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a b s t r a c t 

Humans are able to simultaneously identify a person and recognize his or her action based on biolog- 

ical motions. Previous work usually treats action recognition and person identification from motions as 

two separate tasks with different objectives. In this paper, we present an end-to-end framework to per- 

form these two tasks together. Inspired by the recent success of deep recurrent neural networks (RNN) 

for skeleton based action recognition, we propose a new pipeline to recognize both actions and persons 

from skeletons extracted by RGBD sensors. The structure includes two subnets and is end-to-end train- 

able. The former is skeleton transformation, which accommodates viewpoint changes and noise. The latter 

is multi-task RNN for joint learning and various architectures are explored including a novel architecture 

that learns the joint probability between the two output variables. Experiments on 3D action recogni- 

tion benchmark datasets demonstrate the benefits of multi-task learning and our method dramatically 

outperforms the existing state-of-the-art in action recognition. 

© 2018 Published by Elsevier Ltd. 
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. Introduction 

Human visual system can quickly and efficiently detect another

iving being performing some actions in a visual scene and recog-

ize many aspects of biological, psychological, and social signifi-

ance [1] . Biological motion contains information about actions as

ell as the identity of persons. The motion patterns are decom-

osed into content and style [2,3] . The content represents the tem-

oral dynamics of body poses and the style indicates the person-

lized style of actions which can be used for person identification.

hat our visual system seems to solve so effortlessly is still an

nsolved problem in computer vision. 

Learning content and style corresponds to two important tasks

or vision based human motion understanding, i.e., action recog-

ition and person identification from biological motion. Due to

ifferent goals, the existing methods treat them as two separate

r even mutually exclusive tasks. Action recognition is concerned

ith what is the performed action, regardless of human subjects.

he difference that different persons do the same action in vari-

us ways is the inter-class difference that has to be reduced. While

erson identification from biological motion addresses the ques-

ion of who is the person performing the action. It aims to seek
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istinguishable variations between the same actions performed by

ifferent persons, allowing for an arbitrary type of actions. 

Most previous approaches recognize human actions from

ideos. Johansson’s experiments [4] show that a large set of ac-

ions can be recognized from motions of the main joints of skele-

ons, which have inspired most of the literature about human body

ose estimation and action recognition. Recently, skeleton based

ction recognition gains more popularity due to the advent of cost-

ffective depth sensors (e.g., Microsoft Kinect) and fast and accu-

ate skeleton estimation algorithms from a single depth image [5] .

hese depth sensors support real-time non-invasive pose estima-

ion. Currently, the Kinect v2 can physically sense depth and es-

imate reliable skeletons by 8 m. The area of human pose estima-

ion in videos is also developing fast, and there are several popular

enchmarks and effective methods. Compared with the video data,

keletons are more succinct and explicitly depict the dynamics of

ctions. 

In this paper, we aim to simultaneously recognize both content

nd style from movements of human. We opt to consider RGBD

ata and learn representations from human skeletons. A novel and

nified framework is proposed to conduct action recognition and

erson identification from human skeletons. The proposed method

nherits the merits of deep recurrent neural networks (RNN) for

keleton based action recognition [6–8] . Fig. 1 shows an architec-

ure of our method. It first learns representations from the raw

https://doi.org/10.1016/j.patcog.2018.03.030
http://www.ScienceDirect.com
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Fig. 1. Pipeline of our approach for joint learning content and style . Here, View TF, 

SPDP, FC denote the viewpoint transformation, spatial dropout, and fully-connected 

layer, respectively. The whole architecture is end-to-end trainable and could simul- 

taneously predict action class and person ID from raw skeletons. 
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skeletons, and then performs the two tasks together using the

shared representations based on multi-task learning. 

The proposed pipeline consists of two components: skeleton

transformation for robust representation and multi-task RNN for

joint learning. The former aims to address the problem of view-

point changes and noise by the proposed viewpoint transforma-

tion layer and spatial dropout layer, respectively. The latter extends

the generic RNN in a multi-task learning manner, which comprises

of shared layers and task-specific layers. The shared RNN layers

learn the commonalities across tasks and the task-specific RNN

layers model the differences for the corresponding task. To inves-

tigate the ability of different shared and task-specific representa-

tions, we enumerate seven architectures with different amounts

of sharing layers. We also examine the two special architectures.

One is equivalent to two separate networks and has no shared pa-

rameter. The other is a novel architecture with no task-specific pa-

rameter, and learns the joint probability between the two output

variables. We apply our model to skeleton based action recogni-

tion with cross-view evaluation to compare with the existing ap-

proaches. 

In summary, the main contributions of this paper are listed as

follows: 

• To the best of our knowledge, we are the first to pair action

recognition and person identification inspired by the fact that

our visual system can simultaneously recognize content and

style from biological motions. 
• We propose a new end-to-end trainable pipeline, which con-

sists of skeleton transformation and multi-task RNN. 
• We propose multi-task RNN with different amounts of sharing

layers as well as a novel architecture that learns the joint prob-

ability between the two output variables. 
• We obtain state-of-the-art results in skeleton based action

recognition. Experiments show that for these two tasks, learn-

ing one task would benefit from learning another task. 
• For person identification, we achieve a accuracy of 65.2% from

novel viewpoints within 40 categories solely based on skele-

tons. 

2. Related work 

Learning content and style from skeletons is related to a range of

topics, e.g., skeleton based action recognition and multi-task learn-

ing. Here we briefly review representative work on those topics. 

2.1. Skeleton based action recognition 

Skeleton based action recognition becomes popular due to the

advances of pose estimation. There are many recent accurate pose
stimation and pose tracking algorithms. For example, a deep

tructure is proposed to represent the human body in a coarse-

o-fine procedure [9] . A max-margin Markov based model is pre-

ented to track human pose [10] and a united graphical model is

eveloped to integrate the problems of pose estimation and visual

racking [11] . 

Traditional approaches can be divided into two categories: joint

ased approaches [12,13] and body part based approaches [14,15] .

eaders are referred to these survey papers [16,17] . Joint based ap-

roaches consider the human skeletons simply as a set of points.

hese approaches use various features (e.g., joint positions [18] ,

oint orientations [19] , pairwise relative joint positions [20,21] ) to

epresent the motion of either individual joints or combinations of

oints. While body part based approaches regard the human skele-

on as a connected set of rigid segments. They directly model the

emporal evolution of individual body parts [22] or connected pairs

f body parts [23,24] . 

There is a growing trend of using recurrent neural networks

RNN) for skeleton based action recognition. An end-to-end hier-

rchical RNN architecture is the first attempt towards this task

6,25] . Afterwards, a fully-connected deep long short term memory

LSTM) network with regularization terms to learn co-occurrence

eatures of joints [7] is proposed, and a part-aware extension of

STM is presented to make use of the physical structure of the hu-

an body [8] . In addition, Veeriah et al. [26] propose a differen-

ial gating scheme for LSTM to emphasize the salient motions be-

ween successive frames. A spatio-temporal long short term mem-

ry (STLSTM) network is proposed to model the contextual depen-

encies of joints both in the temporal and spatial domain [27] .

ecently, Song et al. [28] design a spatial and temporal attention

ased RNN structure to learn discriminative spatial and temporal

eatures. Wang and Wang [29] present a two-stream RNN archi-

ecture to leverage both temporal dynamics and spatial configura-

ions. These approaches merely predict the actions and we exploit

ction recognition jointly learned with person identification. 

.2. Person identification from motions 

Person identification from motion is a widely studied topic in

he computer vision community. Many work focus on motion of a

articular type, i.e., locomotions. A typical example is gait recog-

ition [30] , which aims to discriminate individuals by the way

hey walk and is particularly suitable for long-distance human

dentification. Methods of gait recognition can be roughly divided

nto two categories, model based methods [31,32] and appearance

ased methods [33–35] . Model based methods model the underly-

ng structure of human body to measure physical gait parameters

uch as trajectories, limb lengths, and angular speeds. In contrast,

ppearance based methods analyze gait sequences and extract gait

epresentations directly from videos. 

The growing popularity of Kinect has led to the recent work of

erson identification from depth and skeletons. For example, Bar-

osa et al. [36] exploit several soft-biometrics features extracted

rom range data and find that height and torso/legs ratio are the

ost informative cues. Munsell et al. [37] use a two-step approach

hat first classifies the locomotion type then applies a locomotion-

pecific identity classifier to identify the individual. Wu and Konrad

38] use a dynamic time warping framework based on skeletons

or both user identification and user authentication. The follow-up

ork investigates the potential performance and robustness gains

n user authentication using multiple Kinects [39] . A generative

odel for person identification based on motion patterns of skele-

ons from an arbitrary predefined set of action types is presented

40] . Recently, Haque et al. [41] present an attention based model

hat reasons on human body shape and motion dynamics to iden-

ify individuals given only depth images. Pala et al. [42] investi-
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ate anthropometric measures in unconstrained settings and show

he improvement of re-identification performance of the widely

sed clothing appearance cue. There approaches usually identify

he persons from the sequence of a given action (e.g., walking),

hile we handle the input sequence with an unknown type of ac-

ion and investigate person identification jointly learned with ac-

ion recognition. 

.3. Analyzing actions and persons 

An action is something which is done by a person. Actions and

ersons are intertwined with each other. Unveiling the relation-

hips between action recognition and person identification is a

eaningful research topic and there exists several previous work.

or example, Kobayashi and Otsu [43] present a general method

hich could be applied to action recognition and multiple-person

dentification appeared in a motion image sequence. As an action

ften involves many people active in the scene, Ramanathan et al.

44] introduce an attention based model to identify the key per-

on responsible for the action without being explicitly trained with

uch annotations. Xie et al. [45] propose a novel method to mine

epresentative actions of each person as complementary features

or person identification from video data. Wang and Wang [46] in-

roduce the new problem of cross-agent recognition which could

ecognize the actions of a particular person while the training data

omes from another different person. Although the relationships

etween actions and persons are considered, these approaches fo-

us on either action recognition or person identification. In con-

rast, we simultaneously address the two tasks by using a single

etwork. 

The work similar to ours is [47] , which proposes an unified

ramework for person identification and activity recognition based

n graph signal processing by using the same set of features. How-

ver, the train/test splits of the two tasks in [47] are different, and

e are the first to pair activity recognition and person identifica-

ion by multi-task learning. 

.4. Multi-task learning 

Multi-task learning [48] , i.e., multiple learning tasks are solved

t the same time to exploit commonalities and differences across

asks, has a rich history in machine learning. It has widespread ap-

lications in computer vision [49–52] , natural language processing

53,54] , genomics [49] , etc. Given such a broad scope, we only fo-

us on multi-task learning in the context of deep neural networks

sed in computer vision. 

Multi-task learning based on deep neural networks has dis-

layed remarkable success in computer vision. For example, the

ell-known Fast R-CNN [55] for object detection uses a multi-task

oss jointly train for classification and bounding-box regression. For

ulti-view face detection, Zhang and Zhang [56] present a multi-

ask deep CNN to jointly learn face detection together with facial

ose estimation and facial landmark localization. For facial land-

ark detection, Zhang et al. [57] achieve robust results by joint

earning with correlated tasks, such as appearance attribute, ex-

ression, demographic, and head pose. For attribute prediction, Ab-

ulnabi and Wang [58] learn binary semantic attributes through a

ulti-task CNN. For action recognition, a deep CNN is investigated

or the tasks of pose estimation and action classification in uncon-

trained images [59] . There are also some RNN based approaches.

or instance, a multi-task RNN is used to refine coarse predictions

hrough multiple steps for immediacy prediction [60] . Different

rom the previous approaches, we investigate different structures

f multi-task RNN based on the input sequence. 
. Preliminary 

Different from feedforward neural networks that map from one

nput vector/matrix to one output vector/matrix, recurrent neural

etworks (RNN) have an internal state to exhibit dynamic temporal

ehavior. They can process arbitrary sequences and map an input

equence to another output sequence. The hidden state represen-

ation h t at each time step t of a simple and popular RNN model

n account of the input x t at the current step and the state repre-

entation h t−1 of the previous step: 

 t = σ ( W x x t + W h h t−1 + b h ) 

y t = σ ( W o h t + b o ) (1) 

here W x , W h , W o , b h , b o are parameters and σ is a nonlinear ac-

ivation function. 

The standard RNN cannot store information for long periods of

ime due to the vanishing and exploding gradient problem. To ad-

ress this problem, long short-term memory (LSTM) [61] is pro-

osed by using additional gates to determine when the input is

ignificant enough to remember, when it should continue to re-

ember or forget the value, and when it should output the value.

he structure of an LSTM unit is shown in Fig. 2 (a). The hidden

tate representation h t of a LSTM unit is updated as: 

i t = σ ( W xi x t + W hi h t−1 + W ci c t−1 + b i ) 

f t = σ ( W x f x t + W h f h t−1 + W c f c t−1 + b f ) 

c t = f t c t−1 + i t tanh ( W xc x t + W hc h t−1 + b c ) 

o t = σ ( W xo x t + W ho h t−1 + W co c t + b o ) 

 t = o t tanh ( c t ) (2) 

here x t denotes the input at each time step t , and i, f, o corre-

pond to the input gate, forget gate and output gate, respectively.

ll the matrices W are the connection weights and all the variables

 are biases. 

For many sequence recognition tasks, both past context and

uture context are useful. Take action recognition as an example,

he anticipatory action of present depends not only on the past

ut also on the expectations of the future. Bidirectional Recur-

ent Neural Networks (BRNN) [62] elegantly combines both for-

ard and backward dependencies by using two separate recurrent

idden layers to present the input sequence. An example of un-

olded BRNN is shown in Fig. 2 (b). Every time step in the output

equence provides complete historical and future context. 

RNN architectures are naturally suitable for the sequence clas-

ification, e.g., skeleton based action classification, where an input

equence is assigned with a single class label. Deep RNN can be

onstructed by stacking multiple recurrent hidden layers on top of

ach other. The deep stacked RNN model can deal with multiple

ime scales in the input sequence. The formulation of stacked RNN

s: 

 

(l) 
t = f (l) 

h 
(h 

(l−1) 
t , h 

(l) 
t−1 

) (3)

here h (l) 
t is the hidden state of the l th level at time step t , and

f (l) 
h 

nonlinear function of the RNN unit. When l = 1 , the state is

omputed using x t instead of h (l−1) 
t . 

. Joint learning content and style 

For joint learning content and style from sequences of human

keletons, the learning system observes two supervised learning

asks, i.e., action recognition and person identification. The goal is

o simultaneously address both tasks by sharing information be-

ween them. The pipeline of learning content and style is shown in

ig. 1 . The structure consists of two components: skeleton trans-

ormation for robust representation and multi-task RNN for joint

earning. 



26 H. Wang, L. Wang / Pattern Recognition 81 (2018) 23–35 

Fig. 2. (a) A LSTM block with input, output, and forget gates [61] . (b) An unfolded bidirectional network [62] . The solid line denotes the weighted connection between units 

and the weights are reused at every time step. The outputs of the forward and backward layers are concatenated to present the output sequence. 
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4.1. Skeleton transformation 

In practical scenarios, the capturing viewpoints of cameras dif-

fer among different sequences and the estimated skeletons are

noisy. Accordingly, the skeleton transformation step addresses the

problems of viewpoint changes and noise. It comprises a viewpoint

transformation layer and a spatial dropout layer. After transforma-

tion, the sequence has two major changes. First, the skeleton se-

quence observed from a horizontal or vertical angle is transformed

to a standard skeleton observed from the frontal view. Second,

the coordinates of joints of a particular time step are randomly

dropped with a certain rate. The details are described below. 

Skeletons may be observed from arbitrary camera viewpoints

in a realistic scenario. To reach a view-invariant representation, a

viewpoint transformation layer is constructed to transform the co-

ordinates of input skeletons. Let X = { x 1 , x 2 , . . . , x n } denote a se-

quence of skeletons, for time step t , x t = [ p 1 , p 2 , . . . , p m 

] , where

p i = [ x i , y i , z i ] is the coordinates of the joint i . Given three angles

α, β , γ about the x, y, z axis in the 3D coordinate system, for

each joint and each time step, the new coordinates can be ob-

tained by ˜ p = p · R, where R = R z (γ ) R y (β) R x (α) . Details about the

formulation of the three basic rotation matrices in terms of angles

are presented in [25,29,63] . This operation simulates the viewpoint

changes of the camera and improves the robustness of our model. 

Skeletons collected by sensors like Kinect may not always be

reliable due to noise and occlusion. To handle the influence of

noise and occlusion, HBRNN [6] uses the Svaitzky–Golay filter in

the temporal domain to smooth the skeletons and Spatio-Temporal

LSTM [27] adds a new gate to LSTM unit to analyze the reliability

of the input. Here, we adopt an alternative approach based on spa-

tial dropout [64] . The standard dropout [65] independently sets the

neurons of network activations with probability p drop during train-

ing. For testing, all activations are used and 1 − p drop is multiplied

to account for the increase in expected bias. Given a matrix of the

sequence representation of size n × d , where n is the length of the

sequence and d is the feature dimension at each time step, the

spatial dropout layer performs only n dropout trials and extends

the dropout value across the feature dimension. 

4.2. Multi-task RNN 

Multi-task learning methods use a shared representation to

train different tasks in parallel. For deep neural networks, architec-

tures based on multi-task learning share the hidden layers at the

bottom of the networks. Although the RNN structures are widely

used, the multi-task RNN structures have been rarely explored be-

fore. Motivated by multi-task learning [48] , we investigate different

multi-task RNN architectures. 
The resulting networks consist of shared layers and task-specific

ayers. The shared layers are directly connected to the common

nput and the task-specific layers are attached to the last shared

ayer. For each task, the basic architecture has three RNN layers

nd one fully-connected layer with softmax activation. This allows

s to build seven end-to-end trainable architectures with multi-

ask learning following a similar line of reasoning, as shown in

ig. 3 . Details of structures are described below. 

Late Split . The Late Split shares all the layers across different

asks except the fully-connected layer with softmax activation. It

ossesses the same features learned from the deep neural net-

orks before classification. This architecture is succinct and widely

sed for multi-task learning. 

Middle Split . Compared with the Late Split , the Middle Split

akes the last shared RNN layer independent for each task. The

hared layers are two stacked layers of RNN and the task-specific

ayers consist of one RNN along with the classification layer. The

ndependent RNN layer models the temporal evolution of features

or the corresponding task. 

Early Split . The Early Split incorporates two RNN layers for each

ask and one shared RNN layer. It assumes the two tasks are

ess related and uses stacked RNN to adapt the features from the

hared RNN. Compared with the above two structures, this archi-

ecture has more parameters thereby making it flexible to fit each

ask. 

Separate Net . One extreme case is splitting at the lowest layer,

hich is equivalent to two separate networks altogether and is

alled Separate Net . This architecture has no shared parameters.

he assumption behind the structure is that the two tasks are to-

ally unrelated and no features are shared for any layer. This archi-

ecture is regarded as a baseline method without multi-task learn-

ng. 

Generic Net . Another extreme architecture does not contain pa-

ameters specifically for a particular task. Although the above four

rchitectures allow for a varying amount of shared layers for multi-

ask learning, it also poses a question that at which layer of the

etwork should one split, especially for deep neural networks with

 large number of layers. Rather than enumerating all the possibil-

ties, we propose a Generic Net model for multi-task learning with

o task-specific parameters. We begin by introducing two new lay-

rs: joint probability (JP) layer and marginal probability (MP) layer.

Multi-task learning needs to predict multiple output variables

rom a single input. In the case, we aim to predict the classes of

oth actions and persons. Given the learned representation h of

he input sequence by the top layer of stacked RNN, the JP layer is

esigned to compute the joint probability between the two output

ariables: 

p(i, j| h ; θ ) = φ(W h + b) (4)
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Fig. 3. An overview of seven multi-task RNN architectures for modeling sequences. The recurrent layer, fully-connected layer and softmax activation are denoted by RNN, FC, 

Softmax, respectively. To illustrate the proposed architecture, we introduce two new layers: JP and MP, which denote the joint probability layer and the marginal probability 

layer, respectively. 
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here i, j are are indexes of categories for actions and persons,

espectively, φ( · ) is the activation function and θ ≡ { W, b } are the

arameters. The JP layer models the correlation between categories

f actions and persons. It is similar to the fully-connected layer and

nly has two parameters, i.e., the weights W and the biases b . 

The MP layer calculates the probability for each variable by

umming the joint probability over other variables. In the case of

oint action recognition and person identification, we have two MP

perations. We place a softmax function on top of the MP layer to

ormalize the real values in the range (0, 1) that add up to 1. The

ormulations of two MP layer with softmax activation are: 

p(i ) = sof tmax ( 
∑ 

j p(i, j)) 

q ( j) = sof tmax ( 
∑ 

i p(i, j)) 
(5) 

here p ( i ), q ( j ) denote the predicted probabilities of classes of ac-

ions and persons, respectively. 

Note that both the MP layer and softmax activation have no

arameters. Although this model is presented with two predicted

iscrete output variables, it can be easily generalized to multiple

ariables of corresponding tasks. 

Late Split FC . The dimensionality of features plays an important

ole for accurate classification. A low dimensionality may not be

dequately enough to represent the features of interest. To bet-

er adapt to this problem, the Late Split FC uses another fully-

onnected layer to transform the output features of the RNN layers

or the Late Split . 

Generic Net FC . Similar to the Late Split FC , the Generic Net

C also adopts a fully-connected layer to transform the features

earned from stacked RNN layers based on the structure of Generic

et . 

.3. Training methods 

Let the predicted probability distribution over the class labels of

ctions and persons be p and q , respectively. There are N samples

n the training set, and ( x n , y 
(1) 
n , y (2) 

n ) is the training sample in-

exed by n ∈ { 1 , 2 , . . . , N} , where y (1) 
n , y (2) 

n are ground truth labels

f actions and persons, respectively. Considering the cross-entropy
oss between the predicted class probabilities and the true proba-

ilities, the two objective functions to be minimized are: 
 

L (1) = − 1 
N 

∑ 

n log (p(y (1) 
n )) + μ

∥∥θ (1) 
∥∥

L (2) = − 1 
N 

∑ 

n log (q (y (2) 
n )) + μ

∥∥θ (2) 
∥∥ (6) 

here ‖ θ (1) ‖ , ‖ θ (2) ‖ are regularization terms over the parameters

f the last fully-connected layer before softmax function, and μ is

 hyperparameter. 

We use the combination of above two losses to simultaneously

ptimize multiple objectives: 

 = λL (1) + (1 − λ) L (2) (7) 

here λ is the weight coefficient, 0 ≤λ≤ 1. The whole network is

rained based on stochastic gradient descent by the combined ob-

ective function. 

. Experiments and analysis 

In this section, we first describe the datasets and the imple-

entation details including the experimental setup. Then, we com-

are the results of different structures and analyze the distinctions

etween different actions. Our results of action recognition are also

ompared with the previous state-of-the-art results. Finally, we an-

lyze different training methods and evaluate the parameters to

raw further insights of the proposed model. 

.1. Datasets 

NTU RGB + D . The NTU RGB + D dataset [8] is currently the largest

epth-based action recognition dataset. It is captured by Kincet v2

n various background conditions with 3D coordinates of 25 joints.

he dataset contains more than 56 thousand sequences and 4 mil-

ion frames. There are 60 different action classes including daily,

utual, and health-related actions. The actions are performed by

0 different human subjects, whose age range is from 10 to 35.

e follow the cross-view evaluations protocol as in [8] . 

Northwestern-UCLA Multiview . The Northwestern-UCLA Multi- 

iew Action3D dataset [66] contains RGB, depth and skeletons cap-
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tured simultaneously by three Kinect cameras. It includes 10 ac-

tion categories: pick up with one hand, pick up with two hands, drop

trash, walk around, sit down, stand up, donning, doffing, throw, carry .

Each action is performed by 10 different human subjects. We use

the same experimental setting [66] that uses samples from 2 cam-

eras as the training data, and use samples from 1 camera as the

testing data. 

UWA3D Multiview II . The UWA3D Multiview Activity II dataset

[67] is collected in the lab using Kinect. It consists of 30 human

activities performed by 10 different human subjects. Each subject

performed the same actions four times from four different views:

front view, left and right side views, and top view. This dataset

is very challenging due to heavy occlusion and the point that the

start and end positions of human body for the same actions are

different. We follow the cross-validation [67] that use the samples

from two views as the training data and the samples from the two

remaining views as the testing data. 

5.2. Implementation details 

For joint learning content and style , two requirements should be

satisfied. First, labels of both actions and persons are required for

multi-task learning. Second, there exist no unseen novel class for

both actions and persons on the test set. 

However, most action recognition datasets with videos from

the web only include annotation of human actions. Lots of RGBD

datasets with the launch of Microsoft Kinect provide IDs of human

subjects, which can be regarded as labels of persons. Numerous

experimental evaluations of these datasets adopt the cross-subject

protocol, i.e., subjects of the dataset are split into training and test

groups and the human subjects between the training set and test

set are different. Fortunately, there are some evaluations of the

RGBD datasets that satisfy both requirements of joint learning con-

tent and style , e.g., cross-view evaluation, which aims to recognize

actions from views that are unseen in the training data. To estab-

lish the effectiveness of our model, we exploit multi-task learning

using the same splitting protocols and compare our results against

the existing results reported on these datasets. 

We consider a sequence of 3D skeletons as the input. For pre-

processing, we normalize skeletons by subtracting the central joint,

which is the average of 3D coordinates of the hip center, hip left

and hip right. To allow for batch learning, we convert sequences to

a fixed length T by sampling and zero padding. Here, T should be

larger than the length of most sequences to reduce loss of infor-

mation caused by sampling. We set T = 100 for the NTU RGB + D

dataset and T = 80 for the other two datasets. 

We adopt bidirectional LSTM unit for all recurrent layers due

to its excellent performance. The number of neurons of the above

datasets are 512, 512, 256, respectively. For Late Split FC, Generic

Net FC , the number of neurons of the fully-connected layer is twice

that of the corresponding RNN layer. The networks are trained us-

ing stochastic gradient descent. The initial learning rate is set to

0.02. We decrease the learning rate by 30% after every 40 epochs.

For the weight parameters, we take the following default values,

λ = 0 . 5 , μ = 0 . 0 0 01 , and the sensitivity is evaluated in Section 5.7 .

Our implementation is based on Theano and the NVIDIA TITAN X

GPU is used. 

5.3. Experimental results 

The experimental results of the proposed methods on the three

datasets are shown in Table 1 . It should be noted that Separate

Net which uses separate networks for action recognition and per-

son identification serves as the baseline method without multi-

task learning. The details of the seven proposed structures are de-

scribed in Section 4.2 . 
In terms of the accuracy of action recognition on the three

atasets, the methods based on multi-task learning ( Late Split, Mid-

le Split, Early Split ) outperform Separate Net by more than 1.4%,

.0% and 1.8%, respectively. Additionally, Middle Split yields the best

erformance on two datasets. For example, on the NTU RGB + D

ataset and the UWA3D Multiview II dataset, Middle Split outper-

orms the other three methods by more than 2.0%, 1.7%, respec-

ively. For the Northwestern-UCLA dataset, the result of Middle Split

s slightly inferior to that of Early Split . Note that the only differ-

nces between the four methods are the different levels of shared

ayers. The results demonstrate that the proposed multi-task learn-

ng methods are effective for skeleton based action recognition.

ue to the excellent performances, we recommend the structure

f Middle Split which uses two common RNN layers to learn the

hared representation and one independent RNN layer to adjust

he learned representation for each task. 

We also observe that Generic Net consistently performs better

han Separate Net on the three datasets. Generic Net , in which all

arameters are shared between the two tasks, is the opposite ex-

reme of Separate Net . The result is consistent with our discussion

hat action recognition benefits from joint learning content and

tyle . Comparing Late Split FC to Late Split , we find that increas-

ng the feature dimension by placing another fully-connected layer

n top of the RNN layers does not necessarily improve the perfor-

ance. Similar results can be obtained by comparing Generic Net

C to Generic Net . We conclude that the learned features of RNN

ayers can be directly used for action classification. 

For the accuracy of person identification, the results of Late

plit, Middle Split, Early Split are much higher than those of Separate

et . For example, on the NTU RGB + D dataset, Middle Split outper-

orms Separate Net by 15.7%. Other multi-task RNN structures also

eat the baseline Separate Net by considerable margins. We also

nd that Late Split FC obtains the best results on two dataset, i.e.,

he NTU RGB + D dataset and the UWA3D Multiview II dataset. We

rgue that additional fully-connected layer to transform the fea-

ures learned from RNN layer might be useful for person identifi-

ation. It should be noted that by leveraging the benefits of multi-

ask RNN, we achieve a person identification accuracy of 65.2%

ithin 40 categories solely based on skeletons. 

.4. Analysis of different actions 

In this section, we aim to analyze the accuracies of both action

ecognition and person identification for different actions. Here we

how the results of Middle Split and similar results can be achieved

or other architectures. 

Fig. 4 illustrates the recognition accuracies of different actions

f joint learning content and style on the NTU RGB + D dataset. For

ome actions, e.g., use a fan feeling warm, staggering, salute, taking

 selfie, hand waving, cheer up, throw, brushing hair , both accura-

ies of action recognition and person identification are very high.

hese actions involve certain movements of hands which might be

iscriminative for recognition of content and style . For some other

ctions, e.g., walking apart from each other, hugging other person , the

ccuracies of action recognition are very high but the accuracies of

erson identification are very low. These actions are interactive ac-

ivities between two persons and the movements of the individual

erson are relatively small and rigid. There are also some actions,

.g., shake head, writing, reading , both accuracies of action recog-

ition and person identification are relatively low. These actions

nly allow a slight degree of movement thus conveying limited in-

ormation for recognition. 

The recognition accuracies of different actions on the

orthwestern-UCLA dataset is shown in Fig. 5 . We can see

hat for drop trash, pick up with two hands , both accuracies of

ction recognition and person identification are 100%. And for the
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Table 1 

Accuracies of action recognition and person identification of different architectures on the 

three datasets with cross-view evaluation. 

Method NTU RGB + D dataset Northwestern-UCLA UWA3D Multiview II 

Action Person Action Person Action Person 

Late Split 80.6 59.0 86.6 38.4 48.3 23.7 

Middle Split 82.6 63.3 87.3 40.6 50.9 23.2 

Early Split 80.4 57.3 88.1 41.9 49.3 21.6 

Separate Net 79.0 47.6 84.6 36.9 46.5 20.1 

Generic Net 80.1 56.4 88.3 43.4 48.7 23.0 

Late Split FC 80.8 65.2 87.9 41.0 47.7 23.7 

Generic Net FC 80.4 58.2 87.2 41.7 47.4 23.1 

Fig. 4. Recognition accuracies of different actions on the NTU RGB + D dataset. 

Fig. 5. Recognition accuracies of different actions on the Northwestern-UCLA dataset. 
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Fig. 6. The confusion matrix of action recognition on the NTU RGB + D dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Comparison of the proposed approach 

with the previous methods for action 

recognition on the NTU RGB + D dataset. 

Method Accuracy 

Lie group [68] 52.8 

Skeletal quads [69] 41.4 

FTP dynamic [70] 65.2 

HBRNN [6] 64.0 

Part-aware LSTM [8] 70.3 

Trust gate ST-LSTM [27] 77.7 

Two-stream RNN [29] 79.5 

Multi-task RNN 82.6 
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actions like carry, doffing , the accuracies of action recognition are

nearly 90%, but the accuracies of person identification are below

20%. The results are consistent with the discussion above that

some actions might not suitable for person identification as the

involving movements are small and rigid. 

Next we analyze the confusion matrix of action recognition. For

person identification, as it makes no sense to analyze different ac-

curacies of different person subjects, we do not give the corre-

sponding confusion matrix. The confusion matrix of action recog-

nition on the NTU RGB + D dataset is shown in Fig. 6 . We observe

that there are six pairs of actions with high misclassified rate, i.e.,

(reading, writing), (palying with phone/tablet, writing), (typing on a

keyboard, writing), (take off a shoe, wear a shoe), (kicking something,

kicking other person), (shake head, pat on back of other person) . For

example, samples of take off a shoe are misclassified as wear a shoe

with a rate of 30%. Generally, take off a shoe is the opposite action

of wear a shoe . A sequence of take off a shoe can be considered as

wear a shoe if we watch the sequence backwards. As the bidirec-

tional LSTM which models both forward and backward dependen-

cies is adopted as the recurrent unit, it might be difficult for our

model to distinguish between samples that belong to an action and

its opposite action. Additionally, samples from actions like reading,

writing are much similar and hard to discriminate solely based on

skeletons. It should be noted that the confusion matrix is not sym-

metric. For example, samples of shake head are misclassified as pat

on back of other person with a high rate of 19%, but samples of pat

on back of other person are only misclassified as shake head with a

low rate of 2%. 

The confusion matrix of action recognition on the

Northwestern-UCLA dataset is shown in Fig. 7 . We find that

there are five pairs of actions with the misclassified rate more

than 5%, i.e., (pick up with one hand, pick up with two hands),

(throw, walk around), (pick up with one hand, throw), (throw, carry) .

One interesting observation is that samples of pick up with one

hand can be easily misclassified as pick up with two hands , but no

samples of pick up with two hands is misclassified as pick up with
 [  
ne hand . Some actions are harder to recognize than some others

nd the confusion matrix of action recognition is not symmetric. 

.5. Comparison with the state-of-the-art 

Previous effort s have been made on robust representation of ac-

ion for performance improvement, and the person who performs

he action is often neglected in action recognition research. To

emonstrate the benefits of joint learning for action recognition,

e compare our results with the reported state-of-the-art results

n three public benchmark datasets. Here, we choose the archi-

ecture of Middle Split due to the excellent performances. To make

air comparison with the other state-of-the-art methods, we do not

hoose the best architecture for different datasets as the ground

ruth of testing data is not always available. 

Table 2 shows the results on the NTU RGB + D dataset. Our

ethod significantly outperforms three methods based on hand-

rafted features, i.e., 3D skeletons representation in a Lie group

68] , Fisher vector encoding of skeletal quads [69] and FTP dy-

amic [70] . Comparing with other RNN based approaches (e.g.,

6,8,27,29] ), our result is also considerably higher. Finally, our
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Fig. 7. The confusion matrix of action recognition on the Northwestern-UCLA dataset. 

Table 3 

Comparison of the proposed approach 

with the previous methods based on 

skeletons for action recognition on 

the Northwestern-UCLA Multiview Ac- 

tion3D dataset. 

Method Accuracy 

Hankelet [71] 54.2 

HOJ3D [19] 54.5 

Actionlet [72] 69.9 

MSTAOG [66] 73.3 

Lie group [68] 74.2 

HBRNN [25] 80.5 

Two-stream RNN [29] 85.5 

Multi-task RNN 87.3 
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ethod beats the newest spatio-temporal LSTM with trust gates

27] and two-stream RNN [29] by 4.9% and 3.1%, respectively. 

Table 3 summarizes the results on the Northwestern-UCLA Mul-

iview Action3D dataset. Our performance is much higher than the

esults based on handcrafted features as well as those of RNN

ased methods. For example, our method outperforms HBRNN

25] and two-stream RNN [29] by 6.8% and 1.8%, respectively. 

The results on the UWA3D Multiview Activity II dataset are

ummarized in Table 4 . Here our methods are only compared with

he approaches solely based on skeletons. Nearly for all the five

plits, our results are significantly higher than the previous re-

orted results. For the mean accuracy, our method is 7.5% higher

han the method [68] . 

For person identification, most of the approaches build on ap-

earance based features and techniques based on skeletons from

GBD data are seldom provided. In addition, person identifica-

ion experiments are often performed based on a particular ac-

ion (e.g., walking). Our experiments of joint action recognition

nd person identification require an input sequence with an un-

nown action type in unconstrained environments. Thus, there are

o public datasets suitable for our task with reported results of

erson identification. To further demonstrate the effectiveness of

ur approach, we implement some state-of-the-art methods based

n skeleton based features and compare the accuracies of per-

on identification with ours. The results on the challenging NTU

GB + D dataset are provided in Table 5 . Similar to the discussion

f action recognition, we choose Middle Split as the architecture

f the multi-task RNN. We first compare our method with meth-

ds based on handcrafted descriptors, i.e., the exhaustive combina-

ion of distances among joints, distances between the floor plane
nd all the possible joints [36] , and a set of anthropometric mea-

ures extracted from poses [42] . We observe that our performance

s significantly higher, which shows the superiority of deep learn-

ng methods over the methods based on handcrafted features. Our

esult is also much higher than when compared with multi-layer

STM network. The results show the benefits of our approach of

oint learning content and style for person identification based on

keletons. 

.6. Comparison of training methods 

In Section 4.3 , we just use a linear combination of the losses of

ontent and style . As multi-task learning methods are popular for

eep neural networks (e.g., [53] ), we provide an alternative method

y looping between the two tasks. The training procedure are as

ollows: 

1. Select the next task. 

2. Select a random training sample. 

3. Update the networks for the corresponding objective function

by stochastic gradient descent with respect to this sample. 

4. Go to 1. 

The results on the NTU RGB + D dataset using Late Split are

hown in Fig. 8 . Here, Weighted loss, Loop task denote the train-

ng method in Section 4.3 and the above alternative approach, re-

pectively. We can observe that, for both tasks, the performances

f Weighted loss are better than those of Loop task . In addition, the

esults Weighted loss exhibits the faster convergence and smaller

uctuation. For example, after 50 epochs, for both action recog-

ition and person identification Weighted loss outperforms Loop

ask by 11.1% and 7.6%, respectively. This can be interpreted that

or Loop task , different losses during training iterations introduce

 high level of random fluctuations. The results indicate that it is

nnecessary to design training strategies to loop between tasks for

oint learning content and style when the number of objective func-

ions are small. 

.7. Evaluation of parameters 

The multi-task RNN has two parameters, i.e., the weight coef-

cient of the loss of actions and the regularization hyperparame-

er, denoted by λ and μ, respectively. Here we evaluate the impact

f parameters on the performance, and provide the results on the

TU RGB + D dataset using Late Split . It should be noted that similar

esults are observed for other datasets. 
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Table 4 

Comparison of the proposed approach with the previous methods based on skeletons for action recognition on the UWA3D 

Multiview Activity II dataset. Each time two views are used for training and the remain two views are individually used for 

testing. 

Training views V 1 and V 2 V 1 and V 3 V 1 and V 4 V 2 and V 3 V 2 and V 4 V 3 and V 4 Mean 

Test view V 3 V 4 V 2 V 4 V 2 V 3 V 1 V 4 V 1 V 3 V 1 V 2 

HOJ3D [19] 15.3 28.2 17.3 27.0 14.6 13.4 15.0 12.9 22.1 13.5 20.3 12.7 17.7 

Actionlet [72] 45.0 40.4 35.1 36.9 34.7 36.0 49.5 29.3 57.1 35.4 49.0 29.3 39.8 

Lie group [68] 49.4 42.8 34.6 39.7 38.1 44.8 53.3 33.5 53.6 41.2 56.7 32.6 43.4 

Multi-task RNN 50.2 50.9 51.5 52.7 50.0 46.8 56.5 47.2 55.8 48.7 56.5 44.4 50.9 

Fig. 8. Comparison of training methods for joint learning content and style . Here, Weighted loss is the method which uses a weighted combination of the two losses, and 

Loop task is the alternative method by looping between the tasks. 

Fig. 9. Sensitivity of the weight coefficient of the loss of action recognition. 

Fig. 10. Sensitivity of the regularization hyperparameter. We use both L1 regularization and L2 regularization. Here, the scale of the horizontal axis is changed to suit the 

needs. 
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Fig. 9 shows the accuracy of action recognition and person

identification w.r.t. the parameter λ. We observe that both tasks

obtain the best results when λ = 0 . 7 . The accuracy of action in-

creases markedly with the increase of λ when λ< 0.4, and main-

tains a high accuracy when λ> 0.4. For person identification, the

accuracy increases steadily when λ< 0.7, but starts to decrease

sharply when λ> 0.7. The two extreme points ( λ = 1 , λ = 0 ) rep-

resent the two separate networks for action and person in the ar-

chitecture of Separate Net , respectively. The accuracy of persons in-

creases as λ increases from 0 to 0.7 owing to the benefits of multi-
ask learning, and decreases as λ increases from 0.7 to 1.0 because

f the shrinking weight coefficient for the loss of person identifica-

ion. Similar explanation can be achieved by analyzing the accuracy

f action recognition. We can find that a good choice of λ for both

asks is λ∈ [0.3, 0.7]. 

For the regularization hyperparameter, we choose μ ∈ { 1 ×
0 −7 , 1 × 10 −6 , 5 × 10 −6 , 1 × 10 −5 , . . . , 0 . 0 01 , 0 . 0 05 } and plot the

esults in Fig. 10 . For L1 regularization, the best value is μ =
 × 10 −6 where both accuracies achieve the best performance. The

ccuracy of action recognition is very promising when 1 × 10 −7 <
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Table 5 

Comparison of the proposed approach with the 

state-of-the-art methods for person identifica- 

tion on the NTU RGB + D dataset. 

Method Accuracy 

Skeleton features [36] 21.0 

Anthropometric measures [42] 28.6 

1 layer LSTM 36.5 

2 layer LSTM 42.6 

3 layer LSTM 43.5 

Multi-task RNN 63.3 
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< 0 . 001 , but drops sharply when μ> 0.001. While for person

dentification, the accuracy begins to decrease steadily with the in-

rease of μ when μ > 1 × 10 −4 . The results reveal that a smaller μ
s more preferred for L1 regularization. For L2 regularization, the

ccuracy of both tasks maintains a high performance for a much

ider range, but the peak values are lower than those of L1 regu-

arization. We conclude that for L1 regularization, the accuracy is

ot sensitive to μ in a long range (e.g., μ< 0.001), and it is even

ess sensitive for L2 regularization. 

. Conclusion and future work 

In this paper, we present an end-to-end RNN architecture based

n multi-task learning to simultaneously conduct action recogni-

ion and person identification. The structure consists of two com-

onents: skeleton transformation and multi-task RNN. For skeleton

ransformation, viewpoint transformation and spatial dropout are

tilized to learn robust representation. For multi-task RNN, differ-

nt architectures with different amounts of sharing layers are in-

estigated. We apply the proposed model to skeleton based action

ecognition with cross-view evaluation and achieve state-of-the-

rt performances on three benchmark datasets. The experiments

emonstrate that for both tasks of person identification and action

ecognition, learning one task would benefit from learning another

ask. One potential drawback of the proposed multi-task RNN is

hat it is impractical to enumerate all possible architectures for

ach set of tasks to find the best architecture, especially for very

eep neural networks. In the future, we will build a model to auto-

atically learn an optimal combination of shared and task-specific

epresentations for multi-task learning. 
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