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Abstract— This paper deals with the problem of dynamic
hovering of a bio-inspired robot with undulatory fins. First,
the mechanism and dynamic model of the underwater robot
named RobCutt-II is briefly introduced. Next, an neural network
visual servo control is presented to achieve hovering control. In
particular, a dual-loop visual hovering control is designed. At first,
we analyze the relationship between the image feature error and
the direction of the controllable velocity. In the outer loop, a PID
controller is used to calculate the current controllable velocity
based on image feature error in real time. Meanwhile, the inverse
model of undulatory fins is established using the neural network.
The velocity error is hereby mapped to the control parameters
of the undulatory fins of the RobCutt-II. The simulation results
of dynamic hovering are provided to illustrate the validity of the
proposed method.

Index Terms— Dynamic hovering, visual servo control, undu-
latory fin, image feature, neural network.

I. INTRODUCTION

Ocean is the main resource of the energy and chemical
balance that sustains mankind. As an effective working plat-
form for the implementation of marine exploration, resource
development, underwater equipment maintenance, underwa-
ter rescue and other military and civilian tasks in complex
water environment, underwater vehicle-manipulator systems
(UVMSs) have always been the concern of the marine powers
[1], [2].

Although traditional axial propeller propulsion systems can
produce a strong thrust, their noise are large and their small
thrust control ability are weak. Furthermore, axial propeller
is easy to cause underwater dust, which affects the visual
observation. Some marine animals of the order Sepiida like
cuttlefish swim using flexible long fins. They have flexible
maneuverability, strong anti-disturbance ability. Specially, they
are good at swimming in narrow space at low speed. By imi-
tating these fish, we can develop underwater robots propelled
by undulatory fins, which would help handle the challenging
problems of dynamic hovering under flow disturbance [3], [4].
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Maintaining a fixed position and attitude is a critical capabil-
ity for UVMSs in underwater survey and intervention missions.
In particular, Dynamic hovering mode has been reported to
take 35% of the total work done in a typical subsea task [5].
This ability is often taken for granted in land-based robotics
because of the ease of implementation. However, an UVMS
must deal with unknown currents and forces which can cause
its position to change undesirably.

Visual servo control for dynamic hovering has been used in
some aircrafts and underwater vehicles [6]−[9]. For example,
Chen et al. developed a vision-based fuzzy controller for
quadrotor tracking a ground targert [6]. Lots et al. introduced
a 2-D visual servoing technique for the station keeping of an
unmanned underwater vehicle with respect to planar unmarked
objects on the sea bed. A linear PID controller is used
to achieve slow and stable hover capabilities [8]. However,
most researchers designed hovering control algotithm for the
underwater vehicles equipped with traditional axial propellers.
Moreover, they are mostly aimed at full-actuated systems.

However, in low-speed underwater motions such as hover-
ing, the axial propeller is in non-full rotation working state,
when the efficiency of the propulsion system is significantly
reduced and the unpredictable fluid pulse could be produced.
In this paper, an underwater biomimetic vehicle-manipulator
system (UBVMS, named RobCutt-II) propelled by undulatory
fins is introduced. Then, a neural network visual servo con-
trol for dynamic hovering of RobCutt-II is proposed, which
is conductive to stable and effective underwater operations.
Specifically, we design a dual-loop visual hovering controller.
The input of the outer loop is the desired image feature, while
the output is the desired controllable velocity. The inner loop is
the velocity loop, where a neural network is used to establish
the inverse model of undulatory fins. In the end, we investigate
the efficacy of the proposed control through some simulation
studies.

In the remainder of this paper, the modeling of the RobCutt-
II is described in Section II. Sections III presents the develop-
ment of the neural network visual hovering control. Simulation
studies are presented in Sections IV. Finally, conclusions are
given in Section V.
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Fig. 1. RobCutt-II prototype.

II. MODELING OF THE ROBCUTT-II

The RobCutt-II considered in this paper is seen in Fig. 1,
which consists of three parts, i.e. a main body, a five degrees
of freedom manipulator and two modular propulsors with
undulatory fins [10]. The camera is installed in the front of the
main body. The five degrees of freedom manipulator has been
detailed in [11]. Moreover, the description about the propulsor
can be seen in [12].

The general dynamic model of underwater vehicles can be
represented as (1) under some assumptions [13].

η̇ = J(ψ)ν
Mν̇ = −C(ν)ν −Dν + τ + τd

(1)

where η = [x, y, z, ψ]
T ∈ R4 represents the position and head-

ing of the RobCutt-II, ν = [u, v, w, r]
T ∈ R4 is the body-fixed

velocity, τ = [τu, 0, τw, τr]
T ∈ R4 is the propulsive force and

torque produced by two long fins, τd = [τdu, τdv, τdw, τdr]
T ∈

R4 denotes the disturbance acting on surge, sway, heave,
and yaw dynamics. The definitions of the other symbols and
parameters can be found in [14], [15].

Note that the actual control inputs of the RobCutt-II are the
parameters of propagating waves on bilateral fins. Specifically,
they include the left fin frequency, the right fin frequency, the
amplitude of waves, the phase difference and the deflection
angle, which are denoted by FL, FR, A, φ, θB . The relations
between propulsive force or torque and the parameters of the
propagating wave are derived by the experiments of three
basic motions, including the forward/backward swimming, the
diving/floating, and turning maneuver [16]. For example, it
is known from the experiments that the surge force τu is
proportional to the sum of the frequency of two long fins within
a certain range. While the heave force τw is proportional to
the absolute value of the sum of the frequency.

Therefore, the following equations are used to fit the char-
acteristic curves between the propulsive force or torque and
the control parameters of the undulatory fins:

τu = ku1
1− e−ku2A

1 + e−ku2A

1− e−ku3φ

1 + e−ku3φ
(FL + FR) (2)

Fig. 2. The control block diagram of hovering control.
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Fig. 3. The schematic diagram of inverse model identification by neural
network.

τw = kw1
1

1 + e−kw2(φmax−φ)

1− e−kw3θB

1 + e−kw3θB
|FL + FR| (3)

τr = kr1
1− e−kr2A

1 + e−kr2A

1− e−kr3φ

1 + e−kr3φ
(FL − FR) (4)

where FL ∈ [−1.5, 1.5], FR ∈ [−1.5, 1.5], A ∈ [0, 40], θB ∈
[−20, 20], and φ ∈ [0, 40], φmax denotes the maximum phase
difference between the adjacent fins, ku1, ku2, ku3, kw1, kw2,
kw3, kr1, kr2, kr3 are some characteristic parameters.

III. NEURAL NETWORK VISUAL HOVERING CONTROL
DEVELOPMENT

A. Dual-loop Visual Hovering Control Design

The control block diagram of the dual-loop visual hov-
ering is shown in Fig. 2. First, three coordinate systems
are established as shown in Fig. 1, including the inertial
coordinate system OEXEYEZE , the body-fixed coordinate
system OBXBYBZB , and the camera coordinate system
OCXCYCZC . In particular, we can rotate the body-fixed
coordinate system by ψ = −180◦ about ZB axis, and then by
θ = −90◦ about the new YB axis to get the camera coordinate
system.

Define and select image feature s = [xg, yg, a]. (xg, yg),
a represent the center of gravity and the area of the target
object in the normalized image plane, respectively. es denotes
the image feature error between the desired image feature
sd and real-time image feature acquired from the camera.
The goal of the visual servo hovering control is to make
es = s − sd converge to zero. Note that the RobCutt-II is
an underactuated vehicle, because it can’t generate a lateral
motion voluntarily. Thus, the controllable velocity ν̄ includes
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Fig. 4. Neural network structure diagram.

the velocity or angular velocity in surge, in heave, and in yaw.
Then, we can calculate the desired controllable velocity ν̄d
using a PID controller and the velocity direction transform
matrix (VDTM) Lvel. The inner loop of the controller is the
velocity loop, which takes the velocity error ev as input and
outputs the required propulsive force and torque τ to regulate
the velocity of the vehicle to the desired one. Furthermore,
an artificial neural network is utilized to map the propulsive
force and torque to the control parameters of the undulatory
fins. Thus the image feature error can be convergent, which
means the RobCutt-II would reach the desired posture and
hover stably.

The VDTM establishes the relationship between image fea-
ture error and the direction vector of the controllable velocity.
Specifically, the propulsor should produce a positive surge
propulsive force to make the RobCutt-II close to the target
when the actual image area is smaller than the desired image
area. Heave velocity along the negative ZB−axis should be
produced when xg is smaller than the desired one. Moreover, a
positive angular velocity around ZB−axis should be produced
when yg is smaller than the desired one. Thus, we can get:

ν̄d = Lvel

(
Kpes +Kdės +Ki

∫
esdt

)
(5)

with

Lvel =

 0 0 1
−1 0 0
0 1 0

 (6)

where Kp,Ki,Kd represent the out-loop PID control param-
eters matrix.

B. Neural Network Inverse Model Identification of the Propul-
sor

In the actual control, we need to use the inverse model of the
dynamic model of the undulatory fins in Section II-B, whose
derivation is cumbersome. Thus we use the neural network to
simulate the inverse model of the propulsor with undulatory
fins. Fig. 3 shows the schematic diagram of inverse model
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Fig. 5. Actual trajectory of the RobCutt-II during hovering control.

TABLE I
MODEL PARAMETERS OF THE ROBCUTT-II

m11 m22 m33 m44 d11 d22 d33 d44 HHHH57.5 61.3 61.3 1.15 53 58 70 3.1
ku1 ku2 ku3 kw1 kw2 kw3 kr1 kr2 kr3
10 0.1 0.1 10 0.1 0.1 5 0.1 0.1

identification by neural network. It is seen from Fig. 3 that
the output τ of the undulatory fins system is used as the input
of the neural network. The output of the neural network is
compared with the system input. The corresponding error ep
is used for model training, such that we can learn the dynamic
inverse model of the undulatory fins.

In particular, we use the neural network structure shown
in Fig. 4 to establish the mapping relationship between the
propulsive force and torque and the control parameters of
the undulatory fins. A three-layer feed-forward neural network
(one input layer, one hidden layer, and one output layer) is uti-
lized. Combined with the practical control experience, network
structure is simplified by fixing the amplitude of undulatory
fins to 36◦. Thus, the input layer has 3 nodes while the output
layer has 4 nodes. The backward propagation (BP) algorithm
is used to train the neural network. Hyperbolic tangent sigmoid
transfer function is used as the activate function of the hidden
layer and the output layer. After several tests, the optimal size
of the hidden layer is selected as 10, when the error between
the actual output and the desired output is small enough. Note
that we can train the neural network offline and then use the
trained control parameters directly in actual hovering control.

IV. SIMULATION RESULTS

In order to verify the feasibility and effectiveness of the
proposed controller, we simulate the response of the RobCutt-
II when the proposed neural network visual servo control
is applied using the model shown in Section II. The model
parameters used in the simulations are listed in Tables I.
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Fig. 6. Time evolution of the position and heading of the RobCutt-II.
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Fig. 7. Time evolution of the image feature error.

The initial states of the RobCutt-II are (x0, y0, z0, ψ0) =
(4.0m, 0.5m, 0.5m, π rad), and the initial velocity is zero.
The target is a 0.4m×0.3m rectangular object with center of
gravity (0.5m, 2.6m, 2.8m), which is parallel with the plane
XEOEYE of the inertial coordinate system. The desired image
feature is sd = (0.0m, 0.0m, 0.19m). The control period is
0.05 s.

The simulation results based on these conditions are pre-
sented in Fig. 5-Fig. 9. Fig. 5 depicts the actual trajectory of
the RobCutt-II in 3-D space. Fig. 6 is the time evolution of
the position and heading of the RobCutt-II. Fig. 7 describes
the image feature error curve. It can be seen from the figures
that as the real-time image feature converges to the desired
image feature, the RobCutt-II gradually reaches the desired
position and heading. Fig. 8 presents the body-fixed velocity
during hovering. Fig. 9 shows the time evolution of the control
parameters of propagating waves on bilateral fins. Stable
hovering is achieved, such that it can be concluded that the
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Fig. 8. Time evolution of the body-fixed velocity.
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Fig. 9. Time evolution of the control parameters of propagating waves on
bilateral fins.

neural network visual servo hovering control is effective.
Meanwhile, in order to verify the anti-disturbance perfor-

mance of the proposed control algorithm, another simulation
is performed, where zero mean Gaussian noises with standard
deviation 2 are incorporated into the surge, sway, and heave
dynamics of the vehicle. In addition, zero mean uniform
Gaussian noise whose standard deviation is 1 is incorporated
into the yaw dynamics. The initial position of the RobCutt-II
is set to (x0, y0, z0) = (3.0m, 3.0m, 4.0m), while the initial
heading is π rad. Other settings are the same as these of the
previous simulation.

Fig. 10 shows the trajectory of RobCutt-II under the hov-
ering control. Fig. 11 is the time evolution of the position
and heading of the RobCutt-II. Fig. 12 describes the image
feature error curve. The graph reflecting time history of the
body-fixed velocity is depicted in Fig. 13. Fig. 14 illustrates
that the time evolution of the control parameters of propagating
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Fig. 10. Actual trajectory of the RobCutt-II during hovering control with
external disturbance.
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Fig. 11. Time evolution of the position and heading of the RobCutt-II.

waves on bilateral fins. It can be observed from the figures that
the image error still converges to zero despite the disturbance.
Moreover, although obvious fluctuations occur in the yaw an-
gular velocity of the RobCutt-II and the frequency of two long
fins, the RobCutt-II arrives at the desired position at around
15 s and then hovers behind the ground target stably, which
demonstrates the robustness to disturbance of the proposed
approach.

V. CONCLUSIONS

The closed loop hovering control of an underwater
biomimetic vehicle-manipulator system has been achieved. In
order to realize dynamic hovering, an dual-loop neural network
visual servo control is proposed. In the outer loop, image fea-
ture error is used to calculate the desired controllable velocity
using a PID controller and the velocity direction transformation
matrix. In the inner loop, the controllable velocity error is
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Fig. 12. Time evolution of the image feature error.
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Fig. 13. Time evolution of the body-fixed velocity.

hereby mapped to the control parameters of the undulatory fins
of the RobCutt-II by the neural network. The simulation results
have demonstrated that the RobCutt-II can achieve dynamic
hovering by the proposed controller.
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