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Abstract— Gait analysis for the patients with lower limb
motor dysfunction is a useful tool in assisting clinicians
for diagnosis, assessment, and rehabilitation strategy mak-
ing. Implementing accurate automatic gait analysis for the
hemiparetic patients after stroke is a great challenge in
clinical practice. This study is to develop a new auto-
matic gait analysis system for qualitatively recognizing
and quantitatively assessing the gait abnormality of the
post-stroke hemiparetic patients. Twenty-one post-stroke
patients and twenty-one healthy volunteers participated in
the walking trials. Three of the most representativegait data,
i.e., marker trajectory (MT), ground reaction force (GRF),
and electromyogram, were simultaneously acquired from
these subjects during their walking. A multimodal fusion
architecture is established by using these different modal
data to qualitatively distinguish the hemiparetic gait from
normal gait by different pattern recognition techniques and
to quantitatively estimate the patient’s lower limb motor
function by a novel probability-based gait score. Seven
decision fusion algorithms have been tested in this archi-
tecture, and extensive data analysis experiments have been
conducted. The results indicate that the recognition perfor-
mance and estimation performance of the system become
better when more modal gait data are fused. For the recog-
nition performance, the random forest classifier based on
the GRF data achieves an accuracy of 92.26% outperformed

Manuscript received November 8, 2017; revised February 11, 2018;
accepted February 12, 2018. Date of publication March 2, 2018; date
of current version April 6, 2018. This work was supported in part
by the National Natural Science Foundation of China under Grant
61720106012, Grant U1713220, Grant 61533016, Grant 61603386,
Grant 91648208, and Grant 61421004, and in part by the Beijing Nat-
ural Science Foundation under Grant L172050. (Corresponding author:
Zeng-Guang Hou.)

C. Cui is with the State Key Laboratory of Management and
Control for Complex Systems, Institute of Automation, Chinese Acad-
emy of Sciences, Beijing 100190, China, and also with the Univer-
sity of Chinese Academy of Sciences, Beijing 100049, China (e-mail:
cuichengkun2014@ia.ac.cn).

G.-B. Bian, L. Peng, and W. Wang are with the State Key Laboratory
of Management and Control for Complex Systems, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing 100190, China (e-mail:
guibin.bian@ia.ac.cn; liang.peng@ia.ac.cn; weiqun.wang@ia.ac.cn).

Z.-G. Hou is with the State Key Laboratory of Management and Control
for Complex Systems, Institute of Automation, Chinese Academy of
Sciences, Beijing 100190, China, also with the University of Chinese
Academy of Sciences, Beijing 100049, China, and also with the CAS
Center for Excellence in Brain Science and Intelligence Technology,
Beijing 100190, China (e-mail: zengguang.hou@ia.ac.cn).

J. Zhao, G. Su, and H. Zhou are with the Beijing Bo’ai Hospital,
China Rehabilitation Research Center, Beijing 100068, China (e-mail:
zaojun@aliyun.com; ZKPTSGD@126.com; halfsunny@foxmail.com).

Digital Object Identifier 10.1109/TNSRE.2018.2811415

other single-modal schemes. When combining two modal
data, the accuracy can be enhanced to 95.83% by using the
support vector machine (SVM) fusion algorithm to fuse the
MT and GRF data. When integrating all the three modal data,
the accuracy can be further improved to 98.21% by using
the SVM fusion algorithm. For the estimation performance,
the absolute values of the correlation coefficients between
the estimation results of the above three schemes and the
Wisconsin gait scale scores for the post-stroke patients
are 0.63, 0.75, and 0.84, respectively, which means the
clinical relevance becomes more obvious when using more
modalities. These promising results demonstrate that the
proposed method has considerable potential to promote the
future design of automatic gait analysis systems for clinical
practice.

Index Terms— Post-stroke hemiparesis, gait analysis,
multimodal fusion, marker trajectory (MT), ground reaction
force (GRF), electromyogram (EMG).

I. INTRODUCTION

POST-STROKE hemiparesis is a condition usually caused
by cerebrovascular blockage or rupture that affects motion

control of the entire left or right side of the body. Gait
impairment is a common problem in post-stroke hemiparetic
patients, which greatly reduces their quality of life, because
walking ability is very important in conducting many daily
activities. Hemiparetic gait is characterized by shorter stride
length, slower velocity, slower cadence, spatial and tempo-
ral left-right asymmetry, and more energy consumption in
comparison with normal gait [1]. The motor rehabilitation
treatment after hemiparesis is essential to help the patients
recover their motor function. In order to make appropriate
treatment strategies for the patients with stroke, it is very cru-
cial to accurately recognize and assess their gait abnormality.
The automatic gait analysis can become an effective solution,
which has already caught much attention in clinical diagnosis
and assessment [2]–[7].

In recent years, advanced measuring techniques have made
it easier to collect the kinematic, kinetic or electrophysiolog-
ical data during walking [8]–[10], which greatly facilitates
the development of automatic gait analysis. Many researchers
focused on the recognition problem of gait abnormality, such
as [11]–[19]. Different pattern recognition algorithms were
adopted to construct classification systems to automatically
identify the pathological or normal gait patterns based on
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the recorded gait data. The trained classification systems had
some generalization ability to unknown gait data, which could
provide some effective information for clinical diagnosis.
However, classifying different gait patterns into two or more
categories is essentially a qualitative analysis method, which
is not subtle enough to produce valuable information for the
assessment of patients’ lower limb motor function.

Several studies have explored and designed different gait
scores (e.g., the GGI [20], GDI [21], GPS [22], GVI [23]
and COGS [24]) to implement the quantitative analysis of
the pathological gait patterns. These gait scores essentially
measured the similarity between a subject’s gait pattern and
the average gait pattern of a reference group. However, most
gait scores were established on some mathematical expressions
with pre-set fixed parameters, which might cause poor general-
ization performance on unknown gait data. Furthermore, these
gait scores were usually calculated based on only a single
modal data source (e.g., kinematic data), which could only
summarize a subject’s gait characteristics from a particular
aspect and might lead to a one-sided assessment result.

According to the above exposition, the qualitative and
quantitative analysis methods may be combined to develop
a more powerful automatic gait analysis system. Meanwhile,
different modal gait data, including kinematic, kinetic and
electrophysiological data, need to be collected and integrated
to achieve a more comprehensive analysis result. In this way,
it is possible to embed the outcome of the automatic gait
analysis into the conventional clinical decisions.

This paper further extends and develops our previous
work [25] to a new field: automatic gait analysis of post-stroke
hemiparetic patients. A data-driven-based multimodal fusion
architecture is proposed to qualitatively recognize the hemi-
paretic gait, and quantitatively estimate the patients’ walking
ability. Three different modal time-varying dynamic data,
i.e., marker trajectory (MT), ground reaction force (GRF) and
electromyogram (EMG), were synchronously recorded from
the subjects from both pathological and normal groups. These
multimodal data are served as the inputs of the fusion archi-
tecture. After preprocessing and feature extraction, different
modal data are fed to their individual classifiers, respectively.
Next, the outputs of these classifiers are combined by a fusion
algorithm to achieve the final analysis results, which con-
tain the qualitative predicted class and quantitative estimated
score.

The main contributions of this study include:
1) A multimodal fusion architecture based on integrat-

ing kinematic, kinetic and electrophysiological data is
designed to qualitatively and quantitatively analyze the
post-stroke hemiparetic gait abnormality.

2) A novel probability-based gait score is defined to quan-
tify the differences between the post-stroke hemiparetic
gait and normal gait, and can be used to implement
the quantitative assessment of the post-stroke patients’
walking ability.

3) Seven decision fusion algorithms are adopted and tested
in the proposed architecture, respectively. To the best of
our knowledge, most of them have never been studied
in the field of automatic gait analysis.

TABLE I
DEMOGRAPHIC DATA OF THE SUBJECTS

II. METHODS

A. Subjects

This study recruited twenty-one post-stroke hemiparetic
patients from the China Rehabilitation Research Center, Bei-
jing, China, as the pathological group. At the same time,
twenty-one matched healthy volunteers were enrolled as the
normal reference group.

For the pathological group, the inclusion criteria included:
1) a first stroke with unilateral hemiparesis, 2) unilateral hemi-
spheric lesions confirmed by computed tomography or mag-
netic resonance imaging, 3) age 20-75 years, 4) ability to
walk at least 10 m without any help or assistive devices,
5) ability to understand verbal commands and to cooperate
with the experimental procedures, 6) no other diagnosed
diseases known to affect walking performances. For the normal
group, the inclusion criteria were no history of any neurolog-
ical or musculoskeletal disorders. Exclusion criteria for both
groups were previous history of severe diseases about heart,
lung, liver, kidney, etc.

Table I lists the demographic data of the two group subjects,
including age, height, weight and gender. According to the
different types of statistical data, the corresponding statistical
test methods are adopted to analyze the significance of dif-
ferences. For numerical data, such as age, height and weight,
the unpaired t-tests are used to compare the differences in
these data between post-stroke patients and healthy subjects,
respectively. For categorical data, like gender, the chi-squared
test is employed to examine the differences between groups.
All the above statistical test methods are conducted by using
SPSS (IBM Corp., USA) at a significant level of 0.05. From
the rightmost column of Table I, we can clearly see that there
are no significant differences (P>0.05) in the demographic
data between the pathological group and normal group.

This research was approved by the Ethics Committee
of China Rehabilitation Research Center (approval number:
2016-059-1), and an informed consent form was signed by
each subject.

B. Measurements

All the experiments were carried out at the Gait Analy-
sis Laboratory, China Rehabilitation Research Center. Three
different types of gait data during human walking, including
the kinematic, kinetic and electrophysiological data, were
simultaneously recorded by a motion capture system and
multiple sensors.
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Fig. 1. Marker placement for static calibration: (a) anterior and
(b) posterior views.

The motion trajectories of the reflective markers placed on
each subject’s lower body were recorded by a six-camera
Qualisys motion capture system (Qualisys AB, Sweden) at
a sampling frequency of 200 Hz. Before the walking trials,
a static calibration of the Qualisys system was conducted
with a subject upright standing at the center of the floor
for about 3 seconds to ensure that all the cameras could
accurately record the positions of the markers. The purpose
of this calibration was to locate the subject’s bone segments
and joint center positions in the system. During the static
calibration, there were 38 markers glued to the subject’s
body (see Fig. 1) based on the Calibrated Anatomical System
Technique (CAST) [26]. Specifically, these markers were
placed on the anterior superior iliac spine, posterior supe-
rior iliac spine, greater trochanter, lateral thigh, medial and
lateral femoral epicondyles, lateral shank, medial and lateral
malleoli, calcaneus, first and fifth metatarsal heads, and second
metatarsal base of both lower limbs. After the calibration,
10 markers were removed (greater trochanter, medial and
lateral femoral epicondyles, medial and lateral malleoli on both
sides of the body), and the other 28 markers were remained
on the subject (see Fig. 2) to record dynamic limb motion data
during the walking trials.

The GRF data were captured at 1000 Hz by using two
Bertec force plates (Bertec Corp., USA) embedded in the
floor (see Fig. 3). The foot strike and toe off events were
determined by using a vertical GRF threshold of 10 N. In order
to keep the subjects from deliberately changing their strides
to strike the force plates, we used a black cloth to cover the
force plates and surrounding area.

Eight channels of surface EMG signals were collected at
1000 Hz by a Biomonitor ME6000 (Mega Electronics Ltd.,
Finland). The monitored muscles involved the rectus femoris,
long head of biceps femoris, tibialis anterior, medial head of
gastrocnemius of both lower limbs. The EMG electrode place-
ment was based on the human anatomical locations [27] (see
Fig. 2). The acquisition processes of the above three different

Fig. 2. Marker placement after static calibration and EMG electrode
placement: (a) anterior and (b) posterior views.

Fig. 3. Force plates embedded in the floor.

modal data were controlled and synchronized by the Qualisys
Track Manager (Qualisys AB, Sweden).

The subjects were required to walk barefoot at their natural
velocity. The starting point was adjusted for each subject to
guarantee that he or she could make full contact with the force
plates. Moreover, the subjects were guided to watch a big
black dot on the opposite wall to transfer their attention away
from the force plates covered by a black cloth, and to keep
an upright body position during walking. In order to prevent
large physical consumption and muscle fatigue, the subjects
were given as much rest as they required between different
trials. It is worth noting that all the walking trials were carried
out under the guidance of an experienced physiotherapist.
A walking trial is considered as a successful trial when a
single full contact of a subject’s each foot on the corresponding
force plate is achieved. Full contact with the force plate can
be confirmed visually in the Qualisys Track Manager. Each
subject was required to accomplish 9 successful walking trials.

The subsequent analysis is conducted on the gait pattern
from one full gait cycle. Since the two force plates are placed
as shown in Fig. 3, a full gait cycle in this study is defined
from left foot strike to the next left foot strike, during which
the subject should make full contact with the two force plates
in turns. Therefore, from each walking trial, only one full
gait cycle can be extracted. The beginning and ending events
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Fig. 4. Multimodal fusion architecture for automatic gait analysis.

of the gait cycle can be automatically detected and marked
by using Visual 3D (C-Motion Inc., USA). In this work,
an experimental sample is defined as the data collected during
a full gait cycle. According to the subject’s group, the ground
truth label of each sample is labeled as 0 (pathological
group) or 1 (normal group).

C. Multimodal Fusion Architecture

The motivation of designing multimodal fusion architec-
ture is to obtain more comprehensive and accurate analysis
results by exploiting the complementarity between different
modal gait data. In Fig. 4, we show the diagram of the
proposed fusion architecture for automatic gait analysis. This
architecture is established mainly based on the integration of
semantic information from different modal gait data. As the
figure presents, multimodal data are processed separately to
yield individual predictions which can represent the semantic
information of the corresponding modalities. Then, these indi-
vidual predictions are combined later to derive the final pre-
diction. The above description can be formulated as follows.

Let us define um as an experimental sample of the mth
modality after pre-processing, and define the feature vector
extracted from um as

Xm = [ξm
1 , ξm

2 , . . . , ξm
n , . . . , ξm

Nm
]T , m = 1, 2, . . . , M (1)

where ξm
n is the nth feature of Xm . The feature vector from

each modality is separately fed to the corresponding individual
classifier to produce the individual predicted result, which can
be denoted as

ym = hm(Xm) (2)

where ym represents the individual predicted probability
achieved by the individual classifier hm of the mth modality.
The individual predicted probability is a value containing
semantic information of the corresponding modality, which
describes the possibility that a subject’s gait pattern belongs
to a certain class. Of course, for different modal gait data,
the obtained probabilities may be dissimilar. We hope to

make the best use of the complementarity between the seman-
tic information from different modal data. Therefore, these
individual predicted probabilities are concatenated together to
construct a semantic information vector. At the fusion stage,
this semantic information vector is processed by a decision
fusion algorithm to obtain the final predicted result, which
can be expressed as

q = f (y1, y2, . . . , y M ) (3)

where q is the final predicted probability and f is the
corresponding fusion algorithm. A subject’s gait pattern will
be automatically assigned to the pathological group when
the predicted probability is less than 0.5. It is worthwhile
pointing out that this architecture can be easily extended to
the situations in which more than three modal data are used
in parallel.

The training process of the fusion architecture can be sum-
marized as a four-step procedure. To begin with, the training
dataset needs to be divided into two non-overlapping parts:
individual-training dataset and development-training dataset.
Then, the individual-training dataset and ground truth labels
are utilized to build some candidate individual classifiers.
Subsequently, the development-training dataset is fed to these
candidate classifiers to find the best individual classifier for
each modality by comparing the recognition performance. The
outputs of these best individual classifiers on the development-
training dataset are concatenated to form semantic informa-
tion vectors. Finally, these semantic information vectors and
ground truth labels are used to train the tunable parame-
ters of the fusion algorithm. During the training procedure,
we employ 3-fold cross validation for the determination of
the hyper-parameters in some classification or fusion models.

As it is mentioned in Section II-B, for each subject, there
are 9 full gait cycles extracted from 9 successful walking
trials. Therefore, the data recorded in 378 gait cycles from
42 subjects are regarded as the full dataset. Since it is usually
very difficult to get enough multimodal data for training the
automatic gait analysis system in clinical practice, the size of
the testing dataset is arranged larger than that of the individual-
training or development-training dataset. For convenience,
the data in the first three gait cycles of each subject are served
as the individual-training dataset, and the data in the middle
two gait cycles of each subject are used as the development-
training dataset. The data in the remaining four gait cycles
of each subject are employed to construct the testing dataset.
Namely, the data division ratio is 3:2:4 for the individual-
training, development-training and testing dataset.

D. Data Analysis

1) Preprocessing: The data analysis is performed by using
MATLAB (MathWorks Inc., USA). The MT data are low-pass
filtered at 6 Hz to remove noise. The amplitudes of the MT
data are normalized to body height to reduce the influence of
anthropometric differences between the subjects. Similar to the
processing of MT, the GRF data are low-pass filtered at 20 Hz,
and their amplitudes are normalized to body weight. The EMG
data are band-pass filtered from 10 Hz to 100 Hz, notch filtered
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at 50 Hz, and full-wave rectified. Then, the data of each
channel are normalized by the maximum EMG amplitude of
the corresponding muscle. In this study, the maximum EMG
amplitude for each muscle is calculated as the average value
of the EMG peak amplitudes across multiple gait cycles from
one subject.

Due to the differences between the recorded gait cycles,
the equal sample length requirement in pattern classification
problem is not satisfied, which will result in the failure of
training for a classifier. To this end, each modal data are
separately time-normalized to 101 points (representing the gait
cycle from 0% to 100%) channel by channel, using the cubic
spline interpolation and resampling methods. Next, for each
modality, the time-normalized data from different channels
are concatenated to form the respective sample vector. For
MT, each sample vector has 8484 dimensions (28 markers ×
3 spatial directions × 101 points in time). For GRF, each
sample vector has 606 dimensions (2 force plates × 3 spatial
directions × 101 points in time). For EMG, each sample
vector has 808 dimensions (8 pairs of electrodes × 101 points
in time). As the three modal data will be severally fed to
the respective classifiers, the equal sample length requirement
only needs to be satisfied among the samples of each single
modality rather than the samples between different modalities.

2) Feature Extraction: The high dimensional data proba-
bly deteriorate the generalization performance of the pattern
classification algorithms when the number of experimental
samples is not very large [28]. To this end, the principal
component analysis (PCA) [29] is used for each modal
data to reduce redundant information and extract effective
gait features. The number of retained principal compo-
nents is determined by using a criterion of 80% of total
data variance.

3) Individual Classifiers: The features extracted from each
modal data are served as the input of the corresponding indi-
vidual classifier. In the present study, five popular classification
algorithms [30] are considered as the candidate individual
classifiers for each modality, which are the support vector
machine (SVM), neural network (NN), random forest (RF),
naive Bayes (NB) and k-nearest neighbor (KNN). Among
them, the SVM adopts a radial basis kernel function, and
its output scores are transformed to posterior probabilities by
using Platt’s method [31]. The NN is a feedforward network
with a hidden layer, and the activation functions are sigmoid
functions.

According to the training procedure presented in
Section II-C, the candidate individual classifiers are
established by using the individual-training dataset to optimize
their adjustable parameters. Then, these candidate models
are utilized to process the development-training dataset, and
the best individual model for each modality is selected by
comparing the recognition performance. The selection results
are RF for MT, RF for GRF, and NN for EMG.

4) Fusion Algorithms: At the fusion stage, the outputs of
the selected classifiers on the development-training dataset
are used to train the decision fusion model. In general,
the decision fusion model can be established by two ways:
classification-based fusion algorithms and rule-based fusion

algorithms [32]. The former integrates different modal infor-
mation by using data-driven-based classification techniques,
while the latter is based on pre-defined calculation rules.
In the present paper, we adopt five classification-based fusion
algorithms (e.g., SVM, NN, etc.) that have been outlined
in Section II-D-3. At the same time, we consider two rule-
based fusion methods, which are the average rule (AR) and
max rule (MR) fusion algorithms [33]. The above seven
fusion algorithms here are employed to build the fusion model
rather than the previous individual model. The main difference
lies that the inputs of the fusion model are the predicted
probabilities which contain semantic information of differ-
ent modalities. We hypothesize that by using an appropriate
fusion algorithm, different modal semantic information can
be effectively integrated, which has the potential to fully
mine the complementarity between multimodal gait data. It is
worth mentioning that except to the NN-based decision fusion
algorithm whose performance has been reported in the relevant
literature, other decision fusion algorithms adopted in this
work have not yet been investigated in the field of automatic
gait analysis.

5) Walking Ability Score: Based on the above exposition,
the proposed architecture can be used to qualitatively recog-
nize different gait patterns. However, how to simultaneously
implement quantitative estimation of the gait differences
between pathological and normal groups is still an open
problem. In this study, a novel custom-defined gait score is
proposed to embed the quantitative analysis method into this
architecture.

As a value containing semantic information of gait data,
the predicted probability of an individual classifier or fusion
model can quantitatively reflect the possibility that a subject’s
gait pattern belongs to a certain class. Accordingly, we define
this probability as a new gait score named as walking ability
score (WAS) to quantify the differences between pathological
and normal gait patterns. The WAS represents a subject’s gait
pattern as a real number with a range from 0 to 1. When the
WAS is closer to 0, it indicates that the gait abnormality is
more severe. Therefore, the WAS can be used to quantitatively
assess the subjects’ walking ability. Furthermore, the WAS of
a fusion model is a further integration of the local WASs from
different modal individual classifiers. Thus, the WAS after
fusion represents more comprehensive semantic information,
which may effectively exploit the complementarity between
different modalities. Moreover, since the WAS is obtained
from the objective dynamic gait data, the proposed architec-
ture can be applied to objectively support clinical decisions.
According to the above analysis, when compared with the tra-
ditional clinical scales, the WAS can provide a more objective,
quantitative and comprehensive assessment result.

Although the WAS can be used to quantitatively assess
the walking ability of both post-stroke patients and healthy
subjects, we focus on the assessment for the patients with the
consideration of clinical practice. By considering the influence
of measurement errors, we use the walking ability mean
score (WAMS) as the final estimation result, which is the mean
value of the WASs across multiple experimental samples from
a patient.
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Fig. 5. Recognition accuracies of single-modal schemes.

III. RESULTS

A. Performance Metric

At first, we consider the evaluation of the qualitative recog-
nition performance of the proposed architecture. In this work,
we select the accuracy as the performance metric, which can
be mathematically expressed as [30]

Accuracy = 1

N

N∑

i=1

I (ci = li ) (4)

where N is the number of samples, ci and li are the predicted
class and ground truth label of the i th sample, respectively,
and I (·) is an indicator function.

Since there are no standard performance metrics for the
custom-defined gait scores, it is a great challenge for the
evaluation of the quantitative estimation performance. In this
study, we intend to explore an evaluation method from the
perspective of clinical relevance. As the Wisconsin Gait
Scale (WGS) [34] is widely used for the clinical assessment of
the post-stroke hemiparetic gait, the clinical relevance of the
proposed WAMS is evaluated by comparing with the WGS
score.

Based on the above exposition, we take the recognition
performance metric as the criterion to determine the best
individual classification scheme and the best fusion scheme
on the testing dataset. After that, the relationship between the
WGS scores and the WAMSs of these best schemes is further
explored and discussed.

B. Qualitative Recognition Performance

1) Single-Modal Schemes: As a first step, we report the
recognition performance of the five candidate classifiers on
the testing dataset, respectively. Figure 5 shows the recognition
accuracies of different individual classifiers by processing each
single modal data. By comparing the recognition accuracies,
we can find that not all the candidate individual classifiers
show the same recognition performance for each modal data.
For instance, the RF and SVM classification models achieve
accuracies over 90% when applied to MT or GRF data, while
only the NN classification model obtains an accuracy over
90% when applied to EMG data. The above inconsistent
results can probably be interpreted by the “no free lunch”
theorem [35], which indicates that no algorithms can work
very well over all data due to the cost functions and sample

Fig. 6. Recognition accuracies of multimodal fusion schemes.

characteristics. For the best recognition performance of each
modality on the testing dataset, the results are consistent with
that on the development-training dataset, i.e., RF for MT, RF
for GRF, and NN for EMG, which means that the selection
of individual classifiers is reasonable. Furthermore, the RF
model using GRF data yields the highest accuracy of 92.26%
among these schemes, which is chosen as the best single-
modal scheme (BSS).

2) Multimodal Fusion Schemes: In the following, we explore
the fusion forms of multimodal gait data, and test the recogni-
tion performance of different decision fusion algorithms. The
fusion forms can be the combinations of any two modal-
ities or three modalities. For full validation, all kinds of
combinations are considered, i.e., MT-GRF, MT-EMG, GRF-
EMG and MT-GRF-EMG. For each combination, we evaluate
seven decision fusion algorithms mentioned in Section II-D-4
on the testing dataset, respectively. Figure 6 shows the experi-
mental results. In most cases, the accuracies of multimodal
fusion schemes are higher than those of the single-modal
schemes. Furthermore, similar to the findings in the single-
modal schemes, not all the fusion algorithms demonstrate
the same performance for each combination form. Among
these algorithms, the SVM, RF and NN fusion models show
relatively better identification capability on all these modal
combinations. Specifically, for the combinations of any two
modal data, the highest accuracy of 95.83% is achieved by
the SVM fusion model integrating MT and GRF data, which
is selected as the the best two-modal fusion scheme (BTWFS).
For the combination of three modalities, the highest accuracy
of 98.21% is obtained by the SVM fusion model combining
the three modal data, which is determined as the best three-
modal fusion scheme (BTHFS).

In order to directly compare the best recognition
performance in the cases of using different numbers of
modalities, the recognition results of the best single-modal,
two-modal and three-modal schemes are duplicated in Fig. 7.
We can clearly see that the BTWFS outperforms the BSS by
3.57%, while the BTHFS outperforms the BSS and BTWFS
by 5.95% and 2.38%, respectively. These results indicate that
the recognition performance can be obviously improved by
appropriately integrating more modal gait data. It can support
our hypothesis that the complementarity between different
modal data can be better mined by using multimodal fusion
techniques. Besides, the highest accuracy among all the
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Fig. 7. Comparison on the recognition performance of the three best
schemes.

Fig. 8. Comparison on the estimation performance of the three best
schemes: (a) BSS, (b) BTWFS and (c) BTHFS.

different schemes is more than 98% on the testing dataset.
Since the size of the testing dataset is larger than that of
the individual-training or development-training dataset, it is
a relatively difficult classification problem. Therefore, this
highest accuracy indicates a certain potential application
value of the proposed fusion architecture in automatic clinical
diagnosis of the hemiparetic patients after stroke.

C. Quantitative Estimation Performance

As it is mentioned in Section III-A, the WGS score is
used to compare with the proposed WAMS. All the post-
stroke patients’ walking performances have been assessed by
an experienced physician using the WGS. The WGS consists
of 14 items, whose score ranges from 14 to 45. In contrast to
the WAMS, the lager a WGS score is, the more abnormal the
gait performs.

It is worth noting that the traditional scale scoring depends
on the clinician’s personal experience. Different clinicians may
give different scale scores on the same patient. Therefore,
the comparison results are affected by uncertain subjective
factors. The purpose of this comparison is just to explore a
evaluation method for the quantitative estimation performance
of the proposed architecture. By considering that the three best
schemes have been determined, we take these best schemes as
representatives to study their estimation performance on the
testing dataset.

The relationship between the WGS scores and WAMSs
of the three best schemes is shown in Fig. 8. The Pearson

correlation coefficient and the result of correlation test at a
significance level of 0.05 are provided on the top left corner
of each subgraph, respectively. We can clearly see that there
is a significant negative correlation between the WGS scores
and WAMSs of each best scheme (P<0.05). Furthermore, the
absolute value of the correlation coefficient increases as the
number of modalities increases. The absolute value of the cor-
relation coefficient between the WGS scores and the WAMSs
of the BTHFS is as high as 0.84, which indicates a strong
linear relationship. Consequently, the proposed WAMS has
potential for clinical use in quantitatively assessing the gait
abnormality of the post-stroke patients.

IV. DISCUSSIONS

Most of the existing automatic gait analysis systems cannot
achieve simultaneous qualitative and quantitative analysis of
patients’ gait abnormality. Furthermore, these systems usu-
ally use only a single data source, which is difficult to
obtain adequate comprehensive and accurate analysis results
in clinical practice. The present study gives a preliminary
exploration of combining multimodal gait data to qualitatively
and quantitatively analyze the gait abnormality in patients with
stroke. Under the proposed fusion architecture, the MT, GRF
and EMG data can be effectively integrated to implement
the qualitative identification of the hemiparetic gait and the
quantitative assessment of the patients’ lower limb motor
function.

Perhaps the most exciting findings are that with our mea-
sured data, the recognition accuracy of different gait patterns is
enhanced as the number of used modalities increases in most
cases. Meanwhile, for the best schemes of different modalities,
the correlation between the probability estimations of the
patients’ walking ability and the clinical scale ratings becomes
more obvious when using more modal data, which enable
the estimations to be more comprehensible to the clinicians.
In addition, other findings of this study are discussed as
follows.

For the inputs of the automatic gait analysis systems, most
researches adopt the time-invariant static gait data, such as
kinematic or kinetic variables at some specific time points of
the gait cycle, statistical characteristics derived from multi-
ple gait cycles, etc. In contrast, three different time-variant
dynamic gait data are served as the inputs of the system in
this study. The static gait data do have some advantages, e.g.,
clear physical meaning. However, their defects are also very
obvious. To begin with, the selection of different static gait
data is normally dependent on the prior knowledge of the
clinicians or researchers. Then, the calculation of some static
gait data is time consuming and may cause error accumulation.
Finally, and most importantly, only using the static gait data
will lose a lot of time-dependent information during walking.
The use of dynamic gait data can be a good way to avoid the
above problems.

The structures of the existing automatic gait analysis sys-
tems are usually designed as a single classifier or a single
calculation expression, whereas we design a complex archi-
tecture including the individual classifiers and fusion model.
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These conventional structures can only process a single modal
gait data source. As each single modal data can only reflect one
aspect of human gait, the results processed by these structures
may be one-sided and inaccurate. In contrast, the proposed
fusion architecture can implement the integration of different
modal gait data. The complementarity between different modal
gait data can be effectively utilized in this architecture to
obtain more comprehensive and accurate results.

The WAMS can quantitatively express a subject’s walking
ability as a real number between 0 and 1. Compared with the
other gait scores reviewed in Section I, the main advantage
lies in that the WAMS of the fusion model is a synthetic
score which contains the semantic information of different
modal gait data, while other gait scores are obtained based
on the gait characteristics from only a single modal data
source. Furthermore, the comparison with the WGS scores has
validated the clinical relevance of the WAMS to some extent.

It is worth noting that there are some limitations in this
work. Firstly, due to the time normalization of the multi-
modal gait data, the differences between the subjects’ walking
velocities are greatly weakened. This gait characteristic will
be given attention to and used in the future work. Secondly,
due to the lack of standard evaluation metrics for the custom-
defined gait scores, the quantitative estimation performance
of the proposed architecture needs to be further validated on
more clinical experiments. Thirdly, the inclusion criteria in this
study limit that the fusion architecture is specifically designed
for analyzing the abnormal gait after stroke. Therefore, this
study needs to be further extended to the analysis of gait
abnormality caused by other diseases. Finally, the designed
experiments do not involve the assessment of the effect of a
rehabilitation process or therapeutic treatment. This task will
be explored in depth in our future research.

V. CONCLUSION

Accurate recognition and assessment of gait abnormality
play an important role in making effective rehabilitation
treatment strategies for the post-stroke hemiparetic patients.
This research proposes a multimodal fusion-based automatic
gait analysis architecture which can qualitatively identify the
patients’ altered gait patterns after stroke, and quantitatively
estimate their walking ability. The kinematic, kinetic and
electrophysiological data recorded during walking can be
processed and integrated in this architecture. The results
show that both the recognition performance and estimation
performance become better as more different modal gait data
are used. The best three-modal fusion scheme produces over
98% recognition accuracy, and its estimation results indicate
a strong significant negative correlation with the WGS scores.
These results may facilitate the automatic gait analysis system
to better support the traditional clinical decisions, and thereby
enhance the efficiency of rehabilitation treatments.
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