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A Multimodal Framework Based on Integration of
Cortical and Muscular Activities for Decoding
Human Intentions About Lower Limb Motions
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Abstract—In this study, a multimodal fusion framework based
on three different modal biosignals is developed to recognize
human intentions related to lower limb multi-joint motions which
commonly appear in daily life. Electroencephalogram (EEG), elec-
tromyogram (EMG) and mechanomyogram (MMG) signals were
simultaneously recorded from twelve subjects while performing
nine lower limb multi-joint motions. These multimodal data are
used as the inputs of the fusion framework for identification of dif-
ferent motion intentions. Twelve fusion techniques are evaluated
in this framework and a large number of comparative experiments
are carried out. The results show that a support vector machine-
based three-modal fusion scheme can achieve average accuracies
of 98.61%, 97.78% and 96.85%, respectively, under three differ-
ent data division forms. Furthermore, the relevant statistical tests
reveal that this fusion scheme brings significant accuracy improve-
ment in comparison with the cases of two-modal fusion or only a
single modality. These promising results indicate the potential of
the multimodal fusion framework for facilitating the future devel-
opment of human-robot interaction for lower limb rehabilitation.

Index Terms—Electroencephalogram (EEG), electromyogram
(EMG), human-robot interaction, mechanomyogram (MMG),
motion intention recognition, multimodal fusion.
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I. INTRODUCTION

THERE have been an increasing number of biorobots de-
signed for improving the quality of human life over the last

decades. Some devices, like exoskeletons [1], [2] and prosthe-
ses [3]–[5] can provide effective help for paralyzed or disabled
people. Up to now, existing biorobots are still facing a lot of
challenges. One of the major problems is that most robots can-
not sufficiently distinguish users’ various motion intentions [6].
Therefore, it is very difficult for robots to make accurate adjust-
ments in time according to users’ intentions, which vastly limits
their practical use.

To address this issue, many advanced human-robot interfaces
(HRI) have been developed to capture human motion inten-
tions. Some of them were designed based on the biosignals
recorded from human body [7]–[16], such as electroencephalo-
gram (EEG), electromyogram (EMG) and mechanomyogram
(MMG), all of which contain rich information about limb mo-
tion. EEG is the measurement of brain electrophysiological ac-
tivity from the scalp [17]. The EEG recorded from the motor
cortex has a strong relationship with the movement control of
human body. EMG is the recording of the electrical activity pro-
duced by a skeletal muscle, which can reflect the activation level
of the muscle [18]. Specially, surface EMG acquired from the
skin surface is more practical due to its non-invasiveness. MMG
is a low frequency vibration recorded from the surface of the
skin above a skeletal muscle, which embodies the mechanical
activity of the muscle [19].

Recently, there has been a propulsion to fuse multimodal
biosignals to achieve a more accurate and complete description
of human motion intentions and to improve recognition perfor-
mance of the systems that only use a single modal biosignal [6].
Since different modalities contain different human motion in-
formation, proper combination strategies can take the advantage
of the complementarity between them to bring better results.
For instance, on the one hand, by considering the influence of
muscle weakness or fatigue, EEG can be used as an effective
supplement for EMG-based or MMG-based approaches. On the
other hand, EMG or MMG can contribute to relieve the men-
tal fatigue which is from intensive concentration when using
EEG-based devices. Moreover, the complementary information
about electrical and mechanical activity of a muscle can be em-
ployed by effectively fusing EMG and MMG. As the state of the
art is extensive, we narrow the focus on the multimodal fusion
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methods based on EEG, EMG or MMG. Therefore, the fusion
approaches using other signals (e.g., force signals) will not be
considered in this paper.

Some researches focused on the motion intention recogni-
tion methods based on the fusion of EEG and EMG. Leeb
et al. [20] designed a hybrid brain-computer interface to recog-
nize two kinds of hand movements by using 16-channel EEG and
4-channel EMG. Two decision fusion algorithms, the average-
rule-based fusion and Bayesian fusion were used to combine
the outputs of EEG classifier and EMG classifier. For single
EEG and single EMG, the recognition accuracies were 73%
and 87%, respectively. While, the accuracy increased to 93%
after using Bayesian fusion. Kiguchi and Hayashi [21] studied
a judgment approach for the perception-assist of an upper-limb
exoskeleton based on the combination of 256-channel EEG and
16-channel EMG. The results indicated that the accuracy was
better improved by integrating EEG and EMG compared with
just employing EMG in a two-class problem. Moreover, for a
few subjects in this experiment, the outcomes after combination
were enhanced greatly (e.g., from 60% to 85%). Kirchner and
Tabie [22] studied the hand motion prediction by integrating
EEG and EMG. 128-channel EEG and 4-channel EMG were
synchronously recorded and two action events were labeled.
The combination of multimodal data was implemented by rule-
based decision fusion approaches (e.g., AND rule). The results
indicated that the true positive rate or false positive rate was
improved under different fusion rules. Xie et al. [23] applied a
feature fusion method in identifying the knee extension and flex-
ion, which combined local-mean-decomposition features and
multi-scale-entropy features extracted from 14-channel EEG
and 2-channel EMG, respectively. This study showed that the
recognition rate by using feature fusion increased by about
5% than using EMG alone. Song et al. [24] investigated the
multi-domain feature extraction of EEG and EMG to separately
recognize three upper limb motion forms. Each motion forms
contained two patterns. The features extracted from 2-channel
EEG and 2-channel EMG were fused by nonnegative tensor fac-
torization. The accuracies of the three motion forms by applying
feature fusion were 92.14%, 89.78% and 93.75%, respectively,
all of which were higher than the cases of only using a sin-
gle modality. Shusharina et al. [25] developed a multifunctional
neurodevice to measure 10-channel EEG and 6-channel EMG
for recognizing hip flexion and extension. The linear discrim-
inant analysis method was used for classification. Comparison
experiments were conducted by only using EMG and combining
EEG and EMG, respectively. The results showed that the fusion
of the two signals could reach an accuracy of 86.8% while for
using only EMG was 74.3%.

Several studies explored the motion intention identification
approaches by combining EMG and MMG. Prociow et al. [26]
presented a feature fusion method for EMG and MMG to
recognize seven kinds of hand movements. Different time and
frequency domain features extracted from 3-channel EMG
and 3-channel MMG were combined as the input of a neural
network. The results demonstrated that the recognition rate
by using fused features increased by almost 2% than only
using EMG features. Guo et al. [27] designed a multimodal

signal acquisition system to recognize five hand gestures
through 1-channel EMG and 1-channel MMG. The comparison
and analysis were conducted on the time-frequency responses
of EMG and MMG. Then, the features extracted from the two
modalities were combined together. The accuracy was 88.7%
for using fused features while for using EMG alone was 74.1%.
Kurzynski et al. [28] applied a multi-classifier system based on
the integration of EMG and MMG to identify users’ intentions
about hand motions. 8-channel EMG and 8-channel MMG were
synchronously measured during five hand grasping actions. The
results showed that the approach based on the combination of
EMG and MMG obtained a higher accuracy of 95.1% compared
with 87.0% for EMG alone and 60.6% for MMG alone. And
in [29], they further improved the recognition performance by
combining the meta-Bayes concept and Markov model into
the multi-classifier system. The number of grasping actions
increased to six and the accuracy increased to 95.8%. It is worth
noting that few researches about motion intention recognition
based on fusing EEG and MMG have been carried out at present.

According to the above literature, there exist some prob-
lems in the studies about two-modal fusion. Although the
accuracy is enhanced compared with the case of only using
a single modality, there are still ample rooms for accuracy
improvement. Furthermore, more relevant experiments by
combining EEG and MMG need to be conducted. Finally,
and most importantly, there are still rare researches studying
the multimodal-biosignal-fusion methods for identifying
human intentions about lower limb multi-joint movements.
Considering the complementarity between different modalities,
we suppose that appropriate three-modal fusion schemes could
achieve more accurate results than two-modal fusion. It is
worth mentioning that literature [30] proposed a multi-classifier
structure which can fuse EMG, MMG, EEG and can be
considered for the application in prosthetic hands. However,
this literature just presented a concept without further studies
on specific methods and experiments. Moreover, to the best of
our knowledge, the fusion framework based on the above three
signals has never been designed to classify different lower limb
movement patterns. Consequently, it is necessary to develop the
technologies of combining EEG, EMG and MMG for decoding
various motion intentions of human lower extremity.

In this paper, an enhanced multimodal fusion framework is
proposed for recognizing human intentions about lower limb
multi-joint movements. This framework, based on the combina-
tion of EEG, EMG and MMG, consists of two layers. In the first
layer, three individual classifiers (i.e., EEG, EMG and MMG
classifiers) are utilized to produce local decisions. The second
layer consists of a decision fusion model which combines local
decisions to achieve the final recognition result. In comparison
with feature fusion methods in [23], [24], [26], [27], decision
fusion has better scalability, more flexibility and is easier to be
implemented. Compared with multi-classifier systems in [28],
[29], decision fusion has a simpler structure and faster process-
ing speed. Although some previous studies (e.g., [20], [22]) have
explored the decision fusion methods of two modalities, most
of them were limited to several simple fusion algorithms and
many other methods have not been adopted.
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The main contributions of this research include: 1) An en-
hanced multimodal fusion framework based on EEG, EMG and
MMG is designed to decode human intentions about lower limb
multi-joint motions. 2) Twelve decision fusion algorithms are
evaluated in this framework. To the best of our knowledge, some
of them have never been studied in the recognition of human
motion intentions. 3) Extensive comparative experiments indi-
cate that the best three-modal fusion scheme can obtain average
accuracies of 98.61%, 97.78% and 96.85%, respectively, under
three different data divisions for a nine-class problem, which
are significantly higher than the cases of two-modal fusion or
only a single modality.

The rest of this paper is organized as follows: Section II gives
an insight into the collection and preprocessing of multimodal
data. The multimodal fusion structure and implementation are
depicted in Section III. Section IV presents the experimental
results and discussions. Finally, Section V concludes the paper.

II. DATA COLLECTION AND PREPROCESSING

The procedures of data collection and preprocessing are de-
scribed in this section. Firstly, the subjects’ basic information
and the deployment of different sensors are depicted. Next, the
experimental protocol and data preprocessing method are re-
ported, respectively.

A. Subjects and Sensor Deployment

Twelve healthy subjects (six male and six female, age =
25.69 ±2.39 years, height = 166.83 ± 8.16 cm, weight = 57.13
± 7.61 kg) were recruited in data recording. The dominant-
legs of these subjects are right legs, which can be determined
by the mobilizing functions of the legs when kicking a ball
or hitting a target [31], [32]. This study was approved by the
Ethics Committee of China Rehabilitation Research Center and
an informed consent form was signed by every subject.

The brain activities were recorded by a Mindo-32 system
(Mindo, Taiwan) which integrates a band-pass filter between
0.1 to 30 Hz. The sampling rate was set as 256 Hz. During
the acquisition, each subject needed to wear an electrode cap
with the reference electrode and ground electrode placed on
the left and right mastoid processes, respectively. Although this
system can simultaneously acquire 32 channels of EEG signals,
only 9 channels over the motor cortex (FC3, FCz, FC4, C3, Cz,
C4, CP3, CPz, CP4) were active and other channels were idle.
The reason for this is twofold: Firstly, the EEG channels in this
area have stronger relevance with human movements. Secondly,
using fewer channels can be faster and more convenient for data
processing and analysis. In order to guarantee the quality of the
acquired EEG signals, all the subjects were asked to try to avoid
head shaking when doing exercises.

The muscular activities were monitored by collecting EMG
and MMG signals, respectively. Seven channels of surface EMG
signals from right leg muscles were collected by the MyoScan
sensors (Thought Technology Ltd., Canada) with a 50 Hz notch
filter and a 10–100 Hz band-pass filter. The sampling frequency
was also set as 256 Hz. The recorded muscles included the il-
iopsoas, gluteus maximus, rectus femoris, vastus medialis, long

head of biceps femoris, tibialis anterior, medial head of gas-
trocnemius. The surface electrodes were placed based on the
human anatomical locations [33]. Seven-channel MMG sig-
nals were captured from the same muscles mentioned above
by using seven high sensitivity (1000 mV/g) accelerometers
(CA-DR-1001, Sinocera Piezotronics Inc., China) fixed with
medical tapes. The MMG signals were band-pass filtered (5–
55 Hz), notch filtered (50 Hz) using the designed filter circuits
and sampled at 256 Hz by a 16-bit acquisition module. To ensure
the synchronization between different acquisition devices, dig-
ital clock signals for synchronous beginning and ending were
generated by a computer that was used to store data.

Unluckily, there were very large noises in a subject’s EEG
signals, whose data should be ruled out before next step. Besides,
another subject’s data was removed because a sensor measuring
MMG lost contact with the skin surface during the movement.
Consequently, the further analysis is based on the remaining ten
subjects’ data.

B. Experimental Protocol

Different lower limb exercises are considered in this study.
They are cycling, walking, and going up and down a step, which
are the most common activities of daily living. All the exercises
are carried out on the fitness equipments by the Technogym
(Shanghai) International Trading Ltd., China. Each kind of ex-
ercise is subdivided into three different forms. As a result, there
are a total of nine motion patterns which are more than that in
the literature reviewed in Section I. In the present paper, the
cycling exercise is conducted on a stationary exercise bicycle
which can provide different exercise loads. Three load condi-
tions, i.e., 20 W (lower load), 70 W (medium load) and 120
W (higher load), are considered, respectively. The pedaling rate
is kept at 25 revolutions per minute. The walking exercise is
performed on a treadmill which can offer a way to walk at an
adjustable incline. The three subcategories of the walking ex-
ercise are discriminated by different slopes that are set as 0.5◦

(slight slope), 5.5◦ (moderate slope) and 10.5◦ (slightly steeper
slope). The walking speed is maintained at 1.2 kilometres per
hour. For going up and down a step, the three subcategories are
separated by different movement frequencies. This exercise is
conducted on a stepper which is a fitness equipment for up and
down step training. The movement frequencies can be controlled
by the equipment. The specific frequency settings are 15 times
per minute (lower frequency), 20 times per minute (medium
frequency) and 25 times per minute (higher frequency), respec-
tively. The category names of different exercises are shown in
Table I, which are labeled using the Arabic numerals from 1 to 9.

Before data collection, all the subjects were required to adapt
to the different types of exercises and surrounding environ-
ment. For each subject, each motion mode was conducted for
60 seconds. After a 20-second adaptation period, multimodal
data were simultaneously recorded during the following 40 sec-
onds. In order to prevent muscle fatigue, the subjects were al-
lowed to have a short rest for 2-3 minutes between different
motion modes. The data collection scene during the cycling
exercise from one subject is shown in Fig. 1.
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TABLE I
CATEGORY NAMES OF DIFFERENT EXERCISES

Label Category name

1 Cycling under a lower load
2 Cycling under a medium load
3 Cycling under a higher load
4 Walking on a slight slope
5 Walking on a moderate slope
6 Walking on a slightly steeper slope
7 Going up and down a step at lower frequency
8 Going up and down a step at medium frequency
9 Going up and down a step at higher frequency

Fig. 1. Data collection scene during the cycling exercise.

In general, all the exercises were carried out at a relatively low
speed, which were designed after considering several practical
factors. These factors are mainly from the following three as-
pects. 1) The first purpose is to ensure the quality of the collected
biosignals. Fast motion will cause large motion artifacts in the
three biosignals, which will lead to bad effects on recognition
results. Some sensors may shift or even fall off from the sub-
ject’s leg during fast movements. 2) The second is the feasibility
of performing multiple different motion forms. As these exper-
iments involve a total of nine kinds of locomotion patterns, this
design helps the subjects to accomplish these movement modes
successfully without fatigue. 3) The third one is for the consid-
eration of applications. The ultimate purpose of our study is to
help and assist the patients with lower limb motor dysfunction,
whose movements are usually slow.

It is noted that most parts of the data collection procedure were
conducted under the guidance of two rehabilitation physicians.

C. Preprocessing

In order to continuously classify different intended move-
ments, the data segmentation of biosignals is based on the win-
dowing technique [34]. Normally, biosignals are divided into a
series of fixed-length analysis windows whose size determines
the amount of data for generating one class prediction [35]. In

Fig. 2. Multimodal fusion framework for combining EEG, EMG and MMG
signals.

order to reduce the delay between adjacent analysis windows,
the overlapping technique is commonly used [35], which means
that the current window overlaps with the previous one in a cer-
tain proportion. An experimental sample in this study is defined
as the data in an analysis window. The length of every analysis
window is set as 62.5 milliseconds (ms) and the overlapping
ratio is set as 50%. Therefore, for each modal biosignal of one
subject, the number of experimental samples is 1,279 in every
motion pattern. The total number of samples is 11,511 for each
modal biosignal of one subject in a nine-class problem, which
is a large amount of samples for this specific task.

III. DATA ANALYSIS

In this section, a series of data analysis methods are con-
ducted on the collected biosignals to recognize different motion
intentions of subjects’ lower extremity. As a first step, an over-
all view of the multimodal fusion framework based on EEG,
EMG and MMG is provided and discussed. Then, the specific
implementation approaches are described in detail. Finally, the
performance metric of the data analysis methods is given.

A. Multimodal Fusion Framework

The block diagram of the proposed multimodal fusion frame-
work for combining EEG, EMG and MMG signals is shown in
Fig. 2. After data collection and segmentation pre-processing,
the biosignals in each analysis window are fed to this fusion
framework which can be represented as a two-layer structure.
The first one is the local decision layer, where three individ-
ual classifiers produce local decisions by using their respective
features extracted from each analysis window. Next, the fusion
algorithm integrates local decisions to achieve the final class
prediction at the decision fusion layer. The above procedure
can be formulized as follows. The input feature vector Qs

i ex-
tracted from the ith analysis window of the sth modality can be
defined as

Qs
i =
[
ηs

1 ,. . ., η
s
n ,. . ., ηs

Ns

]T
, s=1, 2,. . ., S, i=1, 2,. . ., I (1)

where ηs
n is the nth feature of Qs

i , S is the number of modalities
and I is the number of analysis windows. The output of the sth
individual classifier is the local decision of the sth modality at



CUI et al.: MULTIMODAL FRAMEWORK BASED ON INTEGRATION OF CORTICAL AND MUSCULAR ACTIVITIES 893

the ith analysis window, which can be expressed as

ds
i = fs(Qs

i ) (2)

where fs denotes the individual classifier of the sth modality
and ds

i is the local decision. Then the outputs of these individ-
ual classifiers are concatenated together to form a set of local
decisions. At last, the fusion model predicts the final result for
the ith analysis window by combining the local decisions. This
procedure can be expressed as

yi = g(d1
i ,. . ., d

s
i ,. . ., d

S
i ) (3)

where g represents the fusion algorithm and yi is the final pre-
dicted class for the ith analysis window. It is worth to note that
this framework can be easily extended to the parallel usage of
more than three modal signals.

By considering the influences of individual differences be-
tween subjects, the classification and fusion models are subject-
specific, all of which need to be independently trained based on
each subject’s data. In this work, the training procedure is per-
formed in the following steps. To start with, the training data of
each subject are divided into two parts, i.e., individual-training
data and fusion-training data. Next, different candidate individ-
ual classifiers are established by using the individual-training
data. After that, these candidate classifiers are used to process
the fusion-training data and three best individual classifiers are
selected by comparing recognition accuracies. Finally, the out-
puts of three selected classifiers and the ground truth labels are
fed to the fusion model to optimize tunable parameters. Dur-
ing the training procedure, 5-fold cross validation is applied to
determine the hyper-parameters in some classification or fusion
models. If there are no special instructions, the percentages of
the individual-training data and fusion-training data for one sub-
ject are set to about 50% and 30%, respectively. The remaining
approximately 20% of one subject’s data are used as testing data
to evaluate the recognition performance of this framework.

B. Implementation of the Two-Layer Structure

In order to implement the proposed two-layer structure, dif-
ferent feature extraction methods and individual classifiers are
adopted at the local decision layer. Furthermore, various deci-
sion fusion algorithms are considered and applied in the decision
fusion layer.

1) Local Decision Layer: The feature extraction approaches
for EEG, EMG and MMG signals are described as follows.

For EEG signals, by considering the complex transient char-
acteristics such as abrupt changes, spikes and drifts, the wavelet
packet transform (WPT) is applied to extract features on the
analysis window of EEG data. The Daubechies wavelet of order
four is chosen to decompose EEG signals into three levels, and
the features are extracted from the transformation coefficients
of the third level. The logarithmic energy feature of the WPT

coefficients can be denoted by [36]

ΓΩ j , k
= log

⎛

⎜
⎝

∑Nl

n=1

(
wT

j,k,nx
)2

Nl

⎞

⎟
⎠ , j = 3, k = 0, 1,. . ., 7

(4)
where ΓΩ j , k

is calculated by summing the squares of the trans-
form coefficients for each entry in the node Ωj,k from a binary
wavelet packet tree and normalized by the number of coefficients
in Ωj,k . Then the features on different nodes are concatenated
to form the feature vector of EEG signals.

For EMG signals, the filter bank technique is applied to di-
vide the data into different frequency bands. The filter bank
is made up of three second-order Butterworth band-pass filters
which can decompose the EMG signals into three frequency
bands, namely 10–40 Hz, 40–70 Hz and 70–100 Hz. From dif-
ferent bands, different signal characteristics can be obtained. In
this study, the mean absolute value (MAV) feature is extracted
from the analysis window of each frequency band signal. The
MAV feature has been widely investigated in EMG signal analy-
sis [37], which is used here for its low computational complexity.
The definition of MAV feature can be written as

MAV =
1
L

L∑

m=1

|um | (5)

where um is the mth data point of an EMG analysis window
and L is the number of data points in an analysis window. Then
the MAV features of different frequency bands are concatenated
together to construct the EMG feature vector.

Similar to the processing of EMG, the MMG signals are de-
composed into several frequency bands, and simple features
are extracted from each frequency band. Specifically, three fre-
quency bands of 5–20 Hz, 20–35 Hz, 35–55 Hz are separated by
a filter bank composed of three second-order Butterworth band-
pass filters. After that, the root mean square (RMS) feature on
the analysis window from each frequency band is calculated,
which is commonly used in the analysis of MMG signals [38].
The definition of RMS feature can be expressed as

RMS =

√√
√
√ 1

L

L∑

m=1

v2
m (6)

where vm is the mth value of one MMG analysis window and L
has been defined in (5). Next, the RMS features extracted from
the three frequency bands are concatenated to build the MMG
feature vector.

After feature extraction, the features from different modal-
ities are fed to their respective individual classifiers. For each
modality, eight commonly used linear and non-linear classifiers
are regarded as candidate individual classification models in this
study. Specifically, the eight classification models [39] are the
support vector machine (SVM), neural network (NN), linear
discriminant analysis (LDA) classifier, quadratic discriminant
analysis (QDA) classifier, decision trees (DT), random forest
(RF), naive Bayes (NB) classifier and k-nearest neighbor (KNN)
classifier. In these experiments, the SVM model uses a radial ba-
sis kernel function, and the classification scores are transformed
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to posterior probabilities by using Platt’s method [40]. The NN
model consists of a feedforward network structure with three
layers. The activation functions of the hidden layer and output
layer are sigmoid function and softmax function, respectively.

The output of the sth individual classifier can be a predicted
probability vector or a predicted class, which depends on the
subsequent fusion algorithm. Consequently, the local decision
can be further represented as

ps
i = fs(Qs

i ) or cs
i = fs(Qs

i ) (7)

where Qs
i and fs have been defined in (1) and (2), respectively,

ps
i is the predicted probability vector and cs

i is the predicted class.
As it is mentioned in Section III-A, the individual-training data
are fed to these candidate individual models for training (except
KNN). After that, the classifier with the highest accuracy for
each modality is selected by comparing the recognition perfor-
mance on the fusion-training data. They are SVM for EEG, RF
for EMG and NN for MMG. Then the local decisions produced
by the three selected best classifiers on the fusion-training data
are further employed to train the fusion model.

2) Decision Fusion Layer: At the decision fusion layer, var-
ious decision fusion algorithms are utilized to combine local
decisions from three selected individual classifiers (SVM, RF
and NN). According to literature [41], the involved decision
fusion approaches can be divided into two types: rule-based ap-
proaches and classification-based approaches. The former com-
bines multimodal data by pre-established rules while the latter
is based on appropriate pattern classification techniques. In or-
der to facilitate the description of different methods, some new
variables are defined as follows. Bi is defined as the intended
motion pattern of the ith analysis window, which need to be
assigned to one of the J possible classes (w1 , w2 ,. . ., wJ ). Let
P (wk |Qs

i ) denote the kth element of the predicted probability
vector ps

i which has been defined in (7).
For the rule-based fusion methods, three static rules are con-

sidered, including the max rule (MR), average rule (AR) and
majority voting rule (MVR) [42]. The mathematical definitions
of these rules can be denoted as follows. Max rule (MR): Assign
Bi → wk if

S
max
s=1

P (wk |Qs
i ) =

J
max
j=1

S
max
s=1

P (wj |Qs
i ).

Average rule (AR): Assign Bi → wk if

1
S

S∑

s=1

P (wk |Qs
i ) =

J
max
j=1

(
1
S

S∑

s=1

P (wj |Qs
i )

)

.

Majority voting rule (MVR): Assign Bi → wk if

S∑

s=1

Φks
i =

J
max
j=1

S∑

s=1

Φjs
i

where

Φzs
i =

{
1 if P (wz |Qs

i ) =
J

max
j=1

P (wj |Qs
i )

0 otherwise
.

It is noted that the MVR combines the predicted classes rather
than the predicted probabilities, which is different from other
fusion methods used in this paper. Moreover, the MVR can only

be used under the constraint of at least three modalities, i.e.,
S ≥ 3.

There are a total of nine classification-based fusion ap-
proaches involved in this study, which include the eight algo-
rithms described in Section III-B1 and the Bayesian fusion (BF)
algorithm [43]. However, these eight algorithms here are used to
establish the fusion models which are different from the previous
individual models. The inputs of the fusion models are the pre-
dicted probabilities from the three selected individual classifiers
mentioned before. For convenience, the classification-based fu-
sion methods can be uniformly expressed as

yi = Gcf (p1
i ,. . ., p

s
i ,. . ., p

S
i ) (8)

where Gcf represents the classification-based fusion model, yi

and ps
i have been defined in (3) and (7), respectively.

To the best of our knowledge, in addition to the AR and BF
methods whose performance have been reported in the reviewed
literature, other decision fusion methods applied in this paper
have not yet been studied in the recognition of human motion
intentions.

C. Performance Metric

In this study, decoding different motion intentions of human
lower extremity can be formulated as a multiclass classification
problem. Consequently, the accuracy, one of the most commonly
used performance metrics, is selected to evaluate the different
data analysis methods. Mathematically, the accuracy is calcu-
lated as [39]

r =
1
N

N∑

i=1

I(yi = li) (9)

where r is the accuracy, N is the number of samples, li is the
ground truth label of the ith sample, yi has been defined in (3)
and I(·) is an indicator function. In this paper, the ground truth
labels are marked according to the specific lower limb exercises
performed during data recording and the specific experimental
sample has been defined in Section II-C.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

To evaluate the practicability of the above multimodal frame-
work, extensive experiments and relevant statistical analysis are
conducted on the testing data. The classification performance by
using only a single modality is reported at first. Then different
combinations of multimodal signals are discussed and evalu-
ated. Furthermore, recognition results of the above schemes are
sufficiently compared in different aspects. Finally, the impact of
the recognition performance improvement is discussed.

A. Recognition Results of Single-Modal Schemes

The classification accuracy based on a single modality is
examined on the testing data. As the three best individual clas-
sifiers (SVM, RF and NN) are selected on the fusion-training
data, the performance on the testing data can further validate
the rationality of this selection. Moreover, the evaluation results
on the single modality can be regarded as the comparison ref-
erence for that of multimodal fusion. The average classification
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Fig. 3. Average classification accuracy and its standard deviation of single-
modal schemes.

TABLE II
AVERAGE CLASSIFICATION ACCURACY (%) AND ITS STANDARD DEVIATION OF

SINGLE-MODAL SCHEMES

accuracies on ten subjects’ data obtained from different individ-
ual classifiers of each modality are shown in Fig. 3 and Table II
where the best result for each modality is indicated in bold. For
EEG, EMG and MMG, the highest accuracies on testing data
are achieved by SVM, RF and NN, respectively. The selected
classifiers are consistent with the previous, which means that
the selection for the best individual classifier of each modality
is reasonable. By comparing the average accuracies on different
single modalities, the best scheme for single modality (BSSM)
obtains an accuracy of 91.33%, which is implemented by RF
classification model using EMG signals. The recognition result
of BSSM is shown in the grey highlighted cell in Table II.

B. Recognition Results of Multimodal Fusion Schemes

Different combinations of multimodal signals (EEG, EMG
and MMG) are explored to decode human motion intentions.
The combining forms can be either two or three modal fusion.
In order to verify the practical usefulness of the pro-
posed multimodal fusion framework, all kinds of combina-
tions are evaluated, i.e., EEG-EMG, EEG-MMG, EMG-MMG
and EEG-EMG-MMG. Twelve fusion algorithms outlined in
Section III-B2 are tested to find the most advantageous method
for each combination form. The recognition results for all the

Fig. 4. Average classification accuracy and its standard deviation of
multimodal fusion schemes.

TABLE III
AVERAGE CLASSIFICATION ACCURACY (%) AND ITS STANDARD DEVIATION OF

MULTIMODAL FUSION SCHEMES

fusion algorithms of every combination are shown in Fig. 4
and Table III where the best fusion result for each combination
is displayed in bold. According to the constraint condition of
MVR in Section III-B2, the MVR can only be utilized under
the condition of at least three modalities. Therefore, the evalu-
ation results of the MVR for two-modal fusion have not been
calculated, which are represented by short horizontal lines in Ta-
ble III. On the whole, most classification-based fusion methods
outperform rule-based fusion methods. The reason is that the
pre-established fusion rules are fixed, which may not be appro-
priate for different subjects’ data. By comparing the results from
different combinations of two modalities, the best scheme for
two-modal fusion (BSTWF) achieves an accuracy of 95.43%,
which is implemented by SVM fusion model using both EMG
and MMG. For the combination of three modalities, the best
scheme for three-modal fusion (BSTHF) yields an accuracy of
98.61%, which is implemented by SVM fusion model using the
three modal signals. The identification results of BSTWF and
BSTHF are indicated in the grey highlighted cells in Table III.

C. Comparison on Recognition Results of Different Schemes

The comparison and analysis of experimental results are car-
ried out to verify the effectiveness of the proposed multimodal
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Fig. 5. Classification accuracy distributions of the three best schemes. The
magenta dot and the red line are the average value and median value of the
accuracy, respectively.

TABLE IV
COMPARISON ON THE AVERAGE CLASSIFICATION ACCURACY (%) OF THE

THREE BEST SCHEMES AND SIGNIFICANCE TEST RESULTS (α = 0.05)

Scheme Performance Pairs p-value pc -value

BSSM 91.33 ± 3.11 BSSM vs. BSTWF 0.0371 0.1113
BSTWF 95.43 ± 2.04 BSSM vs. BSTHF 0.0020 0.0060
BSTHF 98.61 ± 1.18 BSTWF vs. BSTHF 0.0059 0.0177

fusion framework. The specific procedure is conducted from the
following aspects.

1) Comparison on the Average Classification Accuracy: The
box-and-whisker diagrams of recognition accuracies of the
BSSM, BSTWF and BSTHF are shown in Fig. 5, which provide
an overall view of accuracy distributions on ten subjects’ data.
For direct comparison, the average accuracies of the three best
schemes mentioned above are duplicated on the left half of Ta-
ble IV. As shown in this table, in comparison with the results of
BSSM, the average accuracy increases 4.10% by using BSTWF
and 7.28% by performing BSTHF, respectively. Furthermore,
the BSTHF outruns BSTWF by 3.18%. Then, the Wilcoxon
signed-rank test [44] is conducted to investigate the signifi-
cance of difference in this study. The significance level is set at
α = 0.05. The p-values corresponding to the different pairs are
presented on the right half of Table IV. By considering the mul-
tiple comparisons problem, the Bonferroni correction [45] are
used to correct the p-value. The pc -value in Table IV denotes the
corrected p-value after Bonferroni correction. It can be clearly
seen that all the p-values are less than 0.05, which means that
BSTWF is significantly superior to BSSM, and BSTHF is signif-
icantly better than the other two schemes in terms of the average
classification accuracy. After Bonferroni correction, except for
the difference between BSSM and BSTWF, other differences in
the multiple comparisons are still significant. The above results
demonstrate that the recognition accuracy can be significantly
enhanced by the proper fusion of more modal signals in this
specific task.

TABLE V
DIFFERENT DATA DIVISIONS

Individual-training data Fusion-training data Testing data

50% 30% 20%
45% 25% 30%
40% 20% 40%

TABLE VI
COMPARISON ON AVERAGE CLASSIFICATION ACCURACY (%) OF THE THREE

BEST SCHEMES UNDER DIFFERENT DATA DIVISIONS

Scheme 50%/30%/20% 45%/25%/30% 40%/20%/40%

BSSM 91.33 ± 3.11 90.10 ± 3.25 88.69 ± 3.42
BSTWF 95.43 ± 2.04 94.42 ± 2.15 93.23 ± 2.28
BSTHF 98.61 ± 1.18 97.78 ± 1.25 96.85 ± 1.34

2) Comparison on the Effects of Different Data Divisions:
All the previous results are based on the same data division de-
scribed in Section III-A, i.e., approximately 50%, 30%, 20% for
individual-training data, fusion-training data and testing data.
Since all the methods used in this study are essentially data-
driven approaches, the different data divisions probably have
influences on the recognition results. Besides, it is usually very
difficult to get enough multimodal data for training recognition
models in practical application. We doubt whether the proposed
multimodal fusion framework can still maintain good perfor-
mance as the training data become less and the test data become
more. To this end, the recognition experiments under different
data divisions are carried out. The specific forms of data division
are shown in Table V. It is worth to note that in these exper-
iments the training and testing procedures are consistent with
that mentioned in Section III-A. During the training of the local
decision layer, the best individual classifier for each modality is
reselected under the latter two new data divisions. By compar-
ing the recognition performance on the fusion-training data, the
selection outcomes are SVM for EEG, RF for EMG and NN for
MMG, which are the same as before. During the testing pro-
cedure, the best schemes by using single modality, two-modal
fusion and three-modal fusion are separately evaluated again
under the latter two data divisions. By comparing the recogni-
tion results, the BSSM, BSTWF and BSTHF under the latter
two data divisions are kept in line with that of the previous, i.e.,
BSSM implemented by RF classification model using EMG,
BSTWF implemented by SVM fusion model using both EMG
and MMG, BSTHF implemented by SVM fusion model using
the three modalities. Due to space limitation, we only report the
results of the above three best schemes here.

Fig. 6 shows the overall distributions of the recognition re-
sults for the three best schemes under different data divisions.
Table VI shows the average classification accuracies obtained
by BSSM, BSTWF and BSTHF under different data divisions,
where the best recognition result under each data division is
displayed in bold. With the increase in the proportion of testing
data, the recognition results for all the three schemes present a
continuous downward trend. Specifically, when the testing data
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Fig. 6. Classification accuracy distributions of the three best schemes under
different data divisions. The magenta dot and the red line are the average value
and median value of the accuracy, respectively.

TABLE VII
SIGNIFICANCE TEST RESULTS UNDER DIFFERENT DATA DIVISIONS (α = 0.05)

Pairs 45%/25%/30% 40%/20%/40%

p-value pc -value p-value pc -value

BSSM vs. BSTWF 0.0098 0.0294 0.0098 0.0294
BSSM vs. BSTHF 0.0020 0.0060 0.0020 0.0060
BSTWF vs. BSTHF 0.0098 0.0294 0.0020 0.0060

increase by 10%, the average accuracies for BSSM, BSTWF and
BSTHF decrease by 1.23%, 1.01% and 0.83%, respectively.
When the testing data rise by 20%, the accuracies reduce by
2.64%, 2.20% and 1.76%, respectively. Compared with BSSM
and BSTWF, BSTHF has obvious advantages in terms of the
average accuracy and robustness against changes in data divi-
sion. In addition, the outcomes of the Wilcoxon signed-rank
test (α = 0.05) performed on different pairs are given in Ta-
ble VII, which reveal that BSTWF significantly outruns BSSM,
and BSTHF significantly outperforms the other two schemes
under different data divisions. After Bonferroni correction, all
the differences in the multiple comparisons remain significant.
These results further indicate that the classification accuracy
can be significantly improved by appropriately combining more
modal signals even if the data division is changed. Therefore,
the proposed fusion framework has some potential to keep good
classification performance in practical application with insuffi-
cient training data.

3) Comparison on the Processing Delay: Since continuous
classification is based on the windowing technique, the pro-
cessing delay for an analysis window on testing data should be
evaluated and discussed. For the single-modal scheme, the pro-
cessing delay only contains the time for generating a decision.
For the multimodal fusion scheme, the processing delay consists
of the time for producing local decisions and the time for fusing

local decisions. For a 62.5 ms analysis window which contains
16 data points for each modality, the processing delays by using
BSSM, BSTWF and BSTHF are roughly 7 ms, 12 ms and 15
ms, respectively. Since the overlapping ratio of the window is
set as 50%, all the above processing delays are less than 31.25
ms that is the interval time between two adjacent analysis win-
dows. Consequently, the total delay between two consecutive
predictions is equal to 31.25 ms (much less than 100 ms) for
the above three schemes, which is an acceptable delay for a
real-time HRI [46].

D. Impact of the Recognition Performance Improvement

The application background of this study is to design a mul-
timodal HRI to control the biorobots for assisting the patients
with lower extremity motor dysfunction. Therefore, the better
the recognition performance of human motion intentions is, the
better the practical usefulness will be. There are many factors
that affect the performance improvement, such as types of signal
(i.e., modalities), signal quality, preprocessing methods, feature
extraction methods, classifiers, fusion methods, etc. We focus
on the selection of modalities, classifiers and fusion methods.
The selection of classifiers for single modality is discussed at
first. From the experimental results in Table II, for each single
modality, some classifiers indeed achieve higher accuracies than
others. The highest accuracy yielded by single-modal schemes is
up to 91.33%, but the performance still cannot meet the demand
for precise control of biorobots. This means that only select-
ing appropriate classifiers cannot satisfy the actual demand. In
order to further improve the recognition performance, different
combination forms of multimodal signals and different deci-
sion fusion methods have been explored and evaluated. From
the experimental results in Table III, for each combination form
of multimodalities, some fusion methods indeed obtain better
results than others. For each fusion method, the general trend is
that the accuracy is improved as the number of modalities in-
creases. The highest accuracy can be improved to 98.61%, which
is much better than the cases of only using a single modality. It
is worth pointing out that the decision fusion methods used in
this study are implemented based on the output of the individual
classifier for each single modality. Therefore, all the three fac-
tors (i.e. modalities, classifiers and fusion methods) considered
in this paper have certain impacts on the recognition perfor-
mance of human motion intentions. The relative importance
and correlation of the three factors affecting the performance
will be further explored in our future work.

V. CONCLUSION

This study provides a multimodal fusion framework based on
three different modal biosignals for lower limb motion inten-
tion recognition. Under this framework, the cortical and mus-
cular activities can be effectively integrated by synchronously
processing EEG, EMG and MMG. Perhaps the most exciting
results are that with our collected data, the proposed best three-
modal fusion scheme not only brings significant improvement
in the average recognition accuracy compared with the cases
of two-modal fusion or only a single modality, but also has



898 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, AUGUST 2017

advantages in the robustness against changes in data division. In
addition, the processing delay produced by the best three-modal
fusion scheme can meet the requirement of continuous recogni-
tion during the human-robot interaction. The subsequent work
will continue to explore more advanced multimodal fusion ap-
plications, including the classification of other activities of daily
life and the popularization of feasibility experiments on the
patients.
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