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Abstract—Robot-assisted rehabilitation training requires to
identify the patient’s motion intention effectively. These motions
are usually originated from rehabilitation actions included in the
Fugl-Meyer assessment scale. Surface electromyography (sEMG)
is the most commonly used physiological signal for identifying the
motion intention of patients. The use of sEMG to classify different
gesture patterns is one key technology for the human-machine
interaction. Therefore, this paper investigates a Fugl-Meyer hand
gesture recognition method towards robot-assisted hand rehabil-
itation. The experiment data set including eight hand gesture
information is collected from six volunteers. Six single features
(Difference Absolute Mean Value (DAMV), Integral of Absolute
Value (IAV), Variance (VAR), Autoregressive Coefficients (AR),
maximum value of Discrete Wave Transformation (DWTmax)
and standard deviation of Discrete Wavelet Transform (DWTstd))
are used to recognize the gesture. The experimental results
demonstrate that: (1) a segment length of 250 ms contains enough
information to estimate the hand gestures and leaves sufficient
time to do feature extraction and gesture recognition; (2) by
comparing the performance of different single features, DWTstd
wins the highest accuracy (i.e., 96%); (3) the combination of
single features into a multi-feature can effectively improve the
recognition accuracy, where the best performance is achieved by
multi-feature combining DAMV, IAV and AR under BP neural
network classifier (the average accuracy is 97.71%); (4) as to
different classifiers, BP neural network has a better performance
than Support Vector Machine (SVM) and Extreme Learning
Machine (ELM).

Index Terms—surface electromyography (sEMG), gesture
recognition, Fugl-Meyer assessment scale (FMAS), hand reha-
bilitation, back propagation neural network (BPNN).

I. INTRODUCTION

Recently, American Heart Association has reported that
approximately 700,000 people experience a new or recurrent
stroke in the United States each year [1]. The neurological
damage caused by the stroke and motor impairment often
greatly affects and limits the quality and autonomy of life,
while hand function impairment is one of the most serious
issues after neurological damage [2] (two thirds of stroke
survivors suffer from partial paralysis at the level of the
arm and hand [3]). While hand is irreplaceable in daily life,
regaining hand and arm function was identified as the most
critical need for people with paralyzed limbs [4].
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The treatment of paralysis is a long-term process, which
will lead to a large number of medical and human resource
consumption [5]. The number of rehabilitation therapists in
the world is insufficient to meet the needs in the rehabilitation
market. With the development of robots, researchers attempt to
use rehabilitation robots to assist patients to do rehabilitation
training [6] [7] [8]. In order to realize the communication
between the robot and the patient (let the robot understand the
current recovery state of the patient), it is necessary to establish
an effective human-machine interaction method. At present,
the popular physiological signals used to achieve human-
machine interaction are EEG, EOG and sEMG, where sEMG
is the most commonly used one [9] [10]. The use of sEMG
to classify different gesture patterns is one key technology
for the human-machine interaction [11]. Therefore, a study on
the hand gesture recognition using sEMG has been developed
in this paper, which aims to realize an effective interaction
between the robot and the patient.

A series of studies have been carried out for the analysis
of sEMG. Harrach et al. attempted to separate two sEMG
activities of the brachialis and the biceps brachii by using
a High Density sEMG (HD-sEMG) grid placed at the up-
per arm. Canonical Component Analysis (CCA) technique
was employed for obtaining more accurate and solid results
[12]. Winslow et al. used a 24-h sEMG recordings to do
identification and classification of muscle spasms, which is
important for clinical management of spasticity [13]. Ding
et al. came up with an Extended Full-Dimensional Gaussian
Mixture Model to solve sEMG-based motion recognition with
incomplete data [14]. Different approaches have been proposed
to extract the information of sEMG and different classifiers
have been employed to classify hand gestures. Zhai et al.
utilized the spectrogram of sEMG to do short latency hand
movement classification by SVM [15]. Various features such
as time domain features, frequency domain features, and other
non-linear features are used to classify hand gestures in [16]
[17]. Adewuyi et al. got an accuracy of 96% for non-amputees
and 85% for partial-hand amputees by combining EMG data
from both intrinsic and extrinsic hand muscles to classify
hand grasps and finger motions with LDA [18]. Duan et al.
combined the wavelet transform and the back propagation (BP)
neural network to recognize the gradual changes of six hand
motions, the average accuracy rate is found to be 92.17% [19].

Although many studies have been done to improve the
accuracy of hand gesture recognition, most of the gestures are
general hand gestures. To the best of the authors’ knowledge,
there is no study on the hand gesture recognition towards hand
rehabilitation training. At present, one method for post-stroke
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Fig. 1. Eight Fugl-Meyer hand gestures.

hand function rehabilitation is to do separation action. Fugl-
Meyer assessment scale is the most widely used method for
stroke hemiplegia motor function evaluation. Therapists often
use it to help patients do rehabilitation exercise in the clinical
practice. Therefore, it is necessary to improve the classification
accuracy of Fugl-Meyer hand gesture for ensuring the safety
of patients in the process of rehabilitation training. To this
end, how to optimal divide the sEMG data into segments for
real-time recognition; how to select the features and classifiers
must be addressed.

To address these challenges, a study on Fugl-Meyer hand
gesture recognition towards robot-assisted post-stroke hand
rehabilitation using sEMG has been developed in this paper.
Eight hand gestures in the Fugl-Meyer assessment scale have
been collected from six volunteers. Then, six features in the
time domain, frequency domain and time-frequency domain
are used to do feature extraction. Finally, a three-layer BP
neural network has been employed to recognize eight hand
gestures based on these features.

The rest of this paper is organized as follows. Section II
introduces the data acquisition and preprocessing in the ex-
periment. Feature selection and gesture recognition method are
described in Section III. Section IV provides the experimental
results and their analysis. Finally, Section V concludes the
study and presents suggestions for future work.

II. DATA ACQUISITION AND PREPROCESSING

A. Fugl-Meyer Assessment Scale and Hand Gesture

Fugl-Meyer assessment scale is a measure of upper ex-
tremity (UE) and lower extremity (LE) motor and sensory
impairment. It is the most popular assessment scale used to
assess the motor function in clinical applications because of its
detailed content, accurate result and short appraise time. All
of the hand gestures used in this paper are based on the Fugl-
Meyer assessment scale. These gestures are separate gestures
often used in the process of rehabilitation. Participants have to
perform eight gestures which are shown in Fig. 1 and listed
as follows:

1) Fingers Mass Extension: full fingers extension active or
passive.

2) Fingers Mass Flexion: full fingers flexion active or
passive.

Flexor carpi 
radialis 

Extensor 
carpi 
ulnaris

Extensor  
digitorum 

Abductor 
pollicis brevis 

Fig. 2. Muscle positions for the electrode locations.

3) Grasp a: hook grasp that extends the metacarpopha-
langeal joints and flex the proximal and distal interphalangeal
joints.

4) Grasp b: thumb adduction that four fingers keep straight
and abduct the thumb to grasp a piece of paper.

5) Grasp c: grasp a pen or pencil by opposing the thumb
and index finger pads around the pen.

6) Grasp d: cylindrical grasp that the patient can grasp a
cylindrical object. This cylindrical object is a stick used in the
hand rehabilitation training.

7) Grasp e: spherical grip that the patient can grip spherical
objects. This spherical object is a ball used in rehabilitation
training.

8) Right-angle Hook: proximal and distal interphalangeal
joints keep extension with metacarpophalangeal joint bending
90 degrees.

B. Experimental Setup

In this experiment, six healthy volunteers including five
males (23, 21, 24, 23, and 24 years old) and one female
(22 years old) were recruited to execute eight hand gestures
which have been introduced in the previous section. The
average body height of volunteers is 171.5 cm; the average of
body mass is 60 kg. All participants have signed an informed
consent prior to the experiments. The equipment of acquiring
sEMG signals is a device that was independently designed
by Institute of Automation Chinese Academy of Sciences
(CASIA). This equipment can collect 8 channels of sEMG
simultaneously with a 1024Hz sampling frequency in each
channel. The device that runs the sEMG signal acquisition
program is a quad-core Intel Core i7 personal computer.
According to the musculoskeletal system, flexor carpi radialis,
extensor digitorum, extensor carpi ulnaris and abductor pollicis
brevis are selected to collect the sEMG. Besides, the muscle
which is 1-cm away from the index finger joint is also selected
to collect sEMG. The muscle positions for the electrode
locations are shown in Fig. 2.

In order to improve the quality of signal acquisition, some
pre-experiment preparations were done before patching the
electrode: such as scratching the skin hair on the surface of
the collected muscle and washing the skin with alcohol.

C. Data Acquisition and Preprocessing

The gestures or the way to grasp objects have been shown
to the participants before experiments. Each gesture lasts 2
seconds (2048 points for each channel) and is repeated for 50
times, 3 seconds relax that keeps the hand open and no muscle



activity state is made between every repeat. After a single
gesture has been repeated 50 times, rest the hand for 5 minutes
to begin the next gesture. This can effectively prevent the
muscle fatigue and improve the quality of signal acquisition.

sEMG is a weak electrical signal generated by nervous
system stimulating the muscle contraction essentially. The
frequency range of sEMG is usually from 10 Hz to 500
Hz. The dominated frequency is within 50-150 Hz. Because
the original sEMG is very weak, the data are susceptible
to external interferences such as intrinsic noise of electronic
components and acquisition equipment, DC baseline noise
[20]. Since the noise is mainly concentrated in a low-frequency
range from 0 Hz to 20 Hz, a band-pass filter from 20 Hz to
500 Hz is set to eliminate the noise effects. In addition, it is
necessary to set a notch filter of 50 Hz to remove the industrial
frequency interference.

III. FEATURE SELECTION AND GESTURE RECOGNITION
METHOD

A. sEMG Feature Extraction and Selection

sEMG is an analog signal collected from the surface of the
human body with different characteristics in the time domain
and frequency domain. There are a large number of publi-
cations investigating the influence of different features in the
time domain, frequency domain and time-frequency domain
on gesture recognition [16] [21]. In the following section, six
features that act individually or in combination are used to rec-
ognize the hand gesture. They are three time-domain features:
DAMV, IAV and VAR; one frequency-domain feature: AR;
two time-frequency-domain features: DWTmax and DWTstd.

1) DAMV: the value of this feature indicates the vibration
characteristics of the sEMG. The expression of DAMV is
shown as follows:

DAMV =
1

N

N−1∑
i=1

|xi+1 − xi|. (1)

2) IAV: this feature can reflect the level of muscle contrac-
tion. The expression of IAV is shown as below:

IAV =
1

N

N∑
i=1

|xi|. (2)

3) VAR: this feature uses the magnitude of the sEMG as
an eigenvalue. Since the DC component of sEMG has been
removed in the data preprocessing, the average of sEMG can
be regarded as zero. The expression of VAR is changed into
the following form:

V AR =
1

N − 1

N∑
i=1

x2
i . (3)

In the above three equations, N is the length of sEMG time
series, xi is the ith sample amplitude of sEMG.

4) AR: The AR model considers the random signal se-
quence x(n) as a response of a certain system stimulated by
the white noise w(n). Therefore, the parameters of the AR
model can be used as the eigenvalues of the random signal.
In this paper, the parameters in the fourth-order autoregressive
model (AR4) are selected as the characteristics of sEMG. The
expression of AR4 is as below:

x(n) = −
4∑

k=1

akx(n− k) + w(n), (4)

ak is the parameter of AR4, w(n) is Gaussian white noise.
5) DWT: The first step of wave transformation is to select

a function as the fundamental wave which satisfies the integral
is zero in the time domain. And then a discrete wavelet family
ψik(t) which consists of member wavelets is obtained through
the scale transformation and translation transformation of the
fundamental wave ϕ(t). It is defined as follows:

ψik(t) =
1√
2i
ϕ(

t− k2i

2i
), (5)

i is the scale parameter, k represents the translation parameter.
Then, the expression of Discrete Wavelet Transform can be
defined as follows:

ci,k =
1√
2i

∫ +∞

−∞
x(t)ϕ(

t− k2i

2i
) dt, (6)

ci,k is the time-scale information of x(t) after wavelet trans-
forming.

In this paper, db5 wavelet is used to do 3 layers wavelet
decomposition. The wavelet coefficients are extracted by the
decomposed wavelet signal, and then the maximum or the
standard deviation of the wavelet coefficients is extracted as
the time-frequency domain feature of sEMG. The expressions
of DWTmax and DWTstd are defined as below:

DWTmax = max(xi), (7)

DWTstd =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄), (8)

xi is the wavelet coefficients matrix, x̄ is the average of xi,
and N is the length of xi .

B. Gesture Recognition Using BP Neural Networks

After feature extraction and feature selection, some classi-
fiers are used to classify the gesture through these features.
In this paper, a three-layer BP neural network is used to do
the hand gesture recognition. The number of input layer nodes
n depends on the number of acquisition channels c and the
number of features of the sEMG signal f . The relationship of
these three variables is: n = f × c.

When each channel uses a single feature such as DAMV,
IAV, VAR as input, the number of input neurons is 5. When
each channel uses AR4, DWTmax, DWTstd as input, the
number of input neurons is 20. The number of output neurons
is 8. The output of neurons in the output layer is between 0



TABLE I
BINARY CODES FOR EIGHT HAND GESTURES

Gestures o1 o2 o3 o4 o5 o6 o7 o8

Fingers Extension 1 0 0 0 0 0 0 0
Fingers Flexion 0 1 0 0 0 0 0 0
Grasp a 0 0 1 0 0 0 0 0
Grasp b 0 0 0 1 0 0 0 0
Grasp c 0 0 0 0 1 0 0 0
Grasp d 0 0 0 0 0 1 0 0
Grasp e 0 0 0 0 0 0 1 0
Right-angle Hook 0 0 0 0 0 0 0 1

and 1. When using BP neural network to do the hand gesture
recognition, the data set after feature extraction and selection
is divided into two parts: 80% were used to train the neural
network and 20% for the model test. In the training process,
the output vector o = (o1, o2, ..., o8) can be replaced by 8
binary codes shown in Table 1.

In the test process, in order to make the output to be either
0 and 1, the final output vector o should be transformed by
the following trick:

oi =

{
1 if oi = max {o}, i ∈ {1, 2, ..., 8},
0 otherwise.

(9)

The number of hidden layer neurons is 40. The hyperbolic
tangent sigmoid function is chosen as the transfer function of
neurons in then hidden layer. The transfer function of neurons
in the output layer is the unit linear function.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data Segmentation

Data segmentation is to divide the original data into several
parts. The data in each segmentation is used to estimate
signal features. A long length of segmentation can improve
the accuracy of gesture classification, however, it increases
the time consumption of data processing. A short length of
segmentation can improve the processing speed and leaves
sufficient time for calculating features, classifying gestures and
real-time control of robots, however, it reduces the accuracy.
It has been proved that the minimum interval between two
distinct contractions is about 200 ms to estimate one hand
gesture [16] [22]. Therefore, a study on the influence of
data segmentation with different lengths has been investigated
first. The optimal length of data segmentation should not
only contain enough information to classify the hand gestures
but also provide a reasonable time period for rehabilitation
robots to achieve real-time control. The average classification
accuracy under different lengths of data segmentation on 6
subjects is shown in Fig. 3.

For the time domain features DAMV and VAR, when the
segmentation length is 250 ms, the accuracy rate reaches a
value that is very close to the best result. For IAV, when the
segmentation length is 500 ms, the accuracy is 93.4%, how-
ever, when the segmentation length is 250 ms, the accuracy
can reach 91.72%. For the time-frequency domain features
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Fig. 3. Recognition rates with different single features and different lengths
of data segmentation using BP neural network.
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Fig. 4. Recognition rates with different single features of six volunteers
using BP neural network.

DWTmax and DWTstd, the accuracy is also the best or very
close to the best when the segmentation length is 250 ms.
For the frequency domain feature AR, when the segmentation
length is 250 ms, the accuracy is only 3% less than the
best. These results show that when the data segmentation
length is 250 ms, the extracted features can contain enough
information to classify hand gestures and can leave enough
time for the feature computation, gesture classification, and
generation of control commands. Based on these observations,
the data segmentation length is chosen to be 250 ms in the
rest of experiments.

B. Recognition With Single Feature

The performance comparison of different single features
on 6 subjects under BP neural networks is given in this
experiment. The recognition results are shown in Fig. 4.
DAMV, IAV and DWTstd have a similar performance, the
accuracy rate can reach at least 90%. Among them, DWTstd
obtains the highest recognition rate of 96.06%. For the features
in the time domain, DAMV has the highest accuracy while
the VAR has the lowest one. The frequency domain feature
AR4 is worse than other features, the average accuracy rate
is only 75%. For the time-frequency domain feature, DWTstd
is better than DWTmax. By comparing the performance of
different single features, DWTstd has the best accuracy, which
is 96.06%.

C. Recognition With Multiple Features

It has been proved that the combination of some features
as a multi-feature can effectively improve the recognition
accuracy. However, the employment of the multi-feature in-
creases the computing resource, which leads to the increase
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Fig. 5. Recognition rates with the two-feature combinations of six volunteers
using BP neural networks.
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Fig. 6. Recognition rates with selected combinations of three or four features
using BP neural networks.

of the recognition time. Therefore, this paper explores how to
combine features to achieve a higher classification accuracy
while maintaining the computation time at a reasonable level.
The experiment results are shown in Fig. 5. From these results,
it is demonstrated that the multi-feature combination has a
better performance compared to the single feature case. The
combination of the time domain feature and the frequency
domain feature (AR) can obviously improve accuracy. For
example, the combination of VAR and AR can reach to an
accuracy of 95.25%, while the classification accuracy of using
VAR or AR alone can only be 82.63% and 75%, respectively.
Among all the two-feature combinations, The combination of
DAMV and AR has a highest recognition rate of 97.02%.

The classification accuracy of three or four features combi-
nation was also explored. The recognition results are shown
in Fig. 6. The combination of DAMV+IAV+AR wins the
highest accuracy of 97.71%. It is a little bit higher than
the combination of DAMV+AR which has best performance
in the two-feature combination. The recognition rate of the
other three feature combinations in this experiment can also
reach to an accuracy above 97%. However, the combination
of four features can not improve the recognition rate (the
highest accuracy is 97.34%). Therefore, the combination of
DAMV, IAV and AR under the BP neural network wins the
best performance (the average accuracy is 97.71%).
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Fig. 7. Recognition rates under different classifiers with selected features.

D. Recognition With Different Classifiers

Classifiers are also crucial to the classification accuracy.
An experiment aiming at comparing different classifiers (BP
neural network, Extreme Learning Machine (ELM), Support
Vector Machine (SVM)) has been developed. The activation
function in ELM is the sigmoidal function and the number
of hidden neurons is 3000. Radial basis function is selected
to be the kernel function for the SVM classifier. The kernel
parameter in SVM is 0.1 and the penalty parameter is 1.25. In
this experiment, the classification performances of the above
three classifiers are obtained under all single features and
multi-features. Features with the satisfactory performance such
as DAMV, DWTstd, DAMV+IAV, DAMV+AR, IAV+AR,
DAMV+IAV+AR are shown in Fig. 7.

The results have demonstrated that DWTstd can win the
best performance in different single features. As to the two-
feature combination, DAMV+AR still has a very high classi-
fication accuracy. The best performance of ELM is achieved
by DAMV+AR (the accuracy is only 93.4%). As to SVM, the
highest accuracy is only 91.8% achieved by DAMV+IAV+AR.
The results show that the BP neural network has a better
performance than SVM and ELM. It is recommended to
use the BP neural network together with the multi-feature
DAMV+IAV+AR for the interaction between robots and pa-
tients because it has the best recognition rate of 97.71%.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a study on the hand gesture recognition in
Fugl-Meyer assessment scale using sEMG has been investigat-
ed and evaluated. This study aims at identifying the patients
motion intention effectively and let the robot understand the
patient’s current recovery state to improve the quality of
rehabilitation training. It has been found that the length of
data segmentation, feature selection and feature combination
can affect the accuracy of classification. The data segmentation
length of 250 ms can not only contain enough information to
classify the hand gestures but also provide a reasonable and
effective time for rehabilitation robot to finish the real-time
control. For the single-feature-based classification, DWTstd
can reach a highest accuracy (i.e. 96%). Among all two-feature
combinations, the champion is the combination of DAMV and
AR whose classification accuracy is 97.5%. The best com-
bination of three features can slightly improve the accuracy



to 97.71% (DAMV+IAV+AR). As to different classifiers, the
BP neural network has a better performance than SVM and
ELM. Based on experimental results, the following setting is
recommended for the classification of hand gestures in Fugl-
Meyer assessment scale: use the BP neural network as the
classifier; use the “DAMV+IAV+AR” as the feature; and the
length of data segmentation is 250 ms.

In the future, an attempt is to be made to realize the active
rehabilitation in the robot platform. It uses the sEMG to identi-
fy the patient’s gestures first, and then takes the corresponding
control strategy for different gestures. Furthermore, the control
strategy requires the accurate and optimal control of fingers
of patients. In order to realize the accurate control and task
assignment of five fingers, some advanced control methods
such as the model predictive control [23], [24], [25] and
the distributed coordination control [26], [27], [28] can be
employed. In addition, the sEMG can provide an objective
and quantitative evaluation of the contraction sequence and
degree of involvement of each muscle during the patient’s
movement. Future study is also to focus on using sEMG to
achieve an auxiliary assessment or automatic evaluation based
on the Fugl-Meyer assessment scale.
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