.

and 3D-depth methods do not have overwhelming advantages over depth based
baseline method [19], the fusion method obtains quite satisfied results with EER
of 0.68% and ACER of 1.40%.

5 Conclusion

In this paper, we propose a novel feature for face spoofing detection using dual
cameras. On one hand, we investigate image texture details caused by different
surface situations between genuine and spoofing faces. We combine a pair of
binocular images into one gray-level image, on which texture features are ex-
tracted. On the other hand, we extract depth feature by using a sparse point
cloud with limited number of points. Experiment results demonstrate the promis-
ing performance of the fused feature. In the future, we will focus on dealing with
different kinds of spoofing attacks, such using 3D masks or 3D head models.
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